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Abstract 
 
In this paper we develop on abstract system: viz Boolean-like algebra and prove that every Boolean  algebra is a Boolean-like algebra.  A 
necessary and sufficient condition for a Boolean-like algebra to be a Boolean algebra has been obtained.  As in the case of Boolean ring  
and Boolean algebra, it is established that under suitable binary operations the Boolean-like ring and Boolean-like algebra are equivalent 
abstract structures.  
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1. Preliminaries  

Following A.L.Foster’s, the concept of Boolean-like ring is 
 as follows: 

Definition 1.1:A Boolean-like ring B is a commutative ring 
 with unity which satisfies the following conditions.  

(1) a + a = 0,  and 

(2)  a (1+a) b (1+b)  = 0  for all  a,b  B. 

       we give some examples of Boolean-like rings. 
 

Example 1.2:  Every Boolean ring is a Boolean - like  ring. 

Proof:   If  B is a Boolean ring, then  for all a  B,  

 ( a+  a ) 2  =  a + a,   whence  a2 + a 2+ a2 + a2  = a + a  
and so  a + a + a + a  = a+ a.  Thus   a + a = 0.  
Further a(1+ a ) = a2 + a = a + a = 0.  

Hence a(1+a)b (1+b)= 0, for all a,b B.  

By a remark, B is a commutative ring with unity.  
Thus B is a Boolean-like ring.  
   But the converse need not be true (For this refer example 1.4). 
 

Example 1.3 :  Let R be a ring with unity and characteristic 2.  
Let B be the set of all central idempotent of  R . Then B is a Bool-

ean subring of R. Further B × R is a Boolean - like ring with addi-
tion and multiplication defined as follows: 
 ( b1, r1﴿  +  ( b2 , r2 ﴿  = ( b1 + b2  ,  r1 + r2 ﴿   
(b1, r1).(b2 , r2 ) = (b1b2 ,b1r2+ b2r1 )  

for all b1, b2  B and r1, r2 R  

Proof:  we first prove that B is a Boolean subring of R . 

Let  b1, b2    B.   

We show that b 1 -  b2  B and   

b1 b2  B 

( b1 – b2) 
2   =   b1   -  b2     (Since R has characteristic 2) 

For   a  R ,  (b1  - b2 ) a   =  b1a – b2a   

=  ab1 – ab2  =  a ( b1 –b2 )    

Hence    b 1 -  b2   B.   

Also,   (b1 b2 ) 
2  = ( b1 b2 )( b1 b2 ﴿  = b1( b2b1)b2  =  b1 ( b1  b2 ) b2   

=  b1
2 b2

2  =  b1 b2     

Further  ( b1b2) a  =  b1( b2 a) = b1( ab2) = (b1 a ) b2  = a(b 1b2). 

Hence b1 , b2  B .  

Trivially 1  B  and  e2 = e   for all   e  B  

Therefore B is a Boolean subring of R.  
We now verify that B × R is a Boolean –like ring. 

For  b1 , b2, b3  B   and  r1, r2, r3  R, 

[ (b1,r1) + (b2 ,r2 )]  + (b3 , r3)    
=  (b1 , r1 ) + [( b2, r2) + ( b3, r3)] 
Hence  ‘+’  is associative.                

Now (0, 0)  B × R  and  (b1, r 1)+( 0, 0 )  

= (b 1+0 , r1+0 )  s   = (b1 , r1) 
Therefore (0,0)  is  additive identity of  B × R.  

 For (b1 , r1 )  B × R    

There exists ( -b1 , -r1)  B × R such that  
( b1, r1 ) + (- b1 ,- r1   = ( b1 – b1  , r1 – r1 ) =  (0 , 0) 

Hence  (- b1,- r1)  is the additive inverse of  ( b1 , r1)    
( b1, r1)  + ( b1, r2)   = ( b2, r2) + (b1, r1) 
Therefore  ‘+’  is commutative. 
Thus  (B×R,  +)  is an abelian group. 
Now  [(b1, r1). (b2, r2)] . (b3, r3)  
=  (b1b2, b1r2 + b2 r1 ).(b3, r3 ) 
=  (b1b2b3 , b1b2r3 + b3 (b1r2 + b2r1)     
=  (b1,r1)[( b2, r2) (b3,r3 )] 

Hence   ‘.’ is associative. 

