International Journal of Engineering & Technology, 7 (4.10) (2018) 785-789



### **International Journal of Engineering & Technology**

Website: www.sciencepubco.com/index.php/IJET



Research paper

# Various Separation Axioms on $\lambda_g^{\delta}$ -Closed Sets

Vaishnavy V1\*, Sivakamasundari K2

<sup>1</sup>Research Scholar
<sup>2</sup>Professor

<sup>1,2</sup>Department of Mathematics,

Avinashilingam Institute for Home Science and Higher Education for Women,

Coimbatore, India

\*Corresponding author E-mail: vaishnavyviswanathan92@gmail.com

#### Abstract

The idea behind this article is to introduce and study the notions of  $\lambda_g^{\delta}$ -compactness,  $\lambda_g^{\delta}$ -connectedness and  $\lambda_g^{\delta}$   $G_i$ -axioms. These notions are characterized using various spaces and different types of continuity.

**Keywords**: Regular open sets,  $\delta$ -open sets,  $\lambda_g^{\delta}$ -open sets,  $\lambda_g^{\delta}$ -compactness,  $\lambda_g^{\delta}$ -connectedness.

#### 1. Introduction

The conceptualization of  $\delta\text{-closed}$  sets was made by Velicko[10] during 1968. Georgiou et al.[1] dealt with the idea of  $(\Lambda,\,\delta)\text{-closed}$  sets amid 2004. The notation of the so called  $\lambda_g^\delta$  closed sets[4] was made known in the year 2016. This definition was a generalization of  $\delta\text{-closed}$  sets. Consequently, many concepts related to  $\lambda_g^\delta$  -closed sets are being studied[5][6][7][8][9]. This work consists of some interesting axioms like  $\lambda_g^\delta$  -compactness,  $\lambda_g^\delta$ -connectedness and  $\lambda_g^\delta$  Gi-axioms. These concepts are analyzed through various forms of continuity and separation spaces.

### 2. Some Fundamentals

**Definition 2.1:** Let  $(P, \tau)$  be a topological space. Then a subset Z of  $(P, \tau)$  is known as

- (1) **regular closed**[3] if Z = cl (int (Z)).
- (2) **\delta-open**[10] if Z is the union of regular open sets. The collection of all  $\delta$ -open sets in (P,  $\tau$ ) is denoted by  $\delta$ O(P,  $\tau$ ).
- (3)  $\bigwedge_{\delta}$ -set[1] if  $\bigwedge_{\delta}(Z)=Z$ , where  $\bigwedge_{\delta}(Z)=\bigcap \{O\in \delta O(P, \tau) \mid Z\subseteq O\}$ .
- (4)  $(\Lambda, \delta)$ -closed[1]if  $Z = T \cap C$ , where T is a  $\Lambda \delta$  -set and C is a  $\delta$ -closed set.
- (5)  $\lambda_g^{\delta}$  -closed set[4] if  $cl(Z) \subseteq R$  whenever  $Z \subseteq R$  and R is  $(\Lambda, \delta)$ -open in P.

**Definition 2.2**:[7] Let  $(P, \tau)$  be a topological space. Then a subset Z is said to be a  $\lambda_g^{\delta}$ -neighborhood of  $p \in P$  iff  $\exists$  a  $\lambda_g^{\delta}$ -open set  $Q \ni p \in Q \subseteq Z$ .

**Definition 2.3:** A map  $\psi : (P, \tau) \longrightarrow (Q, \sigma)$  is called

- (1)  $\lambda_g^{\delta}$  -continuous[5] if the inverse image of every open set in  $(Q, \sigma)$  is  $\lambda_g^{\delta}$  -open in  $(P, \tau)$ .
- (2) **quasi**  $\lambda_g^{\delta}$  **-continuous[9]** if the inverse image of every  $\lambda_g^{\delta}$  -open set in  $(Q, \sigma)$  is open in  $(P, \tau)$ .
- (3) **perfectly**  $\lambda_g^{\delta}$  **-continuous[9]** if the inverse image of every  $\lambda_g^{\delta}$  -open set in  $(Q, \sigma)$  is clopen in  $(P, \tau)$ .
- (4) **contra**  $\lambda_g^{\delta}$  **-continuous[9]** if the inverse image of every open set in  $(Q, \sigma)$  is  $\lambda_g^{\delta}$  -closed in  $(P, \tau)$ .
- (5) **totally**  $\lambda_g^{\delta}$  **-continuous[9]** if the inverse image of every open subset of  $(Q, \sigma)$  is  $\lambda_g^{\delta}$  -clopen in  $(P, \tau)$ .
- (6) **strongly**  $\lambda_g^{\delta}$  **-continuous[9]** if the inverse image of every subset of  $(Q, \sigma)$  is  $\lambda_g^{\delta}$  -clopen in  $(P, \tau)$ .
- (7)  $\lambda_g^{\delta}$  -irresolute[9] if the inverse image of every  $\lambda_g^{\delta}$  -open set in  $(Q, \sigma)$  is  $\lambda_g^{\delta}$  -open in  $(P, \tau)$ .

**Definition 2.4**:[6]A space (P,  $\tau$ ) is known as a  $\lambda_g^{\delta}$   $T_{\delta}$ -space if every  $\lambda_g^{\delta}$ -closed subset of (P,  $\tau$ ) is  $\delta$ -closed in (P,  $\tau$ ).

