A Note on Boolean Like Algebras

K.Pushpalatha ${ }^{1 *}$ V.M.L.Hima Bindu ${ }^{2}$
${ }^{l}$ Department of mathematics, KLEF, Vaddeswaram
${ }^{2}$ Department of mathematics, KLEF, Vaddeswaram
*Corresponding author E mail: kpushpamphil@gmail.com

Abstract

In this paper we develop on abstract system: viz Boolean-like algebra and prove that every Boolean algebra is a Boolean-like algebra. A necessary and sufficient condition for a Boolean-like algebra to be a Boolean algebra has been obtained. As in the case of Boolean ring and Boolean algebra, it is established that under suitable binary operations the Boolean-like ring and Boolean-like algebra are equivalent abstract structures.

Keywords: Boolean algebra; Boolean like algebra; Boolean like ring; Boolean ring;

1. Preliminaries

Following A.L.Foster's, the concept of Boolean-like ring is as follows:
Definition 1.1:A Boolean-like ring B is a commutative ring with unity which satisfies the following conditions.
(1) $a+a=0$, and
(2) $\mathrm{a}(1+\mathrm{a}) \mathrm{b}(1+\mathrm{b})=0$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{B}$.
we give some examples of Boolean-like rings.
Example 1.2: Every Boolean ring is a Boolean - like ring.
Proof: If B is a Boolean ring, then for all $a \in B$,
$(a+a)^{2}=a+a$, whence $a^{2}+a^{2}+a^{2}+a^{2}=a+a$
and so $a+a+a+a=a+a$. Thus $a+a=0$.
Further $a(1+a)=a^{2}+a=a+a=0$.
Hence $\mathrm{a}(1+\mathrm{a}) \mathrm{b}(1+\mathrm{b})=0$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{B}$.
By a remark, B is a commutative ring with unity.
Thus B is a Boolean-like ring.
But the converse need not be true (For this refer example 1.4).
Example 1.3 : Let R be a ring with unity and characteristic 2. Let B be the set of all central idempotent of R. Then B is a Boolean subring of R. Further $B \times R$ is a Boolean - like ring with addition and multiplication defined as follows:
$\left(b_{1}, r_{1}\right)+\left(b_{2}, r_{2}\right)=\left(b_{1}+b_{2}, r_{1}+r_{2}\right)$
$\left(b_{1}, r_{1}\right) \cdot\left(b_{2}, r_{2}\right)=\left(b_{1} b_{2}, b_{1} r_{2}+b_{2} r_{1}\right)$
for all $b_{1}, b_{2} \in B$ and $r_{1}, r_{2} \in R$
Proof: we first prove that B is a Boolean subring of R.
Let $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathrm{~B}$.
We show that $b_{1}-b_{2} \in B$ and
$\mathrm{b}_{1} \mathrm{~b}_{2} \in \mathrm{~B}$
$\left(b_{1}-b_{2}\right)^{2}=b_{1}-b_{2} \quad$ (Since R has characteristic 2)
For $a \in R,\left(b_{1}-b_{2}\right) a=b_{1} a-b_{2} a$
$=\mathrm{ab}_{1}-\mathrm{ab}_{2}=\mathrm{a}\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right)$
Hence $b_{1}-b_{2} \in B$.
Also, $\left(b_{1} b_{2}\right)^{2}=\left(b_{1} b_{2}\right)\left(b_{1} b_{2}\right)=b_{1}\left(b_{2} b_{1}\right) b_{2}=b_{1}\left(b_{1} b_{2}\right) b_{2}$
$=b_{1}{ }^{2} b_{2}{ }^{2}=b_{1} b_{2}$