Also (1, 0 )  B × R and  (b1, r1). (1,0) = ( b1, r1)  

Further (b1, r1).(b2, r2) =( b1b2 , b1r2+b2r1)  = (b2b1, b2r1+b1r2)   
 = ( b2, r2) . (b1, r1)  
To prove the distributive law ,  
Consider (b1, r1) [(b2, r2) + (b3, r3)] 
= (b1, r1) [b 2+ b3, r 2+ r3]  
=[b1(b2+b3, b1(r2+r3)+(b2 + b3)r1]  
Furthermore,  (b1, r1) (b2, r2) +  (b1, r1)(b3, r3) = 
 (b1b2 , b1r2 + b2r1) + (b1b3,b1r3+ b3r1)  

 = (b1b2+b1b3,   b1r2+b2r1+b1r3+b3r1) 
Therefore (B×R ,+, ∙ )  is a commutative ring with unity. 

Suppose   (b1, r1  )    B ×R. 

Since R is a ring of characteristic 2, 
(b1, r1)  + (b1, r1) = (b1+ b1 , r1+r1) = (0 , 0)  
Also,  ( b1, r1 ) [(1,0) + (b1, r1 )] (b2, r2 )[(1,0)+ (b2, r2  ) ]    
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=  (0,  r1) ( 0 , r2   ) =  (0, 0 )  
Hence   B×R  is  a  Boolean – like ring. 
As a particular case of example 1.3, we have the following 

Example 1.4 :  Let  Z2 = {0,1} be the ring of integers modulo 2.  

Then Z2 is a commutative ring with unity and its characteristic is 2. 
Obviously Z2 is a Boolean ring. Hence Z2×Z2 is a Boolean-like 
ring under the operations of addition and multiplication defined as 
in example 1.3 above.  This Boolean-like ring is denoted by H4.   
Write 0 = (0,0), 1 = (1,0),  p = (0,1) and q = (1,1).   
Thus  H4 = {0, 1, p,q} and addition and multiplication  tab les  of 

H4 are as follows 
 

 0 1

0 0 1

1 1 0

0 1

1 0

p q

p q

q p

p p q

q q p

           

 0 1

0 0 0 0 0

1 0 1

0 0

0 1

p q

p q

p p p

q q p

 

 
Obviously   H4  is not a Boolean ring. 
 

Theorem 1.5: Each element ‘a’ of a Boolean–like ring B  

satisfies  a4 = a2. 

Proof:  We have that a (1+a)b (1+b) = 0   --------  (i) 

By taking   a = b in (i), we get that a(1+a) a (1+a) = 0 
  =>  a4 = a2 ,  since the characteristic of B is 2. 

2. Boolean Like Algebras 

We now give the following definition: 

 

Definition 2.1: An algebraic structure  

( A, ∧ , ∨,1,0,1) where  ∧  and  ∨ are binary  operations, 1  is  an 

unary  operation  and  

0 and 1 are elements of A, is called a Boolean-like algebra if the 
following conditions are satisfied  

(1)    ∧, ∨ are associative  and  commutative 

(2)    (a ∨ b)1 = a1 ∧ b1 ;  (a1)1 = a ;  01 = 1 

(3)    a ∧ 0 = 0 ;  a ∧ 1 = a 

(4)    b ∧ c =0 =>  a ∧ (b ∨ c)  

= (a ∧ b) ∨ (a ∧ c)  

(5)    a ∧ a1 ∧ b ∧ b1=0 

(6)    (a ∧ a1) ∨(a ∧ a1) = 0 

(7)    ( a1 ∨ b) ∧ (a ∨ b1) = (a ∧ b) ∨ (a1∧ b1) 

(8) [(a ∧ b) ∧ (a ∧ c)1] ∨ [(a ∧ c) ∧ (a ∧ b) 1]   

= [a ∧b ∧ c1]  ∨ [a ∧ b1∧ c] , for all a , b , c  A 

The following result gives the most important elementary proper-
ties of elements in a Boolean-like algebra. 
 

Lemma 2.2: In any Boolean–like algebra A, we have the follow-

ing  

 (i)     a∨0 =a                       (ii)   0 = 11 

(iii)   a∨1 = 1                      (iv)  (a∧b)1 = a1∨b1   

(v)(a∨a) ∧ (a1∨a1)=0            (vi) (a∧a) ∨ (a1∧a1) =1   

(vii) (a∨a1) ∧ (a∨a1)= 1 

 
Proof: (i) By (2) and (3) of definition 2.1  

(a ∨ 0)1 = a1∧ 01  = a1 ∧ 1 = a1. Hence a ∨ 0 = [(a ∨ 0)1] 1  

= (a1) 1=a 
By (2) of definition 2.1, we have that 

(ii)    0 = (01)1= 11 

(iii)   a ∨1 = [(a ∨ 1)1] 1 = (a1 ∧ 0)1=01=1 

(iv)   (a ∧ b)1= ((a1 ∨ b1) 1)1 = a1 ∨ b1 

(v)   By taking  b = a1  in (7), we get that    

 (a1 ∨ a1) ∧ (a ∨ a) = (a ∧ a1 )∨ (a 1∧ a) = 0 

[vi]    By  (v) we have that   (a ∨ a) ∧ (a1 ∨ a1) =0 

 Therefore 1= 01 = [(a ∨ a) ∧ (a1 ∨ a1)]1  

= (a ∨ a)1∨ (a1 ∨ a1)1      = (a1 ∧ a1) ∨ (a ∧ a) 