## 3. $\lambda_g^{\delta}$ -Compactness

**Definition 3.1 :** A collection  $\mathcal{A}$  of a topological space  $(P, \tau)$  is said to cover P (or) to be a covering of P if the union of elements of  $\mathcal{A}$ 



is equal to P.  $\mathcal{A}$  is said to be a  $\lambda_g^{\delta}$  -open covering of P if its elements are  $\lambda_g^{\delta}$  -open sets of  $(P, \tau)$ .

**Definition 3.2**: A non-empty collection  $\{Z_i \mid i \in I\}$  of  $\lambda_g^{\delta}$ -open sets in  $(P, \tau)$  is said to be an  $\lambda_g^{\delta}$ -open cover of a subset B of  $(P, \tau)$  if  $B \subseteq \bigcup \{Z_i \mid i \in I\}$ .

**Definition 3.3:** A topological space  $(P, \tau)$  is called  $\lambda_g^{\delta}$  -compact if every  $\lambda_g^{\delta}$ -open cover of P has a finite subcover.

**Definition 3.4 :** A subset B of a topological space  $(P, \tau)$  is called  $\lambda_g^{\delta}$ -compact relative to P if for every collection  $\{Z_i \mid i \in I\}$  of  $\lambda_g^{\delta}$ -open sets of  $(P, \tau) \ni B \subseteq \bigcup \{Z_i \mid i \in I\} \exists$  a finite subset  $I_0$  of  $I \ni B \subseteq \bigcup \{Z_i \mid i \in I_0\}$ .

**Theorem 3.5 :** Every  $\lambda_g^{\delta}$  -closed subset of a  $\lambda_g^{\delta}$  -compact space P is  $\lambda_g^{\delta}$  -compact relative to P.

**Proof :** Let Z be a  $\lambda_g^\delta$ -closed subset of a  $\lambda_g^\delta$ -compact space P. Then  $P \setminus Z$  is  $\lambda_g^\delta$ -open in P. Let  $S = \{V_i \mid i \in I\}$  be a  $\lambda_g^\delta$ -open cover of Z in P. Then  $S^* = S \cup \{P \setminus Z\}$  is a  $\lambda_g^\delta$ -open cover of P. Since P is  $\lambda_g^\delta$ -compact,  $S^*$  has a finite subcover of P, say  $P = V_{i1} \cup V_{i2} \cup ... \cup V_{im} \cup Z^c$ , where  $V_{ik} \in S$ . But Z and  $P \setminus Z$  are disjoint and hence  $Z \subseteq V_{i1} \cup V_{i2} \cup ... \cup V_{im}$ , where  $V_{ik} \in S$ . This implies that any  $\lambda_g^\delta$ -open cover S of Z contains a finite sub-cover. Therefore Z is  $\lambda_g^\delta$ -compact relative to P.

**Theorem 3.6 :** A surjective  $\lambda_g^\delta$  -continuous image of a  $\lambda_g^\delta$  -compact space is compact.

**Proof :** Let  $\psi: P \longrightarrow Q$  be a surjective  $\lambda_g^\delta$ -continuous function from a  $\lambda_g^\delta$ -compact space P to Q. Let  $\{V_i \mid i \in I\}$  be an open cover of Q. Since  $\psi$  is  $\lambda_g^\delta$ -continuous,  $\{\psi^{-1}(V_i) \mid i \in I\}$  is a  $\lambda_g^\delta$ -open cover of P. Since P is  $\lambda_g^\delta$ -compact,  $\exists$  a finite subcover  $\{\psi^{-1}(V_1), \ \psi^{-1}(V_2), ..., \ \psi^{-1}(V_n)\}$  of  $\{\psi^{-1}(V_i) \mid i \in I\}$ . Since  $\psi$  is surjective,  $\{V_1, V_2, ..., V_n\}$  is a finite open cover of Q. Hence  $(Q, \sigma)$  is compact.

**Theorem 3.7 :** A surjective, quasi  $\lambda_g^\delta$  -continuous image of a compact space is  $\lambda_g^\delta$  -compact.

**Proof :** Let  $\psi:(P,\ \tau) \to (Q,\ \sigma)$  be a surjective, quasi  $\lambda_g^\delta$ -continuous function and  $\{V_i \mid i \in I\}$  be a  $\lambda_g^\delta$ -open cover of Q. Since  $\psi$  is quasi  $\lambda_g^\delta$ -continuous,  $\{\psi^{-1}(V_i) \mid i \in I\}$  is an open cover of P. Since P is compact,  $\exists$  a finite open subcover  $\{\psi^{-1}(V_1), \psi^{-1}(V_2),...,\psi^{-1}(V_n)\}$  of  $\{\psi^{-1}(V_i) \mid i \in I\}$ . Since  $\psi$  is surjective,  $\{V_1, V_2, ..., V_n\}$  is a finite  $\lambda_g^\delta$ -open subcover of Q and hence Q is  $\lambda_g^\delta$ -compact.

**Corollary 3.8:** A surjective, perfectly  $\lambda_g^{\delta}$ -continuous image of a compact space is  $\lambda_g^{\delta}$ -compact.

**Proof :** Since every perfectly  $\lambda_g^\delta$ -continuous function is a quasi  $\lambda_g^\delta$ -continuous function, the result follows.

**Theorem 3.9:** If  $\psi:(P,\tau) \longrightarrow (Q,\sigma)$  is  $\lambda_g^\delta$ -irresolute and  $B\subseteq P$  is  $\lambda_g^\delta$ -compact relative to P then the image,  $\psi(B)$  is  $\lambda_g^\delta$ -compact relative to Q.

