On Γ-TS-Acts Over Ternary Γ-Semigroups

Mamidipalli. Vasantha ${ }^{1}$, D. Madhusudhana Rao ${ }^{\mathbf{}^{*}}$, P. Siva Prasad ${ }^{3}$, B. Srinivasa Kumar ${ }^{4}$, T. Satish ${ }^{5}$
${ }^{1}$ Research Scholar, Department of Mathematics, K.L. University, Vaddeswaram, Guntur(Dt) A. P.
${ }^{2}$ Associate Professor, Department of Mathematics, VSR \& NVR College, Tenali, Guntur(Dt), A. P. India.
${ }^{3}$ Department of Mathematics, VFSTR deemed to be University, Vadlamudi, Guntur(Dt), A.P.
${ }^{4}$ Department of Mathematics, K.L. University, Vaddeswaram, Guntur(Dt) A. P.
${ }^{5}$ Department of Mathematics, SRKR Engineering College, Bhimavaram, W.G. (Dt), A.P. India.
*Corresponding author E-mail: dmrmaths@gmail.com

Abstract

We generalise the notion of acts over ternary semigroups to the Γ-TS-acts for a ternary Γ-semigroup T . Certain intrinsic notions of Γ -TS-acts are studied.

Keywords: Ternary Γ-semigroup, Γ-TS-act, Γ-TS-congruence, Γ-TS-homomorphism, free Γ-TS-act.

1. Introduction

Acts over semi group T, namely T-act, appeared and were used in a variety of applications such as algebraic automata theory, mathematical linguistics. We here generalize this notion to the Γ-TSacts for a ternary Γ-semi group T. In the year 2008, Chinram. R and Thinpun. K. ${ }^{1}$, investigated on isomorphism theorems for gamma semi groups. In 1991, Howie. J. M. ${ }^{2}$, studied about Automata and Languages. In 2013, Hssin. Z. ${ }^{3}$, investigated and studied about gamma modules with gamma rings of gamma endomorphism. In 2015, Vasantha. M and Madhusudhana Rao. D ${ }^{4}$. introduced the concept of ternary Γ-semi groups and they characterized the ternary Γ-semigroups.

2. Preliminaries

Definition 2.1[4]: Let $\mathrm{P} \neq \emptyset \& \Gamma \neq \emptyset$ be two set. Then P is known as a Ternary Γ-semigroup if there exist a mapping from $\mathrm{P} \times \Gamma \times \mathrm{P} \times \Gamma \times \mathrm{T}$ to P which maps $\left(g_{1}, \alpha, \mathrm{~g}_{2}, \beta, \mathrm{~g}_{3}\right)$ $\rightarrow\left[g_{1} \alpha g_{2} \beta g_{3}\right]$ satisfying the condition :
$\left[\left[g_{1} \alpha g_{2} \beta g_{3}\right] \gamma g_{4} \delta g_{5}\right]=\left[g_{1} \alpha\left[g_{2} \beta g_{3} \gamma g_{4}\right] \delta g_{5}\right]=$
$\left[g_{1} \alpha g_{2} \beta\left[g_{3} \gamma g_{4} \delta g_{5}\right]\right] \forall g_{i} \in \mathrm{~T}, 1 \leq i \leq 5$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.
Note 2.2[4]: For the convenience we write $r_{1} \alpha r_{2} \beta r_{3}$ instead of [$r_{1} \alpha r_{2} \beta r_{3}$]
For more preliminaries one can be go through the regerences.

3. Γ-TS-acts

Definition 3.1: Let T be a ternary Γ-semigroup as well as $\mathrm{P} \neq \varnothing$ with a mapping $\lambda: T \times \Gamma \times T \times \Gamma \times P \rightarrow P$ where
$(s, \alpha, t, \beta, a) \rightarrow s \alpha t \beta a:=\lambda(s, \alpha, t, \beta, a)$ is said to be a left Γ-TSactor a left $\boldsymbol{\Gamma}$-TS-operand if $(p \alpha q \beta r) \delta s \gamma a=p \alpha(q \beta r \delta s) \gamma a$ $=p \alpha q \beta(r \delta s \gamma a)$ for all $p, q, r, s \in T, \alpha, \beta, \gamma, \delta \in \Gamma$. This is denoted by ${ }_{\Gamma-T S} P$. Similarly, we can define lateral Γ-TS-act (demoted by $\underset{\Gamma-T S}{P}$) and right $\boldsymbol{\Gamma}$-TS-act (denoted by $P_{\Gamma-T S}$).
Throughout this paper Γ-TS-act means left Γ-TS-act.
Note 3.2: If T has identity e, then eace $\beta a=a \forall a \in \mathrm{~K}$.
Def 3.3: Let L be a Γ-TS-act. Then $l \in L$ is called to be zero of L if $l a b \beta c=b a l \beta c=b \alpha c \beta l=l \forall b, c \in \mathrm{~T}, \alpha, \beta \in \Gamma$.