Further $\left(b_{1} b_{2}\right) a=b_{1}\left(b_{2} a\right)=b_{1}\left(a b_{2}\right)=\left(b_{1} a\right) b_{2}=a\left(b_{1} b_{2}\right)$.
Hence $b_{1}, b_{2} \in B$.
Trivially $1 \in B$ and $e^{2}=e$ for all $e \in B$
Therefore B is a Boolean subring of R.
We now verify that $B \times R$ is a Boolean -like ring.
For $b_{1}, b_{2}, b_{3} \in B$ and $r_{1}, r_{2}, r_{3} \in R$,
$\left[\left(b_{1}, r_{1}\right)+\left(b_{2}, r_{2}\right)\right]+\left(b_{3}, r_{3}\right)$
$=\left(b_{1}, r_{1}\right)+\left[\left(b_{2}, r_{2}\right)+\left(b_{3}, r_{3}\right)\right]$
Hence ' + ' is associative.
Now $(0,0) \in B \times R$ and $\left(b_{1}, r_{1}\right)+(0,0)$
$=\left(\mathrm{b}_{1}+0, \mathrm{r}_{1}+0\right) \mathrm{s}=\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)$
Therefore $(0,0)$ is additive identity of $B \times R$.
For $\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right) \in \mathrm{B} \times \mathrm{R}$
There exists $\left(-b_{1},-r_{1}\right) \in B \times R$ such that
$\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)+\left(-\mathrm{b}_{1},-\mathrm{r}_{1}=\left(\mathrm{b}_{1}-\mathrm{b}_{1}, \mathrm{r}_{1}-\mathrm{r}_{1}\right)=(0,0)\right.$
Hence $\left(-b_{1},-r_{1}\right)$ is the additive inverse of $\left(b_{1}, r_{1}\right)$
$\left(b_{1}, r_{1}\right)+\left(b_{1}, r_{2}\right)=\left(b_{2}, r_{2}\right)+\left(b_{1}, r_{1}\right)$
Therefore ' + ' is commutative.
Thus ($\mathrm{B} \times \mathrm{R},+$) is an abelian group.
Now $\left[\left(b_{1}, r_{1}\right) .\left(b_{2}, r_{2}\right)\right] .\left(b_{3}, r_{3}\right)$
$=\left(b_{1} b_{2}, b_{1} r_{2}+b_{2} r_{1}\right) .\left(b_{3}, r_{3}\right)$
$=\left(b_{1} b_{2} b_{3}, b_{1} b_{2} r_{3}+b_{3}\left(b_{1} r_{2}+b_{2} r_{1}\right)\right.$
$=\left(b_{1}, r_{1}\right)\left[\left(b_{2}, r_{2}\right)\left(b_{3}, r_{3}\right)\right]$
Hence ' \because ' is associative.
Also $(1,0) \in B \times R$ and $\left(b_{1}, r_{1}\right)(1,0)=\left(b_{1}, r_{1}\right)$
Further $\left(b_{1}, r_{1}\right) \cdot\left(b_{2}, r_{2}\right)=\left(b_{1} b_{2}, b_{1} r_{2}+b_{2} r_{1}\right)=\left(b_{2} b_{1}, b_{2} r_{1}+b_{1} r_{2}\right)$
$=\left(\mathrm{b}_{2}, \mathrm{r}_{2}\right) .\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)$
To prove the distributive law ,
Consider $\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)\left[\left(\mathrm{b}_{2}, \mathrm{r}_{2}\right)+\left(\mathrm{b}_{3}, \mathrm{r}_{3}\right)\right]$
$=\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)\left[\mathrm{b}_{2}+\mathrm{b}_{3}, \mathrm{r}_{2}+\mathrm{r}_{3}\right]$
$=\left[\mathrm{b}_{1}\left(\mathrm{~b}_{2}+\mathrm{b}_{3}, \mathrm{~b}_{1}\left(\mathrm{r}_{2}+\mathrm{r}_{3}\right)+\left(\mathrm{b}_{2}+\mathrm{b}_{3}\right) \mathrm{r}_{1}\right]\right.$
Furthermore, $\left(b_{1}, r_{1}\right)\left(b_{2}, r_{2}\right)+\left(b_{1}, r_{1}\right)\left(b_{3}, r_{3}\right)=$
$\left(b_{1} b_{2}, b_{1} r_{2}+b_{2} r_{1}\right)+\left(b_{1} b_{3}, b_{1} r_{3}+b_{3} r_{1}\right)$
$=\left(b_{1} b_{2}+b_{1} b_{3}, b_{1} r_{2}+b_{2} r_{1}+b_{1} r_{3}+b_{3} r_{1}\right)$
Therefore ($\mathrm{B} \times \mathrm{R},+, \cdot$) is a commutative ring with unity.
Suppose $\left(b_{1}, r_{1}\right) \in B \times R$.
Since R is a ring of characteristic 2 ,
$\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)+\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)=\left(\mathrm{b}_{1}+\mathrm{b}_{1}, \mathrm{r}_{1}+\mathrm{r}_{1}\right)=(0,0)$
Also, $\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)\left[(1,0)+\left(\mathrm{b}_{1}, \mathrm{r}_{1}\right)\right]\left(\mathrm{b}_{2}, \mathrm{r}_{2}\right)\left[(1,0)+\left(\mathrm{b}_{2}, \mathrm{r}_{2}\right)\right]$
$=\left(0, r_{1}\right)\left(0, r_{2}\right)=(0,0)$
Hence $B \times R$ is a Boolean-like ring.
As a particular case of example 1.3, we have the following
Example 1.4 : Let $Z_{2}=\{0,1\}$ be the ring of integers modulo 2. Then Z_{2} is a commutative ring with unity and its characteristic is 2 . Obviously Z_{2} is a Boolean ring. Hence $Z_{2} \times Z_{2}$ is a Boolean-like ring under the operations of addition and multiplication defined as in example 1.3 above. This Boolean-like ring is denoted by H_{4}. Write $0=(0,0), 1=(1,0), \mathrm{p}=(0,1)$ and $\mathrm{q}=(1,1)$.
Thus $\mathrm{H}_{4}=\{0,1, \mathrm{p}, \mathrm{q}\}$ and addition and multiplication tab les of H_{4} are as follows