 $\begin{array}{l} \textbf{Proof:} \ \text{Let} \ \bigcup \{Z_i \mid i \in I\} \ \text{be a} \ \lambda_g^\delta \ \text{-open cover of} \ \ \psi(B) \ i.e., \ \psi(B) \subseteq \\ \ \bigcup \{Z_i \mid i \in I\} \implies B \subseteq \bigcup \{\psi^{-1}(Z_i) \mid i \in I \ \}. \ \text{Since } B \ \text{is} \ \lambda_g^\delta \ \text{-compact relative to} \ P, \ \{\psi^{-1}(Z_i) \mid i \in I\} \ \text{has a finite subcover} \ \bigcup \{\psi^{-1}(Z_i) \mid i \in I_0\} \ \text{is} \ \in I_0\} \ \text{(say)} \ \ni \ B \subseteq \{\psi^{-1}(Z_i) \mid i \in I_0\} \ \implies \psi(B) \subseteq \bigcup \{Z_i \mid i \in I_0\} \ \implies \bigcup \{Z_i \mid i \in I_0\} \ \text{is} \ \text{a finite subcover of} \ \bigcup \{\psi^{-1}(Z_i) \mid i \in I \ \}. \ \text{Therefore} \ \psi(B) \ \text{is} \ \lambda_g^\delta \ \text{-compact relative to} \ Q. \end{array}$ 

**Theorem 3.10 :** A topological space P is  $\lambda_g^{\delta}$ -compact iff each family of  $\lambda_g^{\delta}$ -closed subsets of P with the finite intersection property has a non-empty intersection.

**Proof :** Given a collection G of subsets of P, let  $H = \{P \mid G \mid G \in G \}$  be the collection of its complements. Then we have,

G is a collection of  $\lambda_g^\delta$ -open sets iff H is a collection of  $\lambda_g^\delta$ -closed sets.

The collection G covers P iff the intersection  $\bigcap_{H\in\mathcal{H}}H$  of all ele-

ments of H is non-empty.

The finite sub-collection  $\{G_1,\ G_2,\ \dots\ ,\ G_n\}$  of G covers P iff the intersection of the corresponding elements  $H_i = P \setminus G_i$  of H is empty.

Statement (i) is obvious whereas (ii) and (iii) follow from DeMorgan's law:  $P \setminus \bigcup_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in J} (P \setminus A_{\alpha})$ . Now we prove the

theorem by contra positive approach which is equivalent to the following:

Let G be any collection of  $~\lambda_g^{\delta}$ -open sets in P. If no finite subcollection of G covers P, then G does not cover P. Now applying (i) to (iii), we observe that this statement is equivalent to the following:

Given any collection H of  $\lambda_g^\delta$ -closed sets, if every finite intersection of elements of H is non-empty then intersection of all elements of H is non-empty.

**Definition 3.11 :** A topological space  $(P, \tau)$  is  $\lambda_g^{\delta}$  -Lindelof if every  $\lambda_g^{\delta}$ -open cover of P contains a countable subcover.

**Theorem 3.12 :** Every  $\lambda_g^\delta$  -compact space is  $\lambda_g^\delta$  -Lindelof.

**Theorem 3.13 :** A surjective,  $\lambda_g^{\delta}$  -irresolute image of a  $\lambda_g^{\delta}$ -Lindelof space is  $\lambda_g^{\delta}$ -Lindelof.

**Proof :** Let  $\psi: P \longrightarrow Q$  is a  $\lambda_g^\delta$ -irresolute, surjection and P be a  $\lambda_g^\delta$ -Lindelof space. Let  $\{R_i \mid i \in I\}$  be an  $\lambda_g^\delta$ -open cover of Q. Then  $\{\psi^{-1}(R_i) \mid i \in I\}$  is a  $\lambda_g^\delta$ -open cover of P. Since P is  $\lambda_g^\delta$ -Lindelof, it has a countable subcover namely  $\{\psi^{-1}(R_1), \psi^{-1}(R_1), \dots, \psi^{-1}(R_n), \dots\}$ . Since  $\psi$  is surjective,  $\{R_1, R_2, \dots, R_n, \dots\}$  is a countable subcover of Q. Hence Q is  $\lambda_g^\delta$ -Lindelof.

**Theorem 3.14 :** A surjective  $\lambda_g^\delta$  -continuous image of a  $\lambda_g^\delta$  -Lindelof is Lindelof.

**Proof :** Let  $\psi: P \longrightarrow Q$  be a surjective,  $\lambda_g^\delta$ -continuous function from a  $\lambda_g^\delta$ -Lindelof space P to Q. Let  $\{R_i \mid i \in I\}$  be an open cover of Q. Since  $\psi$  is  $\lambda_g^\delta$ -continuous,  $\{\psi^{-1}(R_i) \mid i \in I\}$  is a  $\lambda_g^\delta$ -open cover of P. Since P is  $\lambda_g^\delta$ -Lindelof,  $\exists$  a countable

 $subcover \ \{\psi^{\ \text{--}1}(R_1), \ \psi^{\ \text{--}1}(R_2), ..., \ \psi^{\ \text{--}1}(R_n), ...\} \ of \ \{\psi^{\ \text{--}1}(R_i) \ | \ i \in \ I\}.$ Since  $\psi$  is surjective,  $\{R_1, R_2,...,R_n,...\}$  is a countable subcover of Q. Hence  $(Q, \sigma)$  is Lindelof.