Definition 3.4: Let U be Γ-TS-act. A subset ' $\mathrm{S} \neq \varnothing$ ' is known as $\boldsymbol{\Gamma}$ -TS-sub-act of U if $a \alpha b \beta c \in \mathrm{~S}$ for all $a, b \in \mathrm{~T}, c \in \mathrm{~S}$ and $\alpha, \beta \in \Gamma$.
Note 3.5: A non-empty subset S of $a \Gamma$-TS-act A is $a \Gamma$-TS-sub-act if and only if $T \Gamma T \Gamma S \subseteq \mathrm{~S}$. Clearly, T itself is a Γ-TS-act.

Note 3.6: A sub-act of the Γ-TS-act A is a left ternary Γ-ideal of the ternary Γ-semigroup T. A subset $K \subseteq A$ is called a right ternary Γ-ideal of T if $\mathrm{T} Г Т \Gamma \mathrm{~K} \subseteq \mathrm{~K}$, a two-sided ternary Γ-ideal of T if ТГТГК $\subseteq \mathrm{K}$ and КГТГТ $\subseteq \mathrm{K}$ and a ternary Γ-ideal of T if it is two sided ternary Γ-ideal as well as $Т Г К Г Т \subseteq \mathrm{~K}$.

Def 3.7: An element a of a Γ-TS-act A is said to be a fixed or a zero element if $a \alpha s \beta t=a$, for all $s, t \in \mathrm{~T}$ and $\alpha, \beta \in \Gamma$.

Theorem 3.8: The non-empty intersection of any family ofr-TS-sub-acts of ar-TS-act ${ }_{\Gamma-T S} A$ is a ternary Γ-TS-sub-act of ${ }_{\text {г-TS }} A$.
proof: Let $\left\{S_{\alpha}\right\}_{\alpha \in \Delta}$ be a family of Γ-TS-sub-acts of ${ }_{\Gamma-T S} A$ and $\mathrm{S}=\bigcap_{\alpha \in \Delta} S_{\alpha}$
Let $a, b \in{ }_{\Gamma-T S} A, c \in \operatorname{Sand} a, \gamma \in \Gamma$.
$c \in \mathrm{~S} \Rightarrow c \in \bigcap_{\alpha \in \Delta} S_{\alpha} \Rightarrow c \in S_{\alpha}$ for all $\alpha \in \Delta$
$c \in S_{\alpha} \& \alpha, \gamma \in \Gamma, S_{\alpha}$ is a Γ-TS-sub-act of ${ }_{\Gamma-T S} A$
$\Rightarrow a \alpha b \gamma c \in S_{\alpha}$
$a \alpha b \gamma c \in S_{\alpha}$ for all $\alpha \in \Delta \Rightarrow a \alpha b \gamma c \in \bigcap_{\alpha \in \Delta} S_{\alpha} \Rightarrow a \alpha b \gamma c \in \mathrm{~S}$.
Therefore, S is a Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.

Theorem 3.9: The union of any family of Γ-TS-sub-acts of $a \Gamma$ -TS-act ${ }_{\Gamma-T S} A$ is a Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.
Proof: Let $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ be a family of Γ-TS-sub-acts of $\mathrm{a} \Gamma$-TS-act ${ }_{\Gamma-T S} A$.