+	0	1	p	q
0	0	1	p	q
1	1	0	q	p
p	p	q	0	1
q	q	p	1	0

\cdot	0	1	p	q
0	0	0	0	0
1	0	1	p	q
p	0	p	0	p
q	0	q	p	1

Obviously H_{4} is not a Boolean ring.
Theorem 1.5: Each element ' a ' of a Boolean-like ring B satisfies $a^{4}=a^{2}$.
Proof: We have that a $(1+\mathrm{a}) \mathrm{b}(1+\mathrm{b})=0$ \qquad (i)

By taking $a=b$ in (i), we get that $a(1+a) a(1+a)=0$
$\Rightarrow a^{4}=a^{2}$, since the characteristic of B is 2 .

2. Boolean Like Algebras

We now give the following definition:
Definition 2.1: An algebraic structure
($\mathrm{A}, \wedge, \vee,{ }^{1}, 0,1$) where \wedge and \vee are binary operations, ${ }^{1}$ is an unary operation and
0 and 1 are elements of A, is called a Boolean-like algebra if the following conditions are satisfied
(1) \wedge, \vee are associative and commutative
(2) $(\mathrm{a} \vee \mathrm{b})^{1}=\mathrm{a}^{1} \wedge \mathrm{~b}^{1} ;\left(\mathrm{a}^{1}\right)^{1}=\mathrm{a} ; 0^{1}=1$
(3) $a \wedge 0=0 ; a \wedge 1=a$
(4) $\mathrm{b} \wedge \mathrm{c}=0 \Rightarrow \mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})$
$=(\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{a} \wedge \mathrm{c})$
(5) $a \wedge a^{1} \wedge b \wedge b^{1}=0$
(6) $\left(a \wedge a^{1}\right) \vee\left(a \wedge a^{1}\right)=0$
(7) $\left(a^{1} \vee b\right) \wedge\left(a \vee b^{1}\right)=(a \wedge b) \vee\left(a^{1} \wedge b^{1}\right)$
(8) $\left[(a \wedge b) \wedge(a \wedge c)^{1}\right] \vee\left[(a \wedge c) \wedge(a \wedge b)^{1}\right]$
$=\left[a \wedge b \wedge c^{1}\right] \vee\left[a \wedge b^{1} \wedge c\right]$, for all $a, b, c \in A$
The following result gives the most important elementary properties of elements in a Boolean-like algebra.

