

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.35) (2018) 239-243

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Preventing Stack Overflow Using Alternative Stack Approaches

Khairol Amin Mohd Salleh
 1
, Abdul Rahim Ahmad

2*
, Roslan Ismail

 3

College of Computer Science and Information Technology
Universiti Tenaga Nasional, Kajang, Selangor, Malaysia

*Corresponding author E-mail: abdrahim@uniten.edu.my

Abstract

Buffer overflow marks a phenomenon of a malicious technique employed by attackers, as reported in the NIST statistics. This paper
presents a method of implementing a dual stack approach using software to protect the data stack from experiencing the attack by using 3
types of architecture, ranging from parallel program, multi-threading to a simple sequential subroutine. The current research on dual
stack may require new hardware or a modified version of compiler which may complicate the implementation. These implementations
spark some major issues in code backward compatibility with some changes in the language semantics especially in handling the move-

ment of data to and from the dual stack. This paper discusses the implementation of Alternative Stack prototypes in 3 types of architec-
ture and observation on its behavior during the performance and security test. The test has been benchmarked against the programs that
are compiled with Microsoft Security Cookie. The Alternative Stack Architecture 3 prototype displayed a significant performance against
the benchmarked programs whilst maintaining the confidentiality, integrity and availability of the programs.

Keywords: Buffer overflow; stack overflow; alternative stack; software security

1. Introduction

Buffer overflow is predominantly one of the known software vul-
nerability that has impacted the computer system since 90s. Ac-
cording to the NVD (US National Vulnerability Database) statis-
tics provided by US National Institute of Standards and Technolo-
gy (NIST), in the year 2017, buffer overflow recorded 6.25% from
the total of 12,251 reported vulnerabilities as illustrated in Fig 1.

Figure 1: NIST statistics on Buffer Overflow

The total buffer overflow vulnerability marks the highest value for
the year 2017 with 783 vulnerabilities since 2010 and this shows
that this problem is still persisting. There are a number of creative

solutions that have been developed as defence against buffer over-
flow, especially in mitigating the buffer overflow attack that has
been targeting the software stack which is known as stack over-
flow. Most of the solutions that protect the stack involved the need
for new hardware and compiler changes which may introduce
complexity in the implementation stage. This research proposed a
software base approach that can be easily implemented and match
the current performance of the solution which could be offered

through the compiler implementation.

2. Related Works

It is interesting to note that the technique applied in defence
against stack overflow can be divided into three (3) categories;

buffer tagging, shadow stack and dual stack. These solutions have
evolved vigorously since late 1990s till today to mitigate the dif-
ferent attacking techniques adopted by malicious software.

2.1 Buffer Tagging

The buffer tagging technique indicates that the area between data
buffer and the stack address storage will be marked with special
characters such as carriage return, line feed, null,-1, as imple-

mented by Cowen [2] in Stackguard. Microsoft chooses a random
number method that will be assigned during loading time and
XOR it with the Return Address. The latest version of Stackguard
provides option for developers to choose which method will be
used for buffer tagging. The idea behind this technique is that each
time the function returns to its caller, it will ensure that no buffer
has been leaked by checking the existence of the special characters.
If the special characters are no longer available or have been

overwritten, this indicates that the stack overflow has taken place,
and the program will be flagged for termination [2][5][6][8].
The integrity check code for the special characters is added at the
prologue and epilogue of each function during compiling. Pirom-
sopa [8] marked every word area with “secure bit” if the address
falls into the same segment through a hardware implementation,
leaving the external address unmarked. This is done on the pretext
that every external address has a malicious intention. Once the
integrity check has detected missing secure bit, the program will

be signalled for termination.
One of the challenges for this technique is that the attacker man-
aged to imitate (replicate) the special characters or guessed the

240 International Journal of Engineering & Technology

random number in order to bypass the integrity check at the epi-
logue[4]. The new Stackguard [2] and Microsoft Security Cookie
[15] could overcome this weakness by XOR’ing the random num-
ber with the return address which happens only during runtime in
the prologue. As for the securebit implementation, marking every
word will eventually slow down the application performance.