Let $\mathrm{A}=\bigcup_{\alpha \in \Delta} A_{\alpha}$. Let $a \in \mathrm{~A} ; b, c \in \mathrm{~T}, \alpha, \beta \in \Gamma . a \in \mathrm{~A}$
$\Rightarrow a \in \bigcup_{\alpha \in \Delta} A_{\alpha} \Rightarrow a \in A_{\alpha}$ for some $\alpha \in \Delta$
$a \in A_{\alpha}, b, c \in{ }_{\Gamma} A_{T}, \alpha, \beta \in \Gamma, A_{\alpha}$ is a Γ-TS-act of T
$\Rightarrow b \alpha c \beta a \in A_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha}=\mathrm{A} \Rightarrow b \alpha c \beta a \in \mathrm{~A}$.
Therefore, A is a Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.

Definition 3.10: Let ${ }_{\Gamma-T S} U$ and ${ }_{\Gamma-T S} V$ are Γ-T-acts. A mapping $f:{ }_{\Gamma-T S} U \rightarrow{ }_{\Gamma-T S} V$ is said to be a Γ-TS-homomorphism provided $f(s \alpha t \beta a)=\operatorname{s\alpha t} \beta f(a)$ for every $s, t \in \mathrm{~T}, a \in \mathrm{U}$ and $\alpha, \beta \in \Gamma$.

Definition 3.11: Let ${ }_{\Gamma-T S} P$ and ${ }_{\Gamma-T S} Q$ are Γ-TS-acts. A mapping $f:{ }_{\Gamma-T S} P \rightarrow_{\Gamma-T S} Q$ is said to be a $\boldsymbol{\Gamma}$-TS-monomorphism provided f is a one-one Γ-TS-homomorphism.

Definition 3.12: Let ${ }_{\Gamma-T S} R$ and ${ }_{\Gamma-T S} S$ be Γ-TS-acts. A mapping $f:{ }_{\Gamma-T S} R \rightarrow{ }_{\Gamma-T S} S$ is said to be a Γ-TS-epimorphism provided f is an onto Γ-TS-homomorphism.

Definition 3.13: Let ${ }_{\Gamma-T S} Y$ and ${ }_{\Gamma-T S} Z$ be Γ-TS-acts. A mapping $f:{ }_{\Gamma-T S} Y \rightarrow{ }_{\Gamma-T S} Z$ is said to be a $\boldsymbol{\Gamma}$-TS-isomorphism provided f is a one-one Γ-TS-homomorphism as well as an onto Γ-TShomomorphism.

Definition 3.14: $\mathrm{A} \Gamma$-TS-act B containing ($\mathrm{a} \Gamma$-TS-isomorphic copy of) a Γ-TS-act A as a subact is called an extension of A.

Example 3.15: As a very interesting example of acts, used in computer science as a convenient means of algebraic specification of process algebras, consider the ternary Γ-monoid ($\left.\mathrm{N}^{\infty}, \Gamma,[], \infty\right)$, where N is the set of natural numbers, Γ is the any set and $\mathrm{N}^{\infty}=\mathrm{N}$ $\cup\{\infty\}$ with $\mathrm{n}<\infty, \forall n \in \mathrm{~N}$ and $[\operatorname{man} \beta p]=\min \{m, n, p\}$ for $m, n, p \in$ $\mathrm{N}^{\infty} \alpha, \beta \in \Gamma$. Then a $\Gamma-\mathrm{TN}^{\infty}$-actis called a projection algebra.

Th 3.16: Let T be a ternary Γ-semi group, ${ }_{\Gamma-T S} K$ is a Γ-TS-act and $f: K \rightarrow T$ is a Γ-TS-homomorphism. Then A is a ternary Γ-semi group.
Proof: We have a mapping $g: K \times \Gamma \times K \times \Gamma \times K \rightarrow K$ where $\left(a, \alpha, a^{\prime}, \beta, a^{\prime \prime}\right) \rightarrow a \alpha a^{\prime} \beta a^{\prime \prime}:=f(a) \alpha a^{\prime} \beta a^{\prime \prime}$ for all $a, a^{\prime}, a^{\prime \prime} \in A$ and $\alpha, \beta \in \Gamma$. Let $a, b, c, d, e \in A$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. Then $(a \alpha b \beta c) \gamma d \delta e=(f(a) \alpha b \beta c) \gamma d \delta e=f(f(a) \alpha b \beta c) \gamma d \delta e$ $=f(a) \alpha f(b) \beta f(c) \gamma d \delta e=f(a) \alpha(f(b) \beta f(c) \gamma d) \delta e$ $=a \alpha(b \beta c \gamma d) \delta e=a \alpha(f(b) \beta f(c) \gamma f(d)) \delta e$ $=a \alpha f(b) \beta(f(c) \gamma f(d) \delta f(e))=a \alpha b \beta(c \gamma d \delta e)$
Therefore $(a \alpha b \beta c) \gamma d \delta e=a \alpha(b \beta c \gamma d) \delta e=a \alpha b \beta(c \gamma d \delta e)$ and hence A is a ternary Γ-semigroup.