(vii)  (a ∨ a1) ∧ (a ∨ a1)= (a ∧ a) ∨ (a1 ∧ a1) =1,  follows from (7) 

and  (vi). 
 

Remark 2.3: Every complemented distributive lattice is a Bool-

ean like algebra. 

 

Proof: Let (L, ∧ , ∨ ,1,0,1) be a complemented distributive lattice. 

 By the definition of a complemented distributive lattice the condi-
tions (1)to (6) of a Boolean- like algebra  are satisfied. 

 (7)    (a1 ∨ b) ∧ (a ∨ b1)      

= [(a1 ∨ b) ∧ a] ∨ [(a1 ∨ b) ∧ b1]    

= 0 ∨ (a ∧ b) ∨ (a1∧ b1) ∨ 0            

 = (a ∧ b) ∨ (a1 ∧ b1)  

(8)  [(a ∧ b) ∧ (a ∧ c)1 ] ∨ [(a ∧ c) ∧ (a ∧ b)1]    

 = [(a ∧ b) ∧ (a1 ∨ c1)] ∨ [(a ∧ c) ∧ (a1 ∨ b1)] 

=(a ∧ b ∧ a1) ∨ (a ∧ b ∧ c1) ∨ (a ∧ c ∧ a1) ∨ (a ∧ c ∧ b1)   

=(a ∧ b ∧ c1) ∨ (a ∧ c ∧ b1). 

Therefore L is a Boolean-like algebra. 
By a theorem and remark 2.3, we get that every Boolean  

algebra  is a  Boolean- like algebra. 
 

Theorem 2.4: A Boolean-like algebra (A,∧,∨,1,0,1) is a Boolean 

algebra if and only if   a ∧ a = a  for all a A. 

 

Proof:  Suppose  a ∧ a = a for all a A .Then  (A, ∧) is  a semi-

lattice,  By (5)  of  definition 2.1  x ∧ x1 = 0,  for all  x  A.  Also, 

By (iv) of lemma 2.2,  

1= 01 = (x ∧ x1)1 = x1 ∨ x.  If a ∧ b1 =0, for some a,b  A,  

Then  a= a ∧ 1 = a ∧ (b ∨ b1) = (a ∧ b) ∨ (a ∧ b1) = a ∧ b, 

 by (4) of def 2.1.  

Conversely, if a ∧ b = a , then  a ∧ b1 = a ∧ b ∧ b1 = a ∧0 = 0.  Thus, 

(A, ∧,1,0) is a Boolean algebra.  Conversely, if (A, ∧, 1 ,0)  is a 

Boolean algebra, then  

a∧a = a for all a A, follows from the fact that (A, ∧) is a semi-

lattice. 

 

Corollary 2.5: A Boolean-like algebra is a complemented dis-

tributive lattice aΛa = a, for all a. 

 

Proof:  Let B be a Boolean-like algebra. If B is a complemented 

distributive lattice, then evidently, 

 a ∧ a = a  for all a  B. 

Conversely suppose that a ∧ a = a for all a B.  

By the   above theorem B is a Boolean algebra.  Then, by the theo-
rem [1], B is a complemented distributive lattice. 
We now prove that every Boolean-like algebra is a Boolean-like 
ring under some binary operations. 
 

Theorem 2.6: Let (A,∧,∨,1,0,1)  be a Boolean-like algebra. De-

fine binary operations + , ∙ by  a + b= (a ∧ b1) ∨ (a1 ∧ b); a.b = a ∧ b 

for all a,b  A. Then (A,+,∙,0,1)  is  a Boolean-like ring. 