2.2 Shadow Stack

The Shadow Stack technique requires storing of return address in
a safe place during the start of every function, and the backup
copy or return address will be compared [2][5][6] or overwritten
before returning to the caller. The storage area can be a protected
memory area within or outside the program memory segment
[11][14], or placing a special hardware [1][3][9][13] to store the
backup copy of the return address. T. Chiueh [13] uses the Linux
mprotect system call to secure the backup copy of the return ad-

dress.
The additional code for the return address integrity check will be
added during the compiling of the program in the prologue and
epilogue of the function which reflects the same approach as in the
buffer tagging method. There are some solutions in adopting dy-
namic insertion of additional prologue and epilogue codes during
execution which is advantageous for program that has no source
code. Saravanan Sinnadurai [10] adopted the binary rewriting

technique which performs insertion of integrity check code during
execution by using a binary rewriting framework software known
as DynamoRIO. This approach encountered some performance
issue since each instruction call needs to go through the binary
rewriting framework. The binary framework will then call the user
defined function to insert the prologue and epilogue in runtime
mode. INTEL [6] proposed the integrity test checking codes
should be embedded in the processor itself through its CET (Con-

trol-Flow Enforcement Technology) proposal.
Before giving control to the caller routine, the return address will
be compared and if the address does not match, the program will
be flagged for termination. Vendicator [14] avoided the integrity
check and used the backup return address to overwrite the original
stack address location to enhance performance.
One of the common challenges in this technique is to measure
how fast can the prologue and epilogue manage the backup return
address and where to store the return address in a safe location.

The issue of Frequent termination of program could also contrib-
ute to Denial of service attack as in the buffer tagging technique.

2.3 Dual Stack

The 3rd classification of defence will be addressing the problem
pertaining to the legendary stack anatomy by splitting the stack
into Data and Code Stacks [7][12], known as dual stack technique.
As the name implies, the Data Stack will be storing the data con-

tent and the Code Stack will be storing the Return Address, and in
some implementations the Stack Frame Pointer (SFP) will also be
saved [12]. Since there are two stacks that need to be handled, a
new Code Stack Pointer (CSP) will be introduced to manage the
movement of the CS, whist the current Stack Pointer will be point-
ing to the original Stack.
The solution using the dual stack requires compiler modification
and in some implementation requires new design of hardware to

host the new stack. Kugler [12] has chosen to use the current stack
to hold the CS, but Jun Xu used the current stack as DS and pro-
posed a new stack to manage the new CS. This technique requires
a new mechanism of saving and retrieving information from the
new stack which involve changes in some instruction semantics
especially in the calling and returning instructions.
The main challenges of this technique is the backward compatibil-
ity with existing application that contain inline assembly [12]

embed in the code. The growth of the stack should be carefully
calculated if both the stack resided in the same area. Assembly
language programmer need to pay attention to the movement of

the information onto the second stack especially in using the push
and pop instructions that may damage the new stack area.
The approach that we are choosing is similar as in the dual stack
implementation, except that the DS will be stored in the Alterna-
tive Stack that uses the Windows File Mapping to host the data.
The Alternative Stack is a piece of software that is loaded in the
system and provides the DS service to the caller program through
specific event. This approach offers backward compatibility with

the older window version and it is easy to be implemented. The
biggest challenge of this approach is during the movement of large
amount of string data into the Alternative which is costly the ap-
plication performance.

3. The Alternative Stack Architecture

The current dual-stack approach only stores the stack information
and exposes the stack data which is vulnerable to attack. The al-
ternative stack is a piece of software that stores the stack data into
a secured storage. The Alternative Stack software is divided into 3
main components:
1. Communication Module
2. Data Module
3. Loader Module

The Communication Module is responsible for delivering the data
to and from the Alternative Stack whenever the event is triggered
by the calling program. Once the event is triggered, the Communi-
cation Module will fetch the data packet which consists of the
Field Identification or FieldID, command code and its data content
and are passed to the Data Module. Based on the command, the
Data Module will perform saving or writing to the Alternative
Stack. During the saving operation the data will be XOR’ed with a

random number assigned during the loading of Alternative Stack.
The Alternative Stack comprise of a link-list of pre-allocation
variable field area that is created by the Loader Module during the
loading of the Alternative Stack program. The Alternative Stack
linked-list variable slot is created using windows file mapping
option. Loading of the Alternative Stack depends on which archi-
tecture that is running.