Lemma 2.2: In any Boolean-like algebra A, we have the following
(i) $\mathrm{a} 00=\mathrm{a}$
(ii) $0=1^{1}$
(iii) $\mathrm{aV} 1=1$
(iv) $(a \wedge b)^{1}=a^{1} v b^{1}$
$(\mathrm{v})(\mathrm{a} \vee a) \wedge\left(\mathrm{a}^{1} \vee \mathrm{a}^{1}\right)=0$
(vi) $(a \wedge a) \vee\left(a^{1} \wedge a^{1}\right)=1$
(vii) $\left(\mathrm{ava}^{1}\right) \wedge\left(\mathrm{a}^{1}{ }^{1}\right)=1$

Proof: (i) By (2) and (3) of definition 2.1
$(a \vee 0)^{1}=a^{1} \wedge 0^{1}=a^{1} \wedge 1=a^{1}$. Hence $a \vee 0=\left[(a \vee 0)^{1}\right]^{1}$ $=\left(\mathrm{a}^{1}\right)^{1}=\mathrm{a}$
By (2) of definition 2.1, we have that
(ii) $0=\left(0^{1}\right)^{1}=1^{1}$
(iii) $\mathrm{a} \vee 1=\left[(\mathrm{a} \vee 1)^{1}\right]^{1}=\left(\mathrm{a}^{1} \wedge 0\right)^{1}=0^{1}=1$
(iv) $(a \wedge b)^{1}=\left(\left(a^{1} \vee b^{1}\right)^{1}\right)^{1}=a^{1} \vee b^{1}$
(v) By taking $b=a^{1}$ in (7), we get that
$\left(a^{1} \vee a^{1}\right) \wedge(a \vee a)=\left(a \wedge a^{1}\right) \vee\left(a^{1} \wedge a\right)=0$
[vi] By (v) we have that $(a \vee a) \wedge\left(a^{1} \vee a^{1}\right)=0$
Therefore $1=0^{1}=\left[(a \vee a) \wedge\left(a^{1} \vee a^{1}\right)\right]^{1}$
$=(a \vee a)^{1} \vee\left(a^{1} \vee a^{1}\right)^{1}=\left(a^{1} \wedge a^{1}\right) \vee(a \wedge a)$
(vii) $\left(a \vee a^{1}\right) \wedge\left(a \vee a^{1}\right)=(a \wedge a) \vee\left(a^{1} \wedge a^{1}\right)=1$, follows from (7) and (vi).

Remark 2.3: Every complemented distributive lattice is a Boolean like algebra.

Proof: Let $\left(L, \wedge, \vee,{ }^{1}, 0,1\right)$ be a complemented distributive lattice. By the definition of a complemented distributive lattice the conditions (1)to (6) of a Boolean- like algebra are satisfied.
(7) $\left(a^{1} \vee b\right) \wedge\left(a \vee b^{1}\right)$
$=\left[\left(a^{1} \vee b\right) \wedge a\right] \vee\left[\left(a^{1} \vee b\right) \wedge b^{1}\right]$
$=0 \vee(a \wedge b) \vee\left(a^{1} \wedge b^{1}\right) \vee 0$
$=(a \wedge b) \vee\left(a^{1} \wedge b^{1}\right)$
(8) $\left[(a \wedge b) \wedge(a \wedge c)^{1}\right] \vee\left[(a \wedge c) \wedge(a \wedge b)^{1}\right]$
$=\left[(a \wedge b) \wedge\left(a^{1} \vee c^{1}\right)\right] \vee\left[(a \wedge c) \wedge\left(a^{1} \vee b^{1}\right)\right]$
$=\left(a \wedge b \wedge a^{1}\right) \vee\left(a \wedge b \wedge c^{1}\right) \vee\left(a \wedge c \wedge a^{1}\right) \vee\left(a \wedge c \wedge b^{1}\right)$ $=\left(a \wedge b \wedge c^{1}\right) \vee\left(a \wedge c \wedge b^{1}\right)$.
Therefore L is a Boolean-like algebra.
By a theorem and remark 2.3, we get that every Boolean algebra is a Boolean-like algebra.