Definition 3.17: Let ${ }_{\Gamma-T S} U$ is a Γ-TS-act. An equivalence relation ϑ on ${ }_{\Gamma-T S} U$ is said to be a $\boldsymbol{\Gamma}$-TS-congruence of ${ }_{\Gamma-T S} U$ provided for all $a, a^{\prime} \in U, b, c, \in T, \alpha, \beta \in \Gamma$, $a \rho a^{\prime} \Rightarrow(a \alpha b \beta c) \rho\left(a^{\prime} \alpha b \beta c\right),(b \alpha a \beta c) \rho\left(b \alpha a^{\prime} \beta c\right),(b \alpha c \beta a) \rho\left(b \alpha c \beta a^{\prime}\right)$

Definition 3.18: The set ${ }_{\Gamma-T S} K / \rho=\left\{l_{\rho}: l \in_{\Gamma-T S} K\right\}$ with the Γ action $s \alpha t \beta\left(l_{\rho}\right)=(s \alpha t \beta l)_{\rho}$ for all $s, t \in T$ and $\alpha, \beta \in \Gamma$ is known as a factor Γ-TS-act of ${ }_{\Gamma-T S} K$ by ρ, and canonical surjection $\pi_{\rho}:_{\Gamma-T S} K \rightarrow{ }_{\Gamma-T S} K / \rho$ where $l \rightarrow l_{\rho}$ is known as canonical Γ-TS-epimorphism.

Definition 3.19: Let ${ }_{\Gamma-T S} S$ and ${ }_{\Gamma-T S} T$ be two Γ-TS-acts. A mapping $l:{ }_{\Gamma-T S} S \rightarrow{ }_{\Gamma-T S} T$ is a Γ-TS-homomorphism, then the Γ-TScongruence $\rho=$ kernel l (simply ker f) on ${ }_{\Gamma-T S} A$ where $a \rho a^{\prime}$ iff $l(a)=l\left(a^{\prime}\right)$ for all $a, a^{\prime} \in{ }_{\Gamma} S_{T}$ is known as kernel Γ-TScongruence of l.

Theorem 3.20: Let $k:_{\Gamma-T S} G \rightarrow_{\Gamma-T S} H \quad$ is a $\quad \Gamma$-TShomomorphism as well as $\boldsymbol{\rho}$ be a Γ-TS-congruence on ${ }_{\Gamma-T S} G \exists$ $g \rho g^{\prime} \Rightarrow \boldsymbol{k}(\boldsymbol{a})=\boldsymbol{k}\left(g^{\prime}\right)$, i.e. $\rho \leq \operatorname{ker} k \quad$. Then $k^{\prime}:{ }_{\Gamma-T S} G / \rho \rightarrow_{\Gamma-T S} H$ with $k^{\prime}\left(g_{\rho}\right):=k(g), \mathrm{g} \in_{\Gamma-T S} G$, is the unique Γ-TS-homomorphism such that $k^{\prime} \pi_{\rho}=g$. If $\rho=\operatorname{ker} k^{\prime}$ is injective. Also if \boldsymbol{k} is surjective, then so is k^{\prime}.
Proof: The mapping k^{\prime} is well-defined, because for all $g_{\rho}, g_{\rho}^{\prime} \in{ }_{\Gamma-T S} G$,
$g_{\rho}=g_{\rho}^{\prime} \Leftrightarrow g \rho g^{\prime} \Rightarrow k(g)=k\left(g^{\prime}\right) \Rightarrow k^{\prime}\left(g_{\rho}\right)=k^{\prime}\left(g_{\rho}^{\prime}\right)$. For every $s, t \in T, \alpha, \beta \in \Gamma$ and $g \in G$,
$k^{\prime}\left(s \alpha t \beta g_{\rho}\right)=k^{\prime}(s \alpha t \beta g)_{\rho}=k(s \alpha t \beta g)$