**Theorem 3.15**: A surjective, quasi  $\lambda_g^{\delta}$  -continuous image of a Lindelof space is  $\lambda_g^{\delta}$ -Lindelof.

**Proof**: Let  $\psi$ : (P,  $\tau$ )  $\rightarrow$  (Q,  $\sigma$ ) be a surjective, quasi  $\lambda_{\mathfrak{g}}^{\delta}$  -continuous function and  $\{R_i \mid i \in I\}$  be a  $\lambda_{\mathfrak{g}}^{\delta}$  -open cover of Q. Since  $\psi$  is quasi  $\lambda_g^{\delta}$ -continuous,  $\{\psi^{-1}(R_i) \mid i \in I\}$  is an open cover of P. Since P is Lindelof,  $\exists$  a countable subcover  $\{\psi^{-1}(R_1), \}$  $\psi^{-1}(R_2),..., \psi^{-1}(R_n),...\}$  of  $\{\psi^{-1}(R_i) \mid i \in I\}$ . Since  $\psi$  is surjective,  $\{R_1, R_2, ..., R_n,...\}$  is a countable subcover of Q and hence Q is  $\lambda_g^{\delta}$  -Lindelof.

**Corollary 3.16 :** A surjective, perfectly  $\lambda_g^{\delta}$  -continuous image of a compact space is  $\lambda_g^{\delta}$ -compact.

**Proof :** The proof follows since every perfectly  $\lambda_g^\delta$  -continuous function is a quasi  $\lambda_g^{\delta}$  -continuous function.

# 4. $\lambda_g^{\delta}$ -Compactness

**Definition 4.1:** A subset Z of a topological space  $(P, \tau)$  is called  $\lambda_{\mathbf{g}}^{\delta}$  -regular closed if  $Z = \lambda_{\mathbf{g}}^{\delta} \operatorname{cl}(\lambda_{\mathbf{g}}^{\delta} \operatorname{int}(Z))$ .

 $\lambda_{\mathbf{g}}^{\delta}$  -regular open if  $Z=\,\lambda_{\mathbf{g}}^{\delta}$  int(  $\lambda_{\mathbf{g}}^{\delta}\, cl(Z)).$ 

 $\lambda_g^{\delta}$  -regular if it is both  $\lambda_g^{\delta}$  -regular closed and  $\lambda_g^{\delta}$  -regular open. **Definition 4.2**:[8] Let  $(P, \tau)$  be a topological space. Then a subset Z of (P,  $\tau$ ) is known as  $\lambda_g^{\delta}$ -Frontier (briefly,  $\lambda_g^{\delta}$  Fr(Z)) is defined as  $\lambda_g^{\delta} \operatorname{Fr}(Z) = \lambda_g^{\delta} \operatorname{cl}(Z) \setminus \lambda_g^{\delta} \operatorname{int}(Z)$ .

**Theorem 4.3**: A subset Z of a topological space  $(P, \tau)$  is  $\lambda_g^{\delta}$ regular iff  $\lambda_g^{\delta} \operatorname{Fr}(Z) = \phi$ .

**Proof :** Necessity: Let Z be  $\lambda_g^{\delta}$  -regular then (i) Z =  $\lambda_{\mathfrak{g}}^{\delta} \operatorname{cl}(\lambda_{\mathfrak{g}}^{\delta} \operatorname{int}(Z))$  and (ii)  $Z = \lambda_{\mathfrak{g}}^{\delta} \operatorname{int}(\lambda_{\mathfrak{g}}^{\delta} \operatorname{cl}(Z))$ . Now, (i)  $\Longrightarrow$  $\lambda_{\mathfrak{g}}^{\delta} \text{ cl } (Z) = \lambda_{\mathfrak{g}}^{\delta} \text{ cl} (\lambda_{\mathfrak{g}}^{\delta} \text{ cl} (\lambda_{\mathfrak{g}}^{\delta} \text{ int}(Z))) = \lambda_{\mathfrak{g}}^{\delta} \text{ cl} (\lambda_{\mathfrak{g}}^{\delta} \text{ int}(Z)) = Z \text{ and }$ (ii)  $\implies \lambda_{\sigma}^{\delta} \operatorname{int}(Z) = \lambda_{\sigma}^{\delta} \operatorname{int}(\lambda_{\sigma}^{\delta} \operatorname{int}(\lambda_{\sigma}^{\delta} \operatorname{cl}(Z))) = \lambda_{\sigma}^{\delta} \operatorname{int}(\lambda_{\sigma}^{\delta} \operatorname{cl}(Z)) = Z.$ Thus  $\lambda_{\alpha}^{\delta} \operatorname{Fr}(Z) = \lambda_{\alpha}^{\delta} \operatorname{cl}(Z) \setminus \lambda_{\alpha}^{\delta} \operatorname{int}(Z) = \phi$ .

