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Abstract 
 
We generalise the notion of acts over ternary semigroups to the Γ-TS-acts for a ternary Γ-semigroup T.  Certain intrinsic notions of Γ-
TS-acts are studied. 
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1. Introduction 

Acts over semi group T, namely T-act, appeared and were used in 
a variety of applications such as algebraic automata theory, math-
ematical linguistics.  We here generalize this notion to the Γ-TS-
acts for a ternary Γ-semi group T.  In the year 2008, Chinram. R 
and Thinpun. K.1, investigated on isomorphism theorems for 

gamma semi groups. In 1991, Howie. J. M.2, studied about Au-
tomata and Languages.   In 2013, Hssin. Z.3, investigated and 
studied about gamma modules with gamma rings of gamma en-
domorphism.  In 2015, Vasantha. M and Madhusudhana Rao. D4. 
introduced the concept of ternary Γ-semi groups and they charac-
terized the ternary Γ-semigroups. 

2. Preliminaries 

Definition 2.1[4]: Let P ≠ ∅  & Γ ≠ ∅ be two set. Then P is known 

as a Ternary  -semigroup if there exist a mapping from 

P×Γ×P×Γ×T to P which maps   ( 1 2 3,  , g ,  , gg   ) 

  1 2 3g g g 
 
satisfying the condition : 

 1 2 3 4 5g g g g g        1 2 3 4 5g g g g g       =  

 1 2 3 4 5g g g g g       ig   T, 1 5i   and , , ,     .  

Note 2.2[4]: For the convenience we write 1 2 3r r r   instead of 

 1 2 3r r r   

For more preliminaries one can be go through the regerences. 

 

3. Γ-TS-acts  
 
Definition 3.1: Let T be a ternary Γ-semigroup as well as P ≠ ∅ 

with a mapping :T T P P     where  

( , , , , ) : ( , , , , )s t a s t a s t a         is said to be a left Γ-TS-

actor a left  -TS-operand if ( )p q r s a     ( )p q r s a     

( )p q r s a    for all , , , , , , ,p q r s T      .  This is denot-

ed by TS P .  Similarly, we can define lateral Γ-TS-act (demoted 

by 
TS

P


) and right Γ-TS-act (denoted by 
TSP  ). 

Throughout this paper Γ-TS-act means left Γ-TS-act. 

 
Note 3.2: If T has identity e, then e e a = a ∀ a∈ K.  

Def 3.3: Let L be a Γ-TS-act.  Then l ∈ L is called to be zero of L 

if l b c = b l c = b c l = l b,c  T,  ,  ∈Γ. 

 

Definition 3.4: Let U beΓ-TS-act. A subset ‘S ≠ ∅’ is known as  -

TS-sub-act of U if a b cS for all a, bT, c∈ S and  ,  ∈Γ. 

Note 3.5: A non-empty subset S of aΓ-TS-act A is aΓ-TS-sub-act 

if and only if TΓTΓS   S.  Clearly, T itself is a Γ-TS-act. 

 
Note 3.6: A sub-act of the Γ-TS-act A is a left ternary Γ-ideal of 
the ternary Γ-semigroup T. A subset K ⊆ A is called a right ter-

nary Γ-ideal of T if TΓTΓK ⊆ K, a two-sided ternary Γ-ideal of T 

if TΓTΓK ⊆ K and KΓTΓT⊆ K and a ternary Γ-ideal of T if it is 

two sided ternary Γ-ideal as well as TΓKΓT ⊆ K. 

 
Def 3.7: An element a of a Γ-TS-act A is said to be a fixed or a 

zero element if aαsβt = a, for all s, t∈ T and α, β∈Γ. 

 

Theorem 3.8: The non-empty intersection of any family of -

TS-sub-acts of a -TS-act TS A  is a ternary  -TS-sub-act of 

TS A . 

proof:  Let  S 
 be a family ofΓ-TS-sub-acts of TS A  and 

S= S



 

Let a,b  TS A , c Sand  , γ∈ Γ. 

c S c S



 c S for all    
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c S &   , γ∈ Γ, S is a Γ-TS-sub-act of TS A   
 a b c S  

a b c S  for all    a b c S



 a b cS.   

Therefore, S is aΓ-TS-sub-act of TS A . 

 

Theorem 3.9: The union of any family of Γ-TS-sub-acts of aΓ-

TS-act TS A is a Γ-TS-sub-act of TS A . 