$$
=s \alpha t \beta k(g)=s \alpha t \beta k^{\prime}\left(g_{\rho}\right)
$$

Hence, k^{\prime} is a Γ-TS-
homomorphism. Also for every $g \in{ }_{\Gamma-T S} G$,
$\left(k^{\prime} \pi_{\rho}\right)(g)=k^{\prime}\left(\pi_{\rho}(g)\right)=k^{\prime}\left(g_{\rho}\right)=k(g)$. Now we have to show k^{\prime} is unique. Let there exists $k^{\prime \prime}:_{\Gamma-T S} G / \rho \rightarrow_{\Gamma-T S} H$ such that $k^{\prime \prime} \pi_{\rho}=k$. This implies that $k^{\prime \prime} \pi_{\rho}=k^{\prime} \pi_{\rho}$. Since π_{ρ} is a Γ-TSepimorphism, $k^{\prime \prime}=k^{\prime}$. The remainder is an easy for verification. This is called homomorphism theorem for Γ-TS-acts.

Corollary 3.22: Let $l:{ }_{\Gamma} J_{T} \rightarrow{ }_{\Gamma} K_{T}$ be a Γ-TS-epimorphism. Then ${ }_{\Gamma-T S} J / \operatorname{ker} l \cong_{\Gamma-T S} K$.

4: Free Γ-TS-acts

Here, the notion of cyclic, free and indecomposable Γ-TS-acts are studied.

Definition 4.1: A non-empty subset P of a Γ-TS-act ${ }_{\Gamma-T S} K$ is known as a generating set of ${ }_{\Gamma-T S} K$ if every $k \in K$ can be expressed as $k=p \alpha q \beta u$ for some $p, q \in T, u \in P$ and $\alpha, \beta \in \Gamma . \quad$ In this case, we write ${ }_{\Gamma} K_{T}=\langle\mathrm{P}\rangle=T \Gamma T \Gamma P$, where $T \Gamma T \Gamma P=\{p \alpha q \beta u: p, q \in T, \alpha, \beta \in \Gamma, u \in P\}$. Also P is finitely generated Provided it has a finite generating set of ele-
ments. We say ${ }_{\Gamma-T S} K$ a cyclic ${ }_{\Gamma-T S} K$ provided ${ }_{\Gamma-T S} K=\langle p\rangle=$ $T Г T \Gamma p$ for some $p \epsilon_{\Gamma-T S} K$.
Note 4.2: ${ }_{\Gamma} L_{T}$ is always a generating set of itself. i.e. ${ }_{\Gamma-T S} L=\langle\mathrm{L}\rangle$.

Theorem 4.3: If \mathbf{S} is a nonempty sub set of a Γ-TS-act ${ }_{\Gamma-T S} L \&$ $l \epsilon_{\Gamma-T S} L$. Then the following assertions hold:
(i) $\quad K \Gamma K \Gamma l=K \alpha K \beta l$ for all $\alpha, \beta \in \Gamma$.
(ii) $K \alpha K \beta l=K \gamma K \delta l$ for all $\alpha, \beta, \gamma, \delta \in \Gamma$.
(iii) $K \Gamma К Г P=K \alpha K \beta P=\{p \alpha q \beta u: p, q \in K, u \in P$ and $\alpha, \beta \in \Gamma\}$.