**Sufficiency**: Let  $\lambda_{\sigma}^{\delta} \operatorname{Fr}(Z) = \phi$ . This implies  $\lambda_{\sigma}^{\delta} \operatorname{cl}(Z) = \lambda_{\sigma}^{\delta} \operatorname{int}(Z)$ which means  $\lambda_g^{\delta}$  int(Z) = Z =  $\lambda_g^{\delta}$  cl(Z). Thus we have  $\lambda_{\mathfrak{g}}^{\delta}\operatorname{cl}(\,\lambda_{\mathfrak{g}}^{\delta}\operatorname{int}(Z))\,=\,\lambda_{\mathfrak{g}}^{\delta}\operatorname{cl}(Z)\,=\,Z\,\,\text{and}\,\,\lambda_{\mathfrak{g}}^{\delta}\operatorname{int}(\,\lambda_{\mathfrak{g}}^{\delta}\operatorname{cl}(Z))\,=\,\lambda_{\mathfrak{g}}^{\delta}\operatorname{int}(Z)\,=\,$ Z. Hence Z is  $\lambda_g^{\delta}$  -regular.

**Definition 4.4:** A topological space  $(P, \tau)$  is called  $\lambda_g^{\delta}$  -connected if P cannot be expressed as a union of two disjoint, non-empty,  $\lambda_g^{\delta}$  -open sets.

**Theorem 4.5:** For a topological space  $(P, \tau)$ , the following are equivalent:

P is  $\lambda_{\sigma}^{\delta}$  -connected.

P and  $\varphi$  are the only  $\,\lambda_{\rm g}^{\delta}$  -regular subsets of P.

Each  $\lambda_{\sigma}^{\delta}$ -continuous function of P into a discrete space Q with atleast two points is a constant function.

Every non-empty proper subset has a non-empty  $\lambda_{\sigma}^{\delta}$ -Frontier.

**Proof**:(i)  $\Longrightarrow$  (ii) Let R be a  $\lambda_g^{\delta}$ -regular subset of P. Then P\R is both  $\lambda_g^{\delta}$ -open and  $\lambda_g^{\delta}$ -closed in P. Since P is the disjoint union of  $\lambda_{\mathfrak{s}}^{\delta}$  -open sets R and P\R, P is not  $\lambda_{g}^{\delta}$  -connected which is a contradiction to (i) and hence one of these must be empty. That is

 $R = \phi$  or R = P.

(ii)  $\implies$  (i) Suppose P = Z U B, where Z and B are non-empty,  $\lambda_g^{\delta}$  -open sets. Then  $Z = P \setminus B$  is  $\lambda_g^{\delta}$  -closed. Then Z is a non-empty, proper subset that is  $\lambda_g^{\delta}$ -regular. This is a contradiction to (ii). Hence P is  $\lambda_g^{\delta}$ -connected.

(ii)  $\Longrightarrow$  (iii) Let  $\psi:(P,\,\tau) \longrightarrow (Q,\,\sigma)$  be a  $\lambda_g^\delta$  -continuous function and Q be a discrete space with at least two points. Then for each  $q \in Q$ ,  $\{q\}$  is both open and closed. Since  $\psi$  is  $\lambda_g^{\delta}$ -continuous,  $\psi^{\text{-}1}\{q\} \text{ is } \lambda_g^\delta \text{-open as well as } \lambda_g^\delta \text{-closed in } P \text{ and } P = U\{\psi^{\text{-}1}\{q\}|\ q$  $\in$  Q}. By hypothesis  $\psi^{-1}\{q\} = \phi$  or P for each  $q \in$  Q. If  $\psi^{-1}\{q\} = \phi$ , for all  $q \in Q$  then  $\psi$  will not be a function. If  $\psi^{-1}\{q\} = P$ , for a single point  $q \in Q$  then there cannot exist another point  $q_1 \in Q \ni$  $\psi^{-1}\{q_1\} = P$ . Hence  $\exists$  only one  $q \in Q \ni \psi^{-1}\{q\} = P$  and  $\psi^{-1}\{q_1\} = Q$  $\phi$ , where  $q_1 \in Q$  and  $q_1 \neq q$ . This proves that  $\psi$  is a constant

(iii)  $\Longrightarrow$  (ii) Let R be a  $\lambda_g^{\delta}$  -regular subset in P. We wish to prove that the only  $\lambda_g^\delta$  -regular subsets are  $\varphi$  and P. Suppose  $R \neq \varphi$  then we claim R = P. Let  $q_1, q_2 \in Q$ . Define  $\psi : P \longrightarrow Q$  by

$$\psi(p) = \begin{cases} q_1, & p \in U \\ q_2, & \text{otherwise} \end{cases}$$

Then for any open set S in Q,

Then for any open set S in Q, 
$$\psi^{-1}(V) = \begin{cases} R & \text{if } S \text{ contains } q_1 \text{ only} \\ P \setminus R & \text{if } S \text{ contains } q_2 \text{ only} \\ P & \text{if } S \text{ contains } q_1, q_2 \\ \phi & \text{otherwise.} \end{cases}$$

In all the cases,  $\psi^{-1}(S)$  is  $\lambda_{\sigma}^{\delta}$ -open in P. Also,  $\psi$  is a non-constant,  $\lambda_{\mathfrak{g}}^{\delta}$  -continuous function. This is a contradiction. Hence the only  $\lambda_{\sigma}^{\delta}$  -clopen subsets of P are  $\phi$  and P.

 $(ii) \Longrightarrow (iv)$  Let Z be a non-empty, proper subset of P. Suppose  $\lambda_g^{\delta} \operatorname{Fr}(Z) = \phi$ . Then Z is both  $\lambda_g^{\delta}$ -open and  $\lambda_g^{\delta}$ -closed which is a contradiction to (ii).