Figure 2: Alternative Stack (Architecture 1 & 2)

For the process type architecture, the Alternative Stack is loaded
as a separate process, and in the multi-threaded architecture, it is
loaded by the caller application as a thread routine as depicted in
Figure 2. We have named the Architecture as ASA1 and ASA2.

In the final architecture as illustrated in Figure 3, the Alternative
Stack (ASA3) is loaded as a normal subroutine in the caller appli-
cation.

International Journal of Engineering & Technology 241

Figure 3: Alternative Stack (Architecture 3)

For the ASA1 and ASA2 the communication module waits and
listens to the event created by the caller program. During the re-

trieval of the data content, upon requesting for the data content,
the caller program also will be waiting for a data arrival event. In
the ASA3, since Alternative Stack will be called as part of the
program routine, the event synchronization is not needed.

4. Testing the Alternative Stack

The main objective of this solution is to ensure that during any
attempt of buffer overflow attack, the victimized program should
remain “available” and running. The Alternative Stack will be
compared with the program compiled using Microsoft Visual Stu-
dio for Developer (MVSD) with the security cookie feature turned
on. The code that is stuffed with security cookie will be used as
the benchmark throughout the test for all the Alternative Stack
architecture. It will be a plus point for this Alternative Stack to

perform at par with the program containing security cookie and
maintain all the three security parameters i.e. CIA will be ob-
served.
The type of testing entails the following:
1. String function
2. Mix functions
3. Buffer overflow attack (during executing string function)
In the section (4.1, 4.2 and 4.3) we will be discussing on the sum-

mary of the 3 test scenarios in relation to the Alternative Stack
Architecture 3 (ASA3) and in section e (discussion) we will con-
clude the test result of all the 3 architectures. The ASA3 will be
benchmark with a normal program without any security features
embedded into it and a program with buffer tagging protecting
features switch on. As for the buffer tagging protection, we have
selected the Microsoft Security Cookie since we are using the
Microsoft Visual C++ Compiler to build all the related programs.

4.1 String Function Testing (Test 1)

The string function test on the ASA3, observed the security pa-
rameters and the performance of Alternative Stack in a normal
string movement to and from the Alternative Stack module. Ob-
servation is made starting from 20 read and write of 20 bytes
string until 500 read and write operations. The program with secu-
rity cookie transfer on an average of 0.000018 seconds per single
read and write string and linear regression line of y = 0.0003x +

0.0003 as illustrated in Figure 3. Starting from 0.001 seconds and
ending at 0.009 seconds, the average read and write for the Secu-
rity Cookie in this test is 0.000018 seconds per single read and
write.

The Alternative Stack as depicted in Figure 4 started at 0.000 sec-
onds (from data range of 20 to 60 write and read operations) and
linear regression line of y = 0.002x + 0.0007 and ends up at 0.005
seconds. The average response time is 0.00001 second per single
read and write string operations.

Figure 4: Test 1 (String test) – Normal, Security Cookie and Alternative

Stack

4.2 Mix Functions (Test 2)

The purpose of this testing is to observe the program behaviour of
ASA3 and Security Cookie in a mix functions environment. The
mix functions testing is to ensure that the solution should leverage
on the absence of string data which will avoid the addition of extra
code in the prologue and epilogue of a specific function. The
ASA3 is expected to reflect performance at par with the Security
Cookie as well as the performance of Alternative Stack Architec-

ture 1 and 2. In the mix functions testing, application with secu-
rity cookie started at 0.153 seconds for the first 20 read and write
operations with the linear regression line of y = 0.1565x - 0.0008.
At 500 read and write operations, the Security Cookie clocked at
3.909 seconds as depicted in Figure 5

Figure 5: Test 2 (Mixed Functions)

As for the Alternative Stack Architecture 4, it started at 0.146

seconds with linear regression line of y = 0.157x - 0.0087 as illus-
trated in Figure 5. At the end of 500 read and write operations it
clocked at 3.848 seconds.

4.3 Buffer Overflow Attack (Test 3)

The purpose of this testing is to observe the program behaviour
during buffer overflow that is triggered whilst transferring of data
string to and from the stack. This 3rd test will illustrate the ability

of each program to maintain the 3 parameters of the information
security, i.e. Confidentiality, Integrity and Availability. This test
should be able to differentiate the difference between combating
buffer overflow in a live situation and perform process termination,
whilst avoiding buffer overflow from happening.