Proof: (i) Let $\alpha, \beta \in \Gamma$ and $l \in_{\Gamma-T S} L$. Clearly, $K \alpha K \beta l \subseteq K \Gamma K \Gamma l$. For the reverse inclusion, take $p, q \in K \quad p \alpha q \beta l=p \alpha q \beta(e \alpha e \beta l)=p \alpha(q \beta e \alpha e) \beta l \in K \alpha K \beta l$ which implies that $K \Gamma K \Gamma l=K \alpha K \beta l$ for all $\alpha, \beta \in \Gamma$. The remaining two assertions follows from (i).
This theorem express a simple characterization to generating sub sets of a Γ-TS-act.
Consider a cyclic Γ-TS-act ${ }_{\Gamma-T S} L=\langle l>$ as $T \alpha T \beta l$ for any $\alpha, \beta \in \Gamma$ and $l \in_{\Gamma-T S} L, p \in \mathrm{~T}$. Then the map $\lambda_{s, a, \alpha, \beta}:_{\Gamma-T S} T \rightarrow_{\Gamma-T S} L$ defined by $\lambda_{s, a, \alpha, \beta}(q)=p \alpha q \beta l$ for all $q \in T$ is a Γ-TS-homomorphism. To see this, for every $u, v \in T$ and $\gamma, \delta \in \Gamma$ we have
$\lambda_{p, a, \alpha, \beta}(u \gamma v \delta t)=p \alpha(u \gamma v \delta t) \beta a=u \gamma v \delta p \alpha t \beta l=u \gamma v \delta \lambda_{p, a, \alpha, \beta}(q)$.
Now, we characterize cyclic Γ-TS-acts by means of factor Γ-TSacts of ${ }_{\Gamma-T S} T$.
Th 4.4: If a Γ-TS-act ${ }_{\Gamma-T S} L$ is cyclic. Then there exists a Γ-TScongruence $\boldsymbol{\rho}$ on ${ }_{\Gamma-T S} T \exists_{\Gamma-T S} L \cong{ }_{\Gamma-T S} T / \rho$ and the converse also hold if \mathbf{T} is a ternary Γ-monoid.
Proof: Let ${ }_{\Gamma-T S} L=\langle l>$ as $T \alpha T \beta l$ for any $\alpha, \beta \in \Gamma$ and $l \in_{\Gamma-T S} L, s \in \mathrm{~T}$. Then the Γ-TS-homomorphism
$\lambda_{s, a, \alpha, \beta}:_{\Gamma-T T} T \rightarrow_{\Gamma-T S} L$ is obviously a Γ-TS-epimorphism. By using Corollary 3.22, we get ${ }_{\Gamma-T S} L \cong{ }_{\Gamma-T S} T / \operatorname{ker} \lambda_{s, a, \alpha, \beta}$. Then fix $\rho=\lambda_{s, a, \alpha, \beta}$, then we get the result.
Conversely, if ρ is a Γ-TS-congruence on a Γ-T-monoid ${ }_{\Gamma-T S} T$ with unity e, then for all $t_{\rho} \in_{\Gamma-T S} T / \rho$ and $\alpha, \beta \in \Gamma$, $t_{\rho}=(t \alpha e \beta e)_{\rho}=t \alpha e_{\rho} \beta e_{\rho}$ which shows that ${ }_{\Gamma-T S} T / \rho \cong\left\langle e_{\rho}\right\rangle$.
Definition 4.5: А Γ-TS-act ${ }_{\Gamma-T S} L$ is said to be decomposable if \exists two Γ-TS-sub-acts ${ }_{\Gamma-T S} M$ and ${ }_{\Gamma-T S} N$ of ${ }_{\text {г-TS }} L$ such that ${ }_{\Gamma-T S} L={ }_{\Gamma-T S} M U_{\Gamma-T S} N$ and ${ }_{\Gamma-T S} M \cap_{\Gamma-T S} N=\emptyset$. In this case, the disjoint union ${ }_{\Gamma-T S} M \cup_{\Gamma-T S} N$ is known as a decomposition of ${ }_{\Gamma-T S} L$. If not, ${ }_{\Gamma-T S} L$ is known as in-decomposable. If we consider Γ-TS-acts with unique 0 , then we have to change \varnothing by $\{0\}$ to define decomposable as well as in-decomposable Γ-TS-acts with unique 0 .

Theorem 4.6: Every cyclic Γ-TS-act is in-decomposable.

Proof: Suppose that ${ }_{\Gamma-T S} D=\langle d>$ as $T \alpha T \beta d$ for any $\alpha, \beta \in \Gamma \quad$ and $d \in_{\Gamma-T S} D \quad s \in \mathrm{~T}$ is cyclic and $\mathrm{D}={ }_{\Gamma-T S} E U_{\Gamma-T S} F$ for some Γ-TS-sub-acts ${ }_{\Gamma-T S} E$ and ${ }_{\Gamma-T S} F$ of
${ }_{\Gamma-T S} D$. Then $d=e \alpha e \beta d \in{ }_{\Gamma} E_{T}$ say, then ${ }_{\Gamma-T S} D=\langle d\rangle \subseteq$ ${ }_{\Gamma-T S} E$ which is a contradiction.