(iv)  $\Longrightarrow$  (ii) Suppose that Z is a non-empty, proper subset of P which is both  $\lambda_g^\delta$  -closed and  $-\lambda_g^\delta$  -open. This implies Z is  $\lambda_g^\delta$  -regular and hence by Theorem 4.3,  $\lambda_g^\delta \, Fr(Z) = \phi,$  which is a

**Theorem 4.6**: A surjective,  $\lambda_g^{\delta}$  -continuous image of a  $\lambda_g^{\delta}$  -connected space is connected.

**Proof**: Let  $\psi : (P, \tau) \to (Q, \sigma)$  be a surjective,  $\lambda_g^{\delta}$  -continuous function. Suppose Q is not connected. Then  $Q = Z \cup K$ , where Z and K are two disjoint, non-empty,  $\lambda_g^{\delta}$ -open subsets of Q. Since  $\psi$ is surjective &  $\lambda_g^\delta$  -continuous,  $P=\psi^{-1}(Z)$  U  $\psi^{-1}(K)$  where

 $\psi^{-1}(Z) \ \text{ and } \ \psi^{-1}(K) \ \text{ are disjoint, non-empty and } \ \lambda_g^\delta \text{ -open sets in}$   $(P,\,\tau). \ \text{But this is a contradiction to the fact that } P \text{ is } \ \lambda_g^\delta \text{ -connected.}$  Hence Q is connected.

**Theorem 4.7 :** If  $\psi: P \longrightarrow Q$  is a surjective, contra  $\lambda_g^\delta$ -continuous function and P is  $\lambda_g^\delta$ -connected then Q is connected.

**Proof :** Let S be a clopen subset of Q. Since  $\psi$  is contra  $\lambda_g^{\delta}$ -continuous,  $\psi^{-1}(S)$  is  $\lambda_g^{\delta}$ -regular. As P is  $\lambda_g^{\delta}$ -connected,  $\psi^{-1}(S) = \varphi$  or P. Since  $\psi$  is surjective,  $S = \varphi$  or Q. Hence Q is connected.

**Theorem 4.8 :** Let  $\psi:(P,\ \tau)\longrightarrow(Q,\ \sigma)$  be a surjective,  $\lambda_g^\delta$  -irresolute function. If P is  $\lambda_g^\delta$  -connected then Q is  $\lambda_g^\delta$  -connected.

**Proof**: Let S be a  $\lambda_g^{\delta}$ -regular subset of Q. Since  $\psi$  is  $\lambda_g^{\delta}$ -irresolute,  $\psi^{-1}(S)$  is  $\lambda_g^{\delta}$ -regular in P. As P is  $\lambda_g^{\delta}$ -connected,  $\psi^{-1}(S) = \phi$  or P. Since  $\psi$  is surjective,  $S = \phi$  or Q. Hence Q is  $\lambda_g^{\delta}$ -connected.

**Theorem 4.9 :** Let  $\psi:P\to Q$  be a  $\lambda_g^\delta$ -open,  $\lambda_g^\delta$ -closed (resp.  $\delta$ -open,  $\delta$ -closed) injection. If Q is  $\lambda_g^\delta$ -connected then P is also  $\lambda_g^\delta$ -connected.

**Proof :** Let Z be a  $\lambda_g^\delta$ -regular set in P. Since  $\psi$  is  $\lambda_g^\delta$ -open and  $\lambda_g^\delta$ -closed,  $\psi(Z)$  is  $\lambda_g^\delta$ -regular in Q. Since Q is  $\lambda_g^\delta$ -connected,  $\psi(Z) = \varphi$  or Q. Since  $\psi$  is an injection,  $Z = \varphi$  or P. Hence P is  $\lambda_g^\delta$ -connected.

**Theorem 4.10 :** If  $\psi:P \longrightarrow Q$  is a totally  $\lambda_g^\delta$ -continuous function from a  $\lambda_g^\delta$ -connected space P to Q then Q has the indiscrete topology.

**Proof :** Let S be open in Q. Since  $\psi$  is a totally  $\lambda_g^\delta$ -continuous function,  $\psi^{\text{-l}}(S)$  is  $\lambda_g^\delta$ -regular in P. Since P is  $\lambda_g^\delta$ -connected,  $\psi^{\text{-l}}(S) = \phi$  or P. Since  $\psi$  is an injection,  $S = \phi$  or Q. Hence Q has the indiscrete topology.

**Theorem 4.11:** If  $\psi:P\to Q$  is a strongly  $\lambda_g^\delta$ -continuous bijective function and Q is a topological space with atleast two points then P is not  $\lambda_g^\delta$ -connected.

**Proof :** Let  $q \in Q$ . Then  $\psi^{\text{-}1}(\{q\})$  is a non-empty proper subset of P which is  $\lambda_g^{\delta}$ -regular, as  $\psi$  is strongly  $\lambda_g^{\delta}$ -continuous. Therefore P is not  $\lambda_g^{\delta}$ -connected.

**Theorem 4.12 :** If a topological space  $(P,\tau)$  is almost weakly Hausdorff and connected then it is  $\lambda_g^\delta$ -connected.

**Proof :** Suppose P is not  $\lambda_g^\delta$ -connected. Then  $P=Z\cup B$ , where Z and B are non-empty, disjoint,  $\lambda_g^\delta$ -open sets of P. Since P is almost weakly Hausdorff, Z and B are open in P[9]. This contradicts the connectedness of P. Hence P is  $\lambda_g^\delta$ -connected.