242 International Journal of Engineering & Technology

Figure 6: Test 3 (Buffer Overflow)

In this test, when buffer overflow is triggered, the application with
Security Cookie terminated the application at average timing of
0.3273 seconds, which is higher than end timing of the same ap-

plication without buffer overflow at 0.009 seconds. For the ASA3,
during buffer overflow, the application started at 0.004 seconds
for 20 read and write operations with linear regression line y =
0.0002x + 0.0012 as illustrated in Figure 5. The execution ended
at 0.007 seconds for 500 read and write operations which is still
lower than the Security Cookies that are terminating the applica-
tion during buffer overflow.

5. Results and Discussion

In test 1 scenario, Security Cookie started at 0.001 seconds (20
read and write) and managed to complete the test at 0.009 seconds
for 500 read and write of data string. On average it took 0.000018
seconds for a single Read and Write of stack data. In this test,
ASA3 managed to clock a better performance as compared with

the benchmark as illustrated in Figure 7. With the absence of Inter
Process Communication, the Alternative Stack processor managed
to challenge the performance of Security Cookie. By the end of
the 500 read and write strings, the ASA3 completed faster than
Security Cookie and a normal program with Security Cookie by
0.004 seconds

Figure 7: Test 1 (String function) - Response time trends

The performance of ASA1 and ASA2 is about the same. As for
the mix functions scenario which is reflected in test 2, the Security
Cookie started at 0.153 seconds which is slower than the ASA3 by
0.007 seconds (0.146 seconds). The ASA3 finishes at 3.848 sec-
onds which is slightly faster than Security Cookie by 0.061 sec-
onds (3.909 seconds). This result can be depicted in Figure 8 be-
low. Overall result for the mix functions test shows that all appli-

cations perform at almost the same speed. This is also proof that
all the Alternative Stack Architectures have no impact on per-
formance in a mix function environment. The ASA3 recorded the
fastest performance against all the applications.

Figure 8: Test 2 (Mix functions) - Response time trends

It is observable that storing of data in the pre-allocated Windows
file mapping contributes to the better performance of the ASA3 as
compared with storing data in a normal program stack. Both the
test 1 and test 2 results are better on the performance against Secu-
rity Cookie and the other 2 Alternative Stack Architectures. As for
the buffer overflow attack in test 3, the Security Cookie termi-
nated the application at an average speed of 0.372 seconds. The

ASA3 ended the application at 0.007 seconds, followed by Archi-
tecture 1 at 0.185 seconds and Architecture 2 at 0.2 seconds. The
result can be depicted in Figure 10 below. During buffer overflow
attack, the performance of Architecture 3 still recorded as the
fastest solution among the other three Architectures.

Figure 9: Test 3 (Buffer overflow) - Response time trends

The test results prove that all the Alternative Stack Architectures

comply with the three (3) security parameters, especially during
buffer overflow attack on the buffer stack as illustrated in the Se-
curity Parameter Table shown in Table 1. The significant differ-
ence between the four architectures are in the performance. In this
context, the ASA3 leads the chart as shown in test 1, followed by
the Security Cookie and the other 3 Alternative Stack Architec-
tures during the normal application execution. The ASA3 again
leads the mix functions test results by a few seconds, but the tim-
ing is not significant as though all the applications perform at the

same speed as depicted in Table 2.

Table 1: Security Parameter Table

International Journal of Engineering & Technology 243

Table 2: Performance Test Summary

The ASA3 performs at a constant speed during all the tests indi-
cating that this architecture can be used as an alternative solution
to avoid buffer overflow from attacking the return address of a
program. The change of architecture from loading the Alternative

Stack processor in multi process (Architecture 1) or multi thread
solution (Architecture 2) to single thread solution created a drastic
impact on the performance of the application. The absence of
process synchronization boosted up the Alternative Stack perfor-
mance.
In the application that is compiled with security cookie, the trans-
fer of string was done via a pointer to the array of string. The Al-
ternative Stack used windows memory map to store the link list of
pre-allocated Alternative Stack storage, and it was observed that

this contributed to improve the reading and writing of string per-
formance. Storing the Data Stack into another memory segment in
Windows File Mapping reduced the possibility of data corruption.