Theorem 4.7: Let $A_{i} \subseteq_{\Gamma-T S} A, i \in \Delta$ be in-decomposable Γ -TS-sub-acts of a Γ-T-act ${ }_{\Gamma-T S} A$ such as $\bigcap_{i \in I} A_{i} \neq \varnothing$. Then $\bigcup_{i \in I} A_{i}$ is an in-decomposable Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.
Proof: By theorem 3.7, $\bigcup_{i \in I} A_{i}$ is a Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.
Suppose there exists a decomposition $\bigcup_{i \in I} A_{i}={ }_{\Gamma-T S} B \cup_{\Gamma-T S} C$.
Take $a \in \bigcap_{i \in I} A_{i}$ with $a \in{ }_{\Gamma} A_{T}$, say.
Then $a \in A_{i} \bigcap_{\Gamma-T S} B$ for all $i \in \Delta$.
Since $A_{i}=A_{i} \cap\left({ }_{\Gamma-T S} B \bigcup_{\Gamma-T S} C\right)=\left(A_{i} \bigcap_{\Gamma-T S} B\right) \bigcup\left(A_{i} \bigcap_{\Gamma-T S} C\right)$ and A_{i} is indecomposable, $A_{i} \bigcap_{\Gamma-T S} C=\varnothing$ for all $i \in I$.
Thus $\bigcup_{i \in I} A_{i}={ }_{\Gamma-T S} B$ It is a contradiction.
Th 4.8: Every Γ-TS-act ${ }_{\Gamma-T S} A$ has a unique decomposition into in-decomposable Γ-TS-sub-acts.
Proof: Let ${ }_{\Gamma-T S} A$. Than by th, 3.6, T $\alpha T \beta a, \alpha, \beta \in \Gamma$ is indecomposable. Using th 4.7 , we get
$S_{a}=\bigcup\left\{\left\{_{\Gamma-T S} S \subseteq_{\Gamma-T S} A:_{\Gamma-T S} S\right.\right.$ is in-decomposable and $\left.a \in_{\Gamma-T S} S\right\}$ i s an in-decomposable Γ-TS-sub-act of ${ }_{\Gamma-T S} A$.
For $p, q \in{ }_{\Gamma-T S} L V_{a}=V_{b}$ or $V_{p} \cap V_{q}=\varnothing$.
Indeed, $r \in V_{p} \cap V_{q} \Rightarrow V_{p}, V_{q} \subseteq V_{r}$.
Thus $p \in V_{p} \subseteq V_{r}, q \in V_{q} \subseteq V_{r}$, i.e. $V_{r} \subseteq V_{p} \cap V_{q}$.
Therefore, $V_{p}=V_{q}=V_{r}$. Denote by L^{\prime} a representative subset of elements $p \in{ }_{\Gamma-T S} L$ w.r.t the equivalence relation \sim defined by $p \sim q$ iff $V_{p}=V_{q}$. Therefore, ${ }_{\Gamma-T S} L=\bigcup_{p \in L^{\prime}} V_{p}$ is the unique decomposition of ${ }_{\Gamma-T S} L$ into in-decomposable Γ-TS-sub-acts.

Def 4.9: A set K of generating elements of a Γ-TS-act ${ }_{\Gamma-T S} L$ is known as a basis of ${ }_{\Gamma-T S} L$ provided every element $p \in{ }_{\Gamma-T S} L$ can be uniquely expressed as $p=s \alpha t \beta u$ for some $s, t \in T, u \in K$ and $\alpha, \beta \in \Gamma$,