Proof: Let   A 
 be a family of Γ-TS-sub-acts of aΓ-TS-act 

TS A . 

Let A = A



.  Let a A; b,cT,  ,  ∈Γ. aA  

 a A



 a A  for some    

a A , b, c TA ,  ,  ∈Γ, A  is a Γ-TS-act of T 

 bαcβa A  A



= A  bαcβaA.   

Therefore, A is a Γ-TS-sub-act of TS A . 

 

Definition 3.10: Let TSU  and TSV  
are Γ-T-acts.  A mapping 

: TS TSf U V   is said to be a Γ-TS-homomorphism provid-

ed ( ) ( )f s t a s t f a    for every s, t∈ T, a∈ U and α,  ∈Γ. 

 

Definition 3.11: Let TS P  and TS Q are Γ-TS-acts.  A map-

ping : TS TSf P Q   is said to be a Γ-TS-monomorphism 

provided f is a one-one Γ-TS-homomorphism. 

 

Definition 3.12: Let TS R  and TS S be Γ-TS-acts.  A mapping 

: TS TSf R S   is said to be a Γ-TS-epimorphism provided f  

is an onto Γ-TS-homomorphism. 

 

Definition 3.13: Let TSY  and TS Z be Γ-TS-acts.  A mapping 

: TS TSf Y Z   is said to be a Γ-TS-isomorphism provided f 

is a one-one Γ-TS-homomorphism as well as an onto Γ-TS-
homomorphism. 

 
Definition 3.14: AΓ-TS-act B containing (aΓ-TS-isomorphic copy 
of) a Γ-TS-act A as a subact is called an extension of A. 

 
Example 3.15: As a very interesting example of acts, used in 
computer science as a convenient means of algebraic specification 
of process algebras, consider the ternary Γ-monoid (N∞,Γ,[ ],∞), 
where N is the set of natural numbers, Γ is the any set and N∞ = N 

∪{∞} with n<∞,∀n∈ N and [m n p] = min {m, n, p} for m, n, p∈ 

N∞,  ,  ∈Γ. Then a Γ-TN∞-actis called a projection algebra. 

 

Th 3.16: Let T be a ternary  -semi group, TS K is a Γ-TS-act 

and f: K → T is a Γ-TS-homomorphism.  Then A is a ternary 

 -semi group. 

Proof: We have a mapping g: K K K K    where 

( , , , , ) : ( )a a a a a a f a a a             for all , ,a a a A  and 

,   .  Let , , , ,a b c d e A and , , ,     .  Then 

( ) ( ( ) ) ( ( ) )

                       ( ) ( ) ( ) ( ) ( ( ) ( ) )

                     = ( ) ( ( ) ( ) ( ))

                    ( ) ( ( ) ( ) (

a b c d e f a b c d e f f a b c d e

f a f b f c d e f a f b f c d e

a b c d e a f b f c f d e

a f b f c f d f

           

       

       

   

 

 



 )) ( )e a b c d e   

Therefore ( )a b c d e    = ( )a b c d e     = ( )a b c d e    and 

hence A is a ternary Γ-semigroup. 

Definition 3.17: Let TSU  is a Γ-TS-act.  An equivalence rela-

tion   on TSU  is said to be a Γ-TS-congruence of TSU  pro-

vided for all , ,a a U
 

, , , , ,b c T   
 

( ) ( ),( ) ( ),( ) ( )a a a b c a b c b a c b a c b c a b c a                  

 

Definition 3.18: The set /TS K   = { : }TSl l K   with the Γ-

action ( ) ( )s t l s t l      for all ,s t T  and ,   is  

known as a factor Γ-TS-act of TS K by  , and canonical surjec-

tion : /TS TSK K     where l l  is known as canoni-

cal Γ-TS-epimorphism. 

 

Definition 3.19: Let TS S  and TST be two Γ-TS-acts.  A map-

ping : TS TSl S T   is a Γ-TS-homomorphism, then the Γ-TS-

congruence   = kernel l (simply ker f) on TS A  where a a  iff  

( ) ( )l a l a  for all , Ta a S
 is known as kernel Γ-TS-

congruence of l. 