Theorem 2.4: A Boolean-like algebra $\left(\mathrm{A}, \wedge, \mathrm{v},{ }^{1}, 0,1\right)$ is a Boolean algebra if and only if $a \wedge a=a$ for all $a \in A$.

Proof: Suppose $\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{A}$. Then (A, \wedge) is a semilattice, By (5) of definition $2.1 \mathrm{x} \wedge \mathrm{x}^{1}=0$, for all $\mathrm{x} \in \mathrm{A}$. Also, By (iv) of lemma 2.2,
$1=0^{1}=\left(x \wedge x^{1}\right)^{1}=x^{1} \vee x$. If $a \wedge b^{1}=0$, for some $a, b \in A$,
Then $a=a \wedge 1=a \wedge\left(b \vee b^{1}\right)=(a \wedge b) \vee\left(a \wedge b^{1}\right)=a \wedge b$,
by (4) of def 2.1.
Conversely, if $\mathrm{a} \wedge \mathrm{b}=\mathrm{a}$, then $\mathrm{a} \wedge \mathrm{b}^{1}=\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{b}^{1}=\mathrm{a} \wedge 0=0$. Thus, $\left(\mathrm{A}, \wedge,{ }^{1}, 0\right)$ is a Boolean algebra. Conversely, if $\left(\mathrm{A}, \wedge,{ }^{1}, 0\right)$ is a Boolean algebra, then
$\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{A}$, follows from the fact that (A, \wedge) is a semilattice.

Corollary 2.5: A Boolean-like algebra is a complemented distributive lattice $\Leftrightarrow \mathrm{a} \Lambda \mathrm{a}=\mathrm{a}$, for all a .

Proof: Let B be a Boolean-like algebra. If B is a complemented distributive lattice, then evidently,
$a \wedge a=a$ for all $a \in B$.
Conversely suppose that $\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{B}$.
By the above theorem B is a Boolean algebra. Then, by the theorem [1], B is a complemented distributive lattice.
We now prove that every Boolean-like algebra is a Boolean-like ring under some binary operations.

Theorem 2.6: Let ($\mathrm{A}, \wedge, \mathrm{V},{ }^{1}, 0,1$) be a Boolean-like algebra. Define binary operations,$+ \cdot b y a+b=\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right) ; a . b=a \wedge b$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$. Then $(\mathrm{A},+, ; 0,1)$ is a Boolean-like ring.

Proof: In order to prove that ($\mathrm{A},+, ;, 0,1$)is a Boolean-like ring,
We have to prove that

1) $(\mathrm{A},+)$ is an abelian group with identity 0
2) (A, \cdot) is a commutative semi group with identity 1 .
3) Distributive law $a(b+c)=a b+a c$
for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$
4) $a+a=0$ for all $a \in A$, and
5) $a(1+a) b(1+b)=0$ for all $a, b \in A$