Theorem 4.10: Let $l:_{\Gamma-T S} K \rightarrow{ }_{\Gamma-T S} B$ be a $\quad \Gamma$-TShomomorphism, then
(i) If ${ }_{\Gamma-T S} L$ is finitely generated then so is $\boldsymbol{h}(\Gamma-T S$,
(ii) If ${ }_{\Gamma-T S} L=\langle\mathbf{P}\rangle$ and $i:_{\Gamma-T S} L \rightarrow_{\Gamma-T S} M$ is a Г-TShomomorphism, then $h(s)=i(s)$ for every $s \in P$ implies $l=g$.
(iii) If \boldsymbol{h} is a $\boldsymbol{\Gamma}$-TS-epimorphism and ${ }_{\Gamma-T S} L=\langle\mathbf{P}\rangle$, then ${ }_{\Gamma-T S} M=\langle\boldsymbol{h}(\mathbf{P})\rangle$.
(iv) If \boldsymbol{h} is a Γ-TS-isomorphism and ${ }_{\Gamma-T S} L$ is a free Γ-TSact, then so is ${ }_{\Gamma-T S} M$.
Proof: we just prove (iv), let P be a basis of ${ }_{\Gamma-T S} L$ and then ${ }_{\Gamma-T S} L=\langle\mathrm{P}\rangle$. It follows from (iii) that ${ }_{\Gamma-T S} M=\langle h(\mathrm{P})\rangle$, i.e. $h(\mathrm{P})$ is a generating set of ${ }_{\Gamma-T S} M$. Therefore, for all
$b \in{ }_{\Gamma-T S} M$ there exist $s, t \in T, \alpha, \beta \in \Gamma$ and $u \in P$ such that $b=\operatorname{s\alpha t} \beta f(u)$. Suppose that $b=s^{\prime} \alpha^{\prime} t^{\prime} \beta^{\prime} f\left(u^{\prime}\right)$, for $s^{\prime}, t^{\prime} \in T, \alpha^{\prime}, \beta^{\prime} \in \Gamma$ and $u^{\prime} \in P$. Then $b=\operatorname{s\alpha t} \beta f(u)=$ $s^{\prime} \alpha^{\prime} t^{\prime} \beta^{\prime} f\left(u^{\prime}\right)$ This implies that $h(s \alpha t \beta u)=h\left(s^{\prime} \alpha^{\prime} t^{\prime} \beta^{\prime} u^{\prime}\right)$ and hence $s \alpha t \beta u=s^{\prime} \alpha^{\prime} t^{\prime} \beta^{\prime} u^{\prime}$ because h is one-one. Since S is a basis. Therefore $s=s^{\prime}, t=t^{\prime}, \alpha=\alpha^{\prime}, \beta=\beta^{\prime}, h(u)=h\left(u^{\prime}\right)$. Hence, $h(\mathrm{P})$ is a basis of ${ }_{\Gamma-T S} M$.

Th 4.11: If $_{\Gamma-T S} K$ is a free Γ-TS-act, then $|\Gamma|=1$.
Proof: Let ${ }_{\Gamma-T S} K$ is a free Γ-TS-act with a basis P .
Consider $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Gamma, s, t \in T$ and $u \in S \quad$ By using theorem 3.3(ii), s $\alpha t \beta u \in T Г T \Gamma u$ and then $s \alpha t \beta u=s^{\prime} \alpha^{\prime} t^{\prime} \beta^{\prime} u^{\prime}$ for some $s^{\prime}, t^{\prime} \in T, \alpha^{\prime}, \beta^{\prime} \in \Gamma$ and $u, u^{\prime} \in S$. Since P is a basis, $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$.

5. Conclusion

This type of ternary structures and their generalizations, the so called Γ-TS-act rise certain hopes in view of their possible applications in Organic Chemistry. the well- known generalization of ternary semi group T is ternary γ-semi group.

Acknowledgement

Our thanks to all who supported to us for preparation of the paper.

References

[1] Chinram. R and Thinpun. K., Isomorphism theorems for gamma semigroups and ordered gamma semi groups,Tha. Journal of Mathematics, 7(2), (2008), 231-241.
[2] Howie. J. M., Automata and Languages, Oxford University press, Oxford (1991).
[3] Hssin. Z., Gamma modules with gamma rings of gamma endomorphism, International Journal of Science and Technology, 6(3), (2013), 346-354.
[4] Madhusudhana Rao. D., Vasantha. M., and Venkateswara Rao.M., Structure and Study of Elements in ternary Γ-Semigroups, International Journal of Engineering Research, Volume No 4, Issue No 4, (1 st April 2015), pp:197-202.