6. Conclusion

With the use of Alternative Stack, passing of data through func-

tion parameter is no longer a requirement, since data that is needed
by a specific function can be stored and retrieved using the Alter-
native Stack. The function can now be defined as void function,
hence it could reduce the possibility of the programmers from
making unintentional mistakes. This type of function is suited for
Dynamic Link Library (DLL) implementation which can be ap-
plied for the late binding mechanism in creating the loosely cou-
pled reusable routine.

In conclusion, the ASA3 offers a new alternative method of stor-
ing data stack information as it could match the performance of
programs that are compiled with security cookie whilst avoiding
the buffer overflow attack on the stack and henceforth could meet
the overall objective of this research.

References

[1] Aurélien Francillon, Daniele Perito and Claude Castelluccia. De-

fending embedded systems against control flow attacks. In Pro-

ceedings of the first ACM workshop on Secure execution of un-

trusted code, 2009 (SecuCode '09) p 19-26.

[2] Crispin Cowan, Perry Wagle, Calton Pu,Steve Beattie, and Jona-

than Walpole. Buffer overflows: attacks and defenses for the vul-

nerability of the decade. DARPA Information Survivability Confer-

ence and Exposition (DISCEX '00)., 2000. Vol. 2. p.119 - 129.

[3] Eugen Leontie, Gedare Bloom, Olga Gelbart, Bhagirath Narahari

and Rahul Simha. A Compiler-Hardware Technique for Protecting

Against Buffer Overflow Attacks, 2009.

URL:https://www.seas.gwu.edu/~simha/research/HWStack.pdf,

07-12-2016.

[4] Gerardo Richarte. Four different tricks to bypass StackShield and

StackGuard protection, 2002. URL:

https://www.cs.purdue.edu/homes/xyzhang/fall07/Papers/ defeat-

stackguard.pdf, 26-09-2017.

[5] Hiroaki Etoh. GCC extension for protecting applications from

stacksmashing attacks. URL : https://www.researchgate.net/

publicaton/243483996_Gcc_extension_for_protecting_applications

_from_stack-smashing_attacks

[6] INTEL. Control-Flow Enforcement Technology Preview, 2016, Jun

2017. Rev 2.0. URL : https://software.intel.com/sites/default/

files/managed/4d/2a/control-flow-enforcement-technology-

preview.pdf, 22-08-2017.

[7] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel and Ravishankar K.

Iyer. Architecture Support for Defending Against Buffer Overflow

Attacks, 2002. URL : https://www.ideals.illinois.edu/bitstream/

handle/2142/74493/B53-CRHC_02_05.pdf?sequence=2,22-08-

2016.

[8] K. Piromsopa and R.J. Enbody. Secure Bit: Transparent, Hard-

ware Buffer-Overflow Protection. In IEEE Transactions on De-

pendable and Secure Computing, Vol 3(4), 2006. pp.365-376.

[9] Marc L. Corliss, E. Christopher Lewis and Amir Roth . Using

DISE to protect return addresses from attack. IN: ACM SIGARCH

Computer Architecture News - Special issue: Workshop on archi-

tectural support for security and anti-virus (WASSA) Homepage

archive, Vol 33(1), March, 2005.pp 65 – 72.

[10] Saravanan Sinnadurai, Qin Zhao and Weng-Fai Wong. Transparent

Runtime Shadow Stack: Protection against malicious return address

modifications, 2008;

[11] Thurston H.Y. Dang, Petros Maniatis and David Wagner. The Per-

formance Cost of Shadow Stacks and Stack Canaries. IN : ASIA

CCS '15 Proceedings of the 10th ACM Symposium on Information,

Computer and Communications Security, 2015. p- 555-566 .

[12] Tilo Muller and Christopher Kugler. SCADS: Separated Control-

and Data-Stack. IN: 10th International Conference on Security and

Privacy in Communication Networks September 24-26, 2014.

[13] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A Compile-Time Solution

to Buffer Overflow

[14] Attacks. In Proceedings of the 21st International Conference on

Distributed Computing

[15] Systems (ICDCS ’01), Mesa, AZ, April 2001. SUNY Stony Brook.

[16] Vendicator, "StackShield: A stack smashing technique protection

tool for Linux," Jan. 08, 2000.

[17] Yongdong Wu. Enhancing Security Check in Visual Studio C/C++

Compiler. In WRI World Congress on Software Engineering, 2009,

Volume: 4. (IEEE publication), p 109-113.