 

Theorem 3.20: Let : TS TSk G H  is a Γ-TS-

homomorphism as well as   be a Γ-TS-congruence on TS G ∃ 

g g  k(a) = k( g  ), i.e. kerk  .  Then 

: /TS TSk G H 
   with ( ) : ( ),  g TSk g k g G 

   , is the 

unique Γ-TS-homomorphism such that k g  .  If 

ker k   is injective.  Also if k is surjective, then so is k  .  

Proof: The mapping k  is well-defined, because for all 

, ,  TSg g G  
 

( ) ( ) ( ) ( ).g g g g k g k g k g k g                For every 

, ,  ,  and gs t T G    ,  

( ) ( ) ( )

                   ( ) ( )

k s t g k s t g k s t g

s t k g s t k g

 



     

   

  

 
.  Hence, k  is a Γ-TS-

homomorphism.  Also for every TSg G , 

( )( ) ( ( )) ( ) ( )k g k g k g k g        .  Now we have to show 

k  is unique.  Let there exists : /TS TSk G H 
  such that 

k k  .  This implies that k k    .  Since   is a Γ-TS-

epimorphism, k k  .  The remainder is an easy for verification.  

 This is called homomorphism theorem for  -TS-acts. 

 

Corollary 3.22: Let : T Tl J K  be a Γ-TS-epimorphism.  

Then / kerTS TSJ l K  .  

 

4: Free Γ-TS-acts 

 
Here, the notion of cyclic, free and indecomposable Γ-TS-acts are 
studied. 

 

Definition 4.1: A non-empty subset P of a Γ-TS-act TS K is 

known as a generating set of TS K  if every k K  can be ex-

pressed as k p q u   for some ,p q T , u P  and 

,   .   In this case, we write TK = < P > = T T P  , 

where { : , , , , }.T T P p q u p q T u P           Also P 

is finitely generated Provided it has a finite generating set of ele-
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ments.  We say TS K  a cyclic TS K provided TS K = < p > = 

T T p   for some p ∈ TS K .  

Note 4.2: TL  is always a generating set of itself.  

i.e. TS L = < L >. 

 

Theorem 4.3: If S is a nonempty sub set of a  -TS-act TS L  & 

l ∈ TS L .  Then the following assertions hold: 

(i) K K l K K l    for all ,   . 

(ii) K K l K K l    for all , , ,     . 

(iii) { : , ,  and , }K K P K K P p q u p q K u P            .  

Proof: (i) Let ,    and TSl L .  Clearly, 

K K l K K l     .  For the reverse inclusion, take 

,p q K ( ) ( )p q l p q e e l p q e e l K K l               

which implies that K K l K K l    for all ,   .  The re-

maining two assertions follows from (i). 
This theorem express a simple characterization to generating sub 
sets of a Γ-TS-act. 

Consider a cyclic Γ-TS-act TS L  = < l >as T T l  for any 

,    and TSl L , p ∈ T. Then the map 

, , , :s a TS TST L     defined by 
, , , ( )s a q p q l    for all 

q T is a Γ-TS-homomorphism.  To see this, for every 

,u v T and ,    we have  

, , , ( ) ( )p a u v t p u v t a        u v p t l    = 
, , , ( )p au v q   . 

Now, we characterize cyclic Γ-TS-acts by means of factor Γ-TS-

acts of  TST . 

Th 4.4: If a Γ-TS-act TS L is cyclic. Then there exists a Γ-TS-

congruence  on TST ∃ TS L  TST /  and the converse 

also hold if T is a ternary  -monoid. 

Proof: Let TS L  = < l >as T T l  for any ,    and 

TSl L , s∈ T.  Then the Γ-TS-homomorphism 

, , , :s a TS TST L     is obviously a Γ-TS-epimorphism.  By 

using Corollary 3.22, we get TS L  , , ,/ kerTS s aT  
.  Then 

fix 
, , ,s a    , then we get the result. 

Conversely, if  is a Γ-TS-congruence on a Γ-T-monoid TST  

with unity e, then for all /TSt T  and ,   , 

( )t t e e t e e        which shows that / .TST e    

Definition 4.5: A Γ-TS-act TS L is said to be decomposable if ∃ 

two Γ-TS-sub-acts TS M and TS N of TS L  such that 

TS L = TS M ⋃ TS N and TS M ⋂ TS N  = ∅.  In this case, 

the disjoint union TS M ⋃ TS N is known as a decomposition 

of TS L .  If not, TS L is known as in-decomposable.  If we 

consider Γ-TS-acts with unique 0, then we have to change ∅ by 

{0} to define decomposable as well as in-decomposable Γ-TS-acts 
with unique 0. 