**Theorem 4.13:** Every topological space which is both  $\lambda_g^{\delta} T_{\delta}$  and connected is  $\lambda_g^{\delta}$ -connected.

Proof: Obvious.

# 5. $\lambda_g^{\delta} G_i$ - Axioms (i = 1, 2)

**Definition 5.1 :** Let  $(P,\tau)$  be a topological space. It is said to be a  $\lambda_g^\delta$   $G_1$ -space if for any point  $p \in P$  and any connected subset M of P with  $p \notin M$ ,  $\exists \ \lambda_g^\delta$ -open sets R and  $S \ni p \in R$ ,  $M \subseteq S$ ,  $R \cap M = \phi$  and  $\{p\} \cap S = \phi$ .

**Example 5.2 :** Let  $P = \{x, y, z, d\}$  and  $\tau = \{P, \phi, \{x\}\}$ . Then  $(P, \tau)$  is a  $\lambda_g^\delta G_1$ -space as for  $z \in M$  and a connected set  $M = \{x, y\}$  with  $z \notin \{x, y\}$ ,  $\exists \ \lambda_g^\delta$ -open sets  $R = \{z\}$  and  $S = \{x, y\} \ni z \in \{z\}$ ,  $\{x, y\} \subseteq \{x, y\}$ ,  $\{z\} \cap \{x, y\} = \phi$ .

**Theorem 5.3 :** If every connected subset of P is  $\lambda_g^{\delta}$ -closed then for any two disjoint connected subsets M and N of P,  $\exists \ \lambda_g^{\delta}$ -open sets R and S  $\ni$  M  $\subseteq$  R, N  $\subseteq$  S, R  $\cap$  N =  $\phi$  and M  $\cap$  S =  $\phi$ .

**Proof :** Let M and N be any two disjoint connected subsets of P. Then by hypothesis, M and N are  $\lambda_g^\delta$ -closed. This implies P\M and P\N are  $\lambda_g^\delta$ -open sets containing N and M respectively, as M and N are disjoint. Now let  $R = P\N$  and  $S = P\M$ . Then  $N \cap R = S \cap M = \phi$ .

**Theorem 5.4 :** If for any two disjoint connected subsets M and N of P,  $\exists \ \lambda_g^{\delta}$  -open sets R and S  $\ni$  M  $\subseteq$  R, N  $\subseteq$  S, R  $\cap$  N  $= \phi$  and S  $\cap$  M  $= \phi$  then P is  $\lambda_g^{\delta}$  G<sub>1</sub>.

**Definition 5.5**: Let  $(P, \tau)$  be a topological space and  $(Q, \sigma)$  be its subspace. Then a subset Z of Q is  $\lambda_g^{\delta}$ -open in Q if Z can be written as  $Z = Q \cap K$  where K is  $\lambda_g^{\delta}$ -open in P.

**Theorem 5.6 :** Every  $\delta$ -open subspace Q of a  $\lambda_g^\delta \, G_1$ -space P is  $\lambda_{_g}^\delta \, G_1.$ 

**Proof :** Let Z be a connected subset in Q. Then Z is connected in P as well. Let  $q \in Q \subseteq P \ni q \notin Z$ . Then by hypothesis,  $\exists \ \lambda_g^{\delta}$ -open sets R and  $S \ni q \in R$ ,  $Z \subseteq S$ ,  $R \cap Z = \phi$  and  $\{q\} \cap S = \phi$ . By the definition of subspace topology,  $Q \cap R$  and  $Q \cap S$  are  $\lambda_g^{\delta}$ -open sets in  $Q \ni q \in Q \cap R$ ,  $Z \subseteq Q \cap S$  and  $(Q \cap R) \cap Z = \{q\} \cap (Q \cap S) = \phi$ . Hence Q is a  $\lambda_g^{\delta}$   $G_1$ -space.

**Theorem 5.7 :** A bijective, continuous and  $\lambda_g^{\delta}$  -irresolute image of a  $\lambda_g^{\delta}$  G<sub>1</sub>-space is a  $\lambda_g^{\delta}$  G<sub>1</sub>-space.

**Proof :** Let  $\psi: P \longrightarrow Q$  be a continuous function and M be a connected subset in  $P \ni p \notin M$ . then  $\psi(M)$  is connected in Q. Since  $\psi$  is one to one and onto,  $\psi(p) \notin \psi(M)$ . Now since Q is  $\lambda_g^\delta G_1$ ,  $\exists \ \lambda_g^\delta$ -open sets R and S in  $Q \ni \psi(p) \in R$ ,  $\psi(M) \subseteq S$  and R  $\cap \psi(M) = \{\psi(p)\} \cap S = \phi$ . Since  $\psi$  is  $\lambda_g^\delta$ -irresolute,  $\psi^{-1}(R)$  and  $\psi^{-1}(S)$  are  $\lambda_g^\delta$ -open sets in P with  $p \in \psi^{-1}(R)$ ,  $M \subseteq \psi^{-1}(S)$  and  $\psi^{-1}(R) \cap M = \{p\} \cap \psi^{-1}(S) = \phi$ . Hence P is a  $\lambda_g^\delta G_1$ -space.

**Definition 5.8 :** A topological space  $(P, \tau)$  is called  $\lambda_g^{\delta}$   $\mathbf{G}_2$ -space if for every connected set F and a point  $p \notin F$ ,  $\exists \lambda_g^{\delta}$ -open sets R and  $S \ni p \in R$ ,  $F \subseteq S$  and  $R \cap S = \phi$ .