Now, $a+b=\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right)=\left(b \wedge a^{1}\right) \vee\left(b^{1} \wedge a\right)=b+a$
Therefore ' + ' is commutative.
$(\mathrm{a}+\mathrm{b})+\mathrm{c}=$
$\left[\left[\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right)\right] \wedge c^{1}\right] \vee\left[\left[\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right)\right]^{1} \wedge c\right.$
$=\left(a \wedge b^{1} \wedge c^{1}\right) \vee\left(a^{1} \wedge b \wedge c^{1}\right) \vee(a \wedge b \wedge c) \vee\left(a^{1} \wedge b^{1} \wedge c\right)--(A)$
$a+(b+c)=$
$\left[a \wedge\left(\left(b \wedge c^{1}\right) \vee\left(b^{1} \wedge c\right)\right)^{1}\right] \vee\left[a^{1} \wedge\left(\left(b \wedge c^{1}\right) \vee\left(b^{1} \wedge c\right)\right)\right]$
$=(a \wedge b \wedge c) \vee\left(a \wedge b^{1} \wedge c^{1}\right) \vee\left(a^{1} \wedge b \wedge c^{1}\right) \vee\left(a^{1} \wedge b^{1} \wedge c---(B)\right.$
From (A) and (B), $(a+b)+c=a+(b+c)$. Further
$a+0=\left(a \wedge 0^{1}\right) \vee\left(a^{1} \wedge 0\right)=(a \wedge 1) \vee 0=a \wedge 1=a$.
Therefore 0 is the additive identity in A .
Also $a+a=\left(a \wedge a^{1}\right) \vee\left(a^{1} \wedge a\right)=0$
Thus inverse of a is itself.
Therefore, $(\mathrm{A},+)$ is an abelian group with identity 0 . Further $\mathrm{a}(\mathrm{b} . \mathrm{c})=\mathrm{a} \wedge(\mathrm{b} \wedge \mathrm{c})=(\mathrm{a} \wedge \mathrm{b}) \wedge \mathrm{c}=(\mathrm{a} . \mathrm{b}) . \mathrm{c}$ and $\mathrm{a} .1=\mathrm{a} \wedge 1=\mathrm{a}$ Also, $\mathrm{a} . \mathrm{b}=\mathrm{a} \wedge \mathrm{b}=\mathrm{b} \wedge \mathrm{a}=\mathrm{b} . \mathrm{a}$
Therefore, (A,.) is a semigroup with identity 1.
Distributive law:
$\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} \wedge\left[\left(\mathrm{b} \wedge \mathrm{c}^{1}\right) \vee\left(\mathrm{b}^{1} \wedge \mathrm{c}\right)\right]=\left(\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}^{1}\right) \vee\left(\mathrm{a} \wedge \mathrm{b}^{1} \wedge \mathrm{c}\right)$, by (4) of def 2.1
$\mathrm{ab}+\mathrm{ac}=(\mathrm{a} \wedge \mathrm{b})+(\mathrm{a} \wedge \mathrm{c})$
$\left.=[(a \wedge b) \wedge a \wedge c)^{1}\right] \vee\left[(a \wedge b)^{1} \wedge(a \wedge c)\right]$
$=\left(a \wedge b \wedge c^{1}\right) \vee\left(a \wedge b^{1} \wedge c\right)$ by (8) of $\operatorname{def} 3.1$
Hence $a(b+c)=a b+a c$.
Observe that $\mathrm{a}+\mathrm{a}=0$ for all a is already proved.
Finally, $\quad 1+a=\left(1 \wedge a^{1}\right) \vee\left(1^{1} \wedge a\right)=a^{1} \vee 0=a^{1}$
Therefore $a(1+a) b(1+b)=a a^{1} b b^{1}=a \wedge a^{1} \wedge b \wedge b^{1}=0$ by (5) of def 2.1.
Hence A is a Boolean-like ring.
We now prove that every Boolean-like ring becomes a Boolean-like algebra.

Theorem 2.7: Let ($\mathrm{A},+, \cdot, 0,1$) be a Boolean-like ring. Define the binary operations \wedge and \vee and complementation ${ }^{1}$ by $\mathrm{a} \vee \mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab} ; \mathrm{a} \wedge \mathrm{b}=\mathrm{a} . \mathrm{b}$ and $\mathrm{a}^{1}=1+\mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$. Then the algebraic system $\left(\mathrm{A}, \Lambda, \mathrm{v},{ }^{1}, 0,1\right)$ is a
Boolean like algebra.
Proof: In order to prove that A is a Boolean like algebra, we need to verify the following.
(1) \vee and \wedge are associative and commutative.