 

Proof: In order to prove that (A,+,∙,0,1)is a Boolean-like ring, 

We have to prove that   

 1) (A,+) is an abelian group with  identity 0 
 2) (A,∙) is a commutative semi group with identity 1.  
 3)  Distributive law  a (b + c) = ab + ac  

for all a,b,c  A 

 4)  a + a =0  for all a  A,  and  

 5)  a (1+a) b (1+b)  = 0    for all  a, bA 
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Now, a+b = (a ∧ b1) ∨ (a1 ∧ b) = (b ∧ a1) ∨ (b1 ∧ a) = b + a 

Therefore ‘+’ is commutative. 
(a + b) + c  = 

 [ [(a  ∧ b1) ∨ (a1 ∧ b)] ∧ c1] ∨ [[(a ∧ b1) ∨ (a1∧ b)]1 ∧ c  

= (a ∧ b1 ∧ c1) ∨ (a1 ∧ b ∧ c1)  ∨ (a ∧ b ∧ c) ∨(a1 ∧ b1 ∧ c) --  (A) 

a + (b + c) =  

[a ∧ ((b ∧ c1) ∨ (b1 ∧ c))1] ∨ [a1 ∧ ((b ∧ c1) ∨ (b1 ∧ c))] 

= (a ∧ b ∧ c) ∨ (a ∧ b1 ∧ c1) ∨ (a1 ∧ b ∧ c1)  ∨ (a1 ∧ b1 ∧ c---- (B) 

From   (A)  and (B),   (a + b) + c  =  a + (b + c).  Further 

a + 0 = (a ∧ 01) ∨ (a1 ∧ 0) = (a ∧ 1) ∨ 0  =  a ∧ 1 = a. 

Therefore   0   is the additive identity in A.  

Also   a+ a = (a ∧ a1) ∨ (a1 ∧ a) = 0 

Thus inverse of a is itself. 
Therefore, (A,+)  is an abelian group with identity 0.  Further 

a(b .c) = a ∧ (b ∧ c) = (a ∧ b) ∧ c =  (a.b).c  and   a.1  = a ∧1 = a 

Also,   a.b  = a ∧ b = b ∧ a = b.a 

Therefore, (A,.)  is a semigroup with identity 1. 
Distributive law: 

a.(b + c) =  a ∧ [(b ∧ c 1) ∨ (b1 ∧ c)] = (a ∧ b ∧ c1) ∨ (a ∧ b1 ∧ c),  

 by (4)  of def 2.1 

ab + ac  =  (a ∧ b) + (a ∧ c)   

= [(a ∧ b) ∧a ∧ c)1] ∨ [(a ∧ b)1 ∧  (a ∧  c)] 

= (a∧ b∧ c1) ∨  (a∧ b1∧ c)  by  (8) of  def 3.1 
Hence a(b + c) = ab + ac. 
Observe that a + a = 0 for all a  is already proved.  
Finally,   1+ a =   (1 ∧  a1) ∨  (11∧  a) = a 1 ∨  0 = a1 
Therefore a (1+ a) b (1 + b) = aa1bb1  = a ∧  a 1∧  b ∧  b1 =  0  

by (5) of def 2.1. 
Hence A is a Boolean-like ring. 
      We now prove that  every Boolean-like ring  becomes   
a Boolean –like algebra. 
 

Theorem 2.7:  Let (A, +, ∙ ,0,1) be a Boolean-like ring.   

Define the binary operations ∧  and ∨  and complementation 1  

by  a∨ b = a+b+ab; a∧ b = a.b   and  a 1 = 1+a   for all a, b  A.  

Then the algebraic system  (A,Λ, ∨ ,1 ,0, 1) is a  
Boolean like algebra. 

 

Proof:  In order to prove that  A  is a Boolean like algebra ,  

we need to verify the following.  
(1) ∨  and ∧  are associative and commutative. 
Now  a ∨  b  =  a + b + ab  = b + a + ba  = b ∨  a,   

and a ∧  b =a.b = b.a = b ∧  a.  
Also, a∨ (b∨ c)    =   a + (b + c + bc) + a(b + c + bc)  
=   a+ b + c + bc + ab + ac + abc 
=  (a + b + ab) + c + (a + b + ab)c   =  (a∨ b) ∨  c 
Further, ( a ∧  b) ∧  c = (ab)c  = a(bc) = a ∧  (b∧ c) 
Therefore   ∨  and ∧  are associative and commutative 
(2) (a ∨  b)1 = a1∧  b1   ; (a1)1 = a ;  01 = 1 
Now   (a ∨  b)1 = 1+ (a + b + ab)  = 1+ a + b + ab   

= (1+ a)(1+ b) = a1b1     = a1∧ b1     
Also   (a1)1 = (1+ a)1  = 1 + 1 + a = a.   
Trivially 01= 1 
(3)  a ∧  0 = 0; a ∧  1 = a.  
 Trivially, a ∧  0  = a.0 =  0 and  a ∧  1 = a.1 = a 
(4)   b ∧  c = 0 => a ∧  (b ∨  c)=( a ∧  b) ∨  (a ∧  c)    
Let   b ∧  c = 0.  
Then    a ∧  (b ∨  c) = a (b + c + bc) = ab + ac + abc  
 = ( a ∧  b)  ∨  (a ∧  c) 