**Example 5.9 :** Let P and  $\square$  be defined as in Example 5.2. Then  $(P, \square)$  is a  $\lambda_g^\delta G_2$ -space as for  $z \in F$  and a connected set  $F = \{x, y\}$  with  $z \notin \{x, y\}$ ,  $\exists \ \lambda_g^\delta$ -open sets  $R = \{z\}$  and  $S = \{x, y\} \ni z \in \{z\}$ ,  $\{x, y\} \subseteq \{x, y\}$ ,  $\{z\} \cap \{x, y\} = \emptyset$ .

**Theorem 5.10 :** Every  $\lambda_g^{\delta}$  G<sub>2</sub>-space is a  $\lambda_g^{\delta}$  T<sub>2</sub>-space.

**Proof :** Let  $(P, \Box)$  be a  $\lambda_g^\delta G_2$ -space and  $p \neq q \in P$ . Then  $p \notin \{q\}$ , which is a connected set. By hypothesis,  $\exists \ \lambda_g^\delta$ -open sets R and  $S \ni p \in R$ ,  $\{q\} \subseteq S$  and  $R \cap S = \phi$ . Therefore  $\exists \ \lambda_g^\delta$ -open sets R and  $S \ni p \in R$ ,  $q \in S$ . Hence  $(P, \Box)$  is a  $\lambda_g^\delta T_2$ -space.

**Theorem 5.11 :** A  $\square$ -open subspace of a  $\lambda_g^{\delta}$   $G_2$ -space is  $\lambda_g^{\delta}$   $G_2$ . **Proof :** Similar to Theorem 5.6.

**Theorem 5.12 :** If a topological space  $(P, \Box)$  is  $\lambda_g^\delta G_2$  then for any point  $p \in P$  and any connected subset M not containing p,  $\lambda_g^\delta \operatorname{cl}(R) \cap M = \emptyset$ , where R is a  $\lambda_g^\delta$ -open neighborhood of p.

 $\begin{array}{l} \textbf{Proof:} \ \text{Let} \ M \ \text{be a connected subset of} \ P \ni p \notin M. \ \text{Since} \ P \ \text{is} \ a \\ \lambda_g^\delta \ G_2\text{-space,} \ \exists \ \ \text{disjoint,} \ \lambda_g^\delta \ \text{-open sets} \ R \ \text{and} \ S \ni p \in R, \ M \subseteq S. \\ \text{This implies} \ R \subseteq P \backslash S \ \text{and hence} \ \lambda_g^\delta \ \text{cl}(R) \subseteq \lambda_g^\delta \ \text{cl}(P \backslash S) = P \backslash S, \ \text{as} \\ P \backslash S \ \text{is} \ \lambda_g^\delta \ \text{-closed.} \ \text{Further} \ \lambda_g^\delta \ \text{cl}(R) \cap M = \phi, \ \text{as} \ M \subseteq S. \\ \end{array}$ 

### 6. Conclusion

Some conditions for preserving  $\lambda_g^\delta$ -compactness are derived. Results relating  $\lambda_g^\delta$ -compactness with compactness are obtained.  $\lambda_g^\delta$ -connectedness is related to connectedness through almost weakly Hausdorff space and  $\lambda_g^\delta T_\square$ -space, even though  $\lambda_g^\delta$ -open sets and open sets are independent of each other. It is interesting to note that any surjective,  $\lambda_g^\delta$ -irresolute image of a  $\lambda_g^\delta$ -connected space is  $\lambda_g^\delta$ -connected. The nature of  $\lambda_g^\delta G_1$ -space is preserved by a bijective, continuous and  $\lambda_g^\delta$ -irresolute function.

#### References

- Georgiou, D. N., Jafari, S. and Noiri, T., Properties of (Λ, δ)-closed sets in topological spaces, Bollettino dell'Unione Matematica Italiana, Serie 8, 7-B(2004), 745-756.
- [2] Sivakamasundari, K., Some gG-axioms, Research Highlights, 21(2011), 227-231.
- [3] Stone, M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [4] Vaishnavy, S. and Sivakamasundari, K., A New Generalization of δ-Closed Sets Using Two Different Operators, International Journal of Engineering Sciences and Research Technology, 5(9)(2016), 791-795.
- [5] Vaishnavy, S. and Sivakamasundari. K., Special properties and Continuity aspects on  $\lambda_g^{\delta}$ -closed sets, Global Journal of Pure and Applied Mathematics , 13(1)(2017), 56-61.
- [6] Vaishnavy, S. and Sivakamasundari, K., Separation Axioms on  $\lambda_g^\delta \text{ -Closed Sets, International Journal of Computer and Mathematical Sciences, 6(6)(2017), 6-12. }$
- [7] Vaishnavy, S. and Sivakamasundari, K., λ<sup>δ</sup><sub>g</sub> -Neighborhood in Topological Spaces, International Journal of Engineering Technology Science and Research, 4(6)(2017), 344-347.

- [8] Vaishnavy, S. and Sivakamasundari, K., Some Concepts related to  $\lambda_g^{\delta}$ -closed sets, Proceedings of National Conference on Mathematical Modelling NCMM 2017, 101-106.
- [9] Vaishnavy, S. and Sivakamasundari, K., Continuity aspects on closed sets, International Journal of Pure and Applied Mathematics (Accented).
- [10] Velicko, N. S., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 102-118.