Now $a \vee b=a+b+a b=b+a+b a=b \vee a$,
and $\mathrm{a} \wedge \mathrm{b}=\mathrm{a} \cdot \mathrm{b}=\mathrm{b} . \mathrm{a}=\mathrm{b} \wedge \mathrm{a}$.
Also, $a \vee(b \vee c)=a+(b+c+b c)+a(b+c+b c)$
$=a+b+c+b c+a b+a c+a b c$
$=(a+b+a b)+c+(a+b+a b) c=(a \vee b) \vee c$
Further, $(\mathrm{a} \wedge \mathrm{b}) \wedge \mathrm{c}=(\mathrm{ab}) \mathrm{c}=\mathrm{a}(\mathrm{bc})=\mathrm{a} \wedge(\mathrm{b} \wedge \mathrm{c})$
Therefore V and Λ are associative and commutative
(2) $(a \vee b)^{1}=a^{1} \wedge b^{1} ;\left(a^{1}\right)^{1}=a ; 0^{1}=1$

Now $(a \vee b)^{1}=1+(a+b+a b)=1+a+b+a b$
$=(1+a)(1+b)=a^{1} b^{1}=a^{1} \wedge b^{1}$
Also $\left(a^{1}\right)^{1}=(1+a)^{1}=1+1+a=a$.
Trivially $0^{1}=1$
(3) $\mathrm{a} \wedge 0=0 ; \mathrm{a} \wedge 1=\mathrm{a}$.

Trivially, a $\wedge 0=\mathrm{a} .0=0$ and $\mathrm{a} \wedge 1=\mathrm{a} .1=\mathrm{a}$
(4) $\mathrm{b} \wedge \mathrm{c}=0 \Rightarrow \mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})=(\mathrm{a} \wedge \mathrm{b}) \vee(\mathrm{a} \wedge \mathrm{c})$

Let $\mathrm{b} \wedge \mathrm{c}=0$.
Then $a \wedge(b \vee c)=a(b+c+b c)=a b+a c+a b c$
$=(a \wedge b) \vee(a \wedge c)$
(5) $a \wedge a^{1} \wedge b \wedge b^{1}=a(1+a) b(1+b)=0$
(6) $\left(a \wedge a^{1}\right) \vee\left(a \wedge a^{1}\right)$
$=a(1+a)+a(1+a)+a a(1+a)(1+a)=0$
[by (1) \& (2) conditions of Boolean-like ring]
(7) $\left(a^{1} \vee b\right) \wedge\left(a \vee b^{1}\right)=\left(a^{1}+b+a^{1} b\right)\left(a+b^{1}+a b^{1}\right)$
$=a^{1} a+a^{1} b^{1}+a^{1} a b^{1}+b a+b b^{1}+b a b^{1}+$
$a^{1} b a+a^{1} b b^{1}+a^{1} b a b^{1}$
$=b b^{1}\left(1+a^{1}+a\right)+a a^{1}\left(1+b+b^{1}\right)+a^{1} b^{1}+b a$
(since $a^{1} b^{b} b^{1}=0$)
$=b b^{1}(0)+a a^{1}(0)+(1+a)(1+b)+b a=1+a+b---(i)$
$(a \wedge b) \vee\left(a^{1} \wedge b^{1}\right)=a b+a^{1} b^{1}+a b a^{1} b^{1}=a b+a^{1} b^{1}$
$=a b+(1+a)(1+b)=1+a+b---(i i)$
From (i) \& (ii) , (7) is satisfied.
(8) $\left(a \wedge b \wedge c^{1}\right) \vee\left(a \wedge b^{1} \wedge c\right)=a b c^{1}+a b^{1} c+a b c^{1} a b^{1} c$
$=a b c^{1}+a b^{1} c=a b(1+c)+a(1+b) c=$
$a b+a b c+a c+a b c=a b+a c-----(i i i)$
$\left[(a \wedge b) \wedge(a \wedge c)^{1}\right] \vee\left[(a \wedge c) \wedge(a \wedge b)^{1}\right]$
$=a b(a c)^{1}+a c(a b)^{1}+(a b)(a c)^{1}(a c)(a b)^{1}$
$=a b+a c \quad$------ (iv)
From (iii) \& (iv), (8) is satisfied
Thus ($\mathrm{A}, \wedge, \vee,{ }^{1}, 0,1$) is a Boolean-like algebra.
As in the case of Boolean ring and Boolean algebra, we now show that the Boolean -like ring and Boolean-like algebra are equivalent structures.