 

Theorem 4.6: Every cyclic  -TS-act is in-decomposable. 

Proof: Suppose that TS D  = < d >as T T d  for any 

,    and TSd D , s∈ T is cyclic and  

D = TS E ⋃ TS F for some Γ-TS-sub-acts TS E and TS F of 

TS D .  Then Td e e d E     say, then TS D  = < d >⊆ 

TS E which is a contradiction. 

 

Theorem 4.7: Let ,i TSA A i   be in-decomposable  -

TS-sub-acts of a  -T-act TS A such as 
i

i I

A


  .  Then 

i

i I

A


is an in-decomposable  -TS-sub-act of TS A .  

Proof: By theorem 3.7, 
i

i I

A


is a Γ-TS-sub-act of TS A .   

Suppose there exists a decomposition 
i

i I

A


= TS B ⋃ TS C .  

Take 
i

i I

a A


  with Ta A , say.   

Then i TSa A B for all i .   

Since ( ) ( ) ( )i i TS TS i TS i TSA A B C A B A C     and 

iA  is indecomposable, i TSA C  for all i I .   

Thus 
i

i I

A


= TS B  
 It is a contradiction. 

 

Th 4.8: Every  -TS-act TS A has a unique decomposition into 

in-decomposable Γ-TS-sub-acts. 

Proof: Let TS A .  Than by th, 3.6, ,  ,T T a     is in-

decomposable.  Using th 4.7, we get  

{ :  is in-decomposable and }a TS TS TS TSS S A S a S      i

s an in-decomposable Γ-TS-sub-act of TS A .   

For , TSp q L a bV V or p qV V  .   

Indeed, ,p q p q rr V V V V V   .   

Thus ,p r q rp V V q V V    , i.e. r p qV V V .   

Therefore, p q rV V V  .  Denote by L  a representative subset 

of elements TSp L w.r.t the equivalence relation ~ defined by 

p~q iff p qV V .  Therefore, TS L = 
p

p L

V


is the unique decom-

position of TS L  into in-decomposable Γ-TS-sub-acts. 

 

Def 4.9: A set K of generating elements of a Γ-TS-act TS L is 

known as a basis of TS L  provided every element 

TSp L can be uniquely expressed as p s t u  for some 

, ,  and ,s t T u K     ,  

 

Theorem 4.10: Let : TS TSl K B  be a Γ-TS-

homomorphism, then 

(i) If TS L  is finitely generated then so is h( TS L ). 

(ii) If TS L = < P > and : TS TSi L M  is a Γ-TS-

homomorphism, then h(s) = i(s) for every s P  im-

plies l = g. 

(iii) If h is a  -TS-epimorphism and TS L = < P >, then 

TS M = < h(P) >. 

(iv) If h is a  -TS-isomorphism and TS L is a free  -TS-

act, then so is TS M . 

Proof: we just prove (iv), let P be a basis of TS L and then 

TS L = < P >.  It follows from (iii) that TS M = < h(P) >, i.e. 

h(P) is a generating set of TS M .  Therefore, for all 
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b∈ TS M there exist , , ,s t T    and u P  such that 

( )b s t f u  .  Suppose that ( )b s t f u      , for 

, , ,s t T       and u P .  Then ( )b s t f u  = 

( )s t f u      .  This implies that 

( ) ( )h s t u h s t u        and hence s t u  = s t u      be-

cause h is one-one.  Since S is a basis.  Therefore 

, , , , ( ) ( )s s t t h u h u            .  Hence, h(P) is a 

basis of TS M .   

 

Th 4.11: If TS K is a free Γ-TS-act, then 1  .   

Proof: Let TS K is a free Γ-TS-act with a basis P.   

Consider , , , , ,  and s t T u S         By using theorem 

3.3(ii), s t u T T u     and then s t u s t u        for some 

, , ,s t T       and ,u u S .  Since P is a basis, 

,      . 

5. Conclusion  

This type of ternary structures and their generalizations, the so 
called Γ-TS-act rise certain hopes in view of their possible appli-
cations in Organic Chemistry.  the well- known generalization of 

ternary semi group T is ternary γ-semi group. 
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