(5)  a ∧  a1 ∧  b ∧  b1  = a (1+ a) b (1+ b)  = 0       
(6)  (a ∧  a1) ∨  (a ∧  a1)   
=  a (1+ a) + a (1+ a) + aa (1+ a) (1+ a) = 0 
 [by (1) & (2) conditions of Boolean-like ring] 
(7)  (a1 ∨  b) ∧  (a ∨  b1)   =  (a1+ b + a1b) (a+ b1+ ab1) 
= a 1a + a 1b1 + a1a b1 + ba + bb1 + bab1 +  
a1ba + a1bb1 + a1bab1 

= bb1(1 + a 1 + a) + aa1(1 + b + b1) + a1b1+ ba  

 (since a1bab1= 0) 
= bb1(0)  + aa1(0) + (1+a)(1+b) + ba   =  1 + a + b---(i) 
 (a ∧  b) ∨  (a1∧  b1) = ab + a1 b1 + aba1b1   = ab + a1b1  
= ab + (1+a)(1+b)        =  1+ a + b  ----(ii) 
From (i) & (ii) , (7)  is satisfied. 
(8)(a∧ b∧ c1)∨ (a ∧ b1∧ c) =abc1+ab1c + abc1ab1c 
 = abc1 + ab1c = ab(1+ c)+a(1+b)c= 
 ab + abc + ac + abc = ab+ac  ------ (iii)                         

 [(a∧ b) ∧ (a∧ c)1] ∨ [(a∧ c)∧ (a ∧  b)1]  
=  ab (ac)1 + ac(ab)1 + (ab)(ac)1(ac)(ab)1 
=   ab + ac       ------ (iv)  
From (iii) &  (iv) , (8)   is satisfied                   
Thus (A,  ∧ ,∨ , 1,0,1) is a    Boolean-like algebra. 
As in the case of Boolean ring and Boolean algebra, we now show 
that the Boolean –like ring and Boolean-like algebra are                   
equivalent structures.       

 

Theorem 2.8:  The following abstract structures are equivalent  

 (i)  Boolean-like ring and      (ii) Boolean-like algebra. 

 

Proof:  Let  (A,+,∙,0,1) be a  Boolean-like ring. By theorem 

2.7,we get a Boolean-like algebra (A,∧ ,∨ ,1,0,1) in which the bina-
ry operations ∧ , ∨  are defined by a∨ b = a + b + ab ; a∧ b = ab 
and the complementation 1 is defined by   

a1 = 1+ a  for all a,b  A  

by  theorem 2.6, 
 we obtain a Boolean-like ring out of this Boolean-like algebra. 
where new operations  +1, ‘∙1’ in  A  are defined by 
a +1 b = (a∧ b1) ∨  (a1∧ b)  ; a ∙1 b =  a∧ b   and  1=1  ; 0=0.   
Then a +1 b =  (a ∧  b1)  ∨   (a1 ∧  b)  = a + ab + b + ab  = a + b  
and  a ∙1 b = a ∧  b = a ∙ b.  Therefore the newly obtained  

Boolean-like ring is same as the originally given one.  
On the otherhand ,  let  (A,∧ ,∨ ,1,0,1) be  a  Boolean-like algebra. 
By theorem 2.6, we obtain a Boolean-like ring  (A,+,∙,0,1)  where 
+ and ∙ are defined by  
a + b  = (a ∧  b1) ∨  (a1 ∧  b) ;  a ∙ b =  a ∧  b  for all  a , b in A.  
As in theorem 2.7, to construct a Boolean-like algebra  
out of this Boolean-like ring 
we   introduce  new binary operations ∧ 1  and  ∨ 1  as  

a ∨ 1 b = a + b + ab ;  a ∧ 1 b  = ab  for all a,b in A   
 a1 = 1+a  and  0=0  ; 1=1.   
Now   a ∨ 1 b  =  a + b + ab  =  1+ (1+ a + b + ab)  
= 1+ (1+ a)(1+ b) =  (a1b1)1 = a ∨  b 
a ∧ 1 b = ab = a∙b = a ∧  b.   
 Therefore, ∧ 1 = ∧   and  ∨ 1 = ∨ . 
This completes the proof. 
Thus, the newly obtained Boolean-like algebra is same as the orig-

inally given Boolean-like algebra. 
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