Theorem 2.8: The following abstract structures are equivalent (i) Boolean-like ring and (ii) Boolean-like algebra.

Proof: Let $(\mathrm{A},+, \cdot, 0,1)$ be a Boolean-like ring. By theorem 2.7, we get a Boolean-like algebra ($\mathrm{A}, \wedge, \vee,{ }^{1}, 0,1$) in which the binary operations \wedge, \vee are defined by $a \vee b=a+b+a b ; a \wedge b=a b$ and the complementation ${ }^{1}$ is defined by
$a^{1}=1+a$ for all $a, b \in A$
by theorem 2.6,
we obtain a Boolean-like ring out of this Boolean-like algebra. where new operations $+^{1}$, ${ }^{\prime}{ }^{1}$, in A are defined by $\mathrm{a}+{ }^{1} \mathrm{~b}=\left(\mathrm{a} \wedge \mathrm{b}^{1}\right) \vee\left(\mathrm{a}^{1} \wedge \mathrm{~b}\right) ; \mathrm{a} \cdot{ }^{1} \mathrm{~b}=\mathrm{a} \wedge \mathrm{b}$ and $1=1 ; 0=0$.
Then $a+{ }^{1} b=\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right)=a+a b+b+a b=a+b$
and $a \cdot{ }^{1} b=a \wedge b=a \cdot b$. Therefore the newly obtained
Boolean-like ring is same as the originally given one.
On the otherhand, let $\left(\mathrm{A}, \wedge, \vee,{ }^{1}, 0,1\right)$ be a Boolean-like algebra.
By theorem 2.6, we obtain a Boolean-like ring ($\mathrm{A},+, ;, 0,1$) where + and \cdot are defined by
$a+b=\left(a \wedge b^{1}\right) \vee\left(a^{1} \wedge b\right) ; a \cdot b=a \wedge b$ for all a, b in A.
As in theorem 2.7, to construct a Boolean-like algebra
out of this Boolean-like ring
we introduce new binary operations Λ^{1} and V^{1} as
$a V^{1} b=a+b+a b ; a \wedge^{1} b=a b$ for all a, b in A
$\mathrm{a}^{1}=1+\mathrm{a}$ and $0=0 ; 1=1$.
Now $a \vee{ }^{1} b=a+b+a b=1+(1+a+b+a b)$
$=1+(1+a)(1+b)=\left(a^{1} b^{1}\right)^{1}=a \vee b$
$a \wedge{ }^{1} b=a b=a \cdot b=a \wedge b$.
Therefore, $\wedge^{1}=\wedge$ and $\vee^{1}=v$.
This completes the proof.
Thus, the newly obtained Boolean-like algebra is same as the originally given Boolean-like algebra.

Acknowledgement

The author extends her gratitude to Prof.Y.V.Reddy, Retd. Prof, Department of Mathematics, ANU and also the management of Koneru Lakshmaiah Educational Foundation, Vaddeswaram.

References:

[1] Bhattacharya P.B., (1995) etc Basic Abstract Algebra, $2^{\text {nd }}$ edition, Cambridge University Press
[2] Foster, A.L. (1951), p^{k}-rings and ring-logics, Ann.sci.Norm Pisa 5,279-300.
[3] George F. Simmons (1963), Introduction to Topology and Modern Analysis, McGraw - Hill Book, Company, Inc
[4] Jachim Lambek (1986), Lectures on Rings and Modules, $3{ }^{\text {rd }}$ edition Chelsea pub. Company, New York, N.Y.
[5] Swaminathan, V (1982), Boolean-like rings Ph.D thesis, A.U.
[6] Thomas W. Hungerford(1974), Algebra, Holt, Rinehart and Winston, INC., New York

