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Abstract 
 
This paper presents a new assistive robot simulator for multi-objective optimization application. The main function of the simulator is to 
simulate the trajectory of the robot arm when it moves from initial to a goal position in optimized manner. A multi-objective evolutionary 

algorithm (MOEA) is utilized to generate the robot arm motion optimizing three different objective function; optimum time, distance, 
and high stability. The generated neuron will be selected from the Pareto optimal based on the required objectives function. The robot 
will intelligently choose the best neuron for a specific task. For example, to move a glass of water required higher stability compare to 
move an empty mineral water bottle. The simulator will be connected to the real robot to test the performance in real environment. The 
kinematics, mechatronics and the real robot specification are utilized in the simulator.  The performance of the simulator is presented in 
this paper. 
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1. Introduction 

A robot simulator is very important for a researcher to simulate 
path and trajectory of a real robot. It will show the expected out-
come before a robot can be developed physically. The will reduce 
the error and cost when building a full-scale robot. It will also 

speed up the development process. Normally, robot simulator 
development will be divided into two main section; the upper 
body and the lower limb. 
A dynamics simulator for Compliant Humanoid Robot (COMAN) 
had been proposed by [1]. In this research the main advantage is 
an efficient symbolic dynamics equation is generated with high 
degrees of freedom. The developed simulator has a user define 
actuator dynamics model, ground model and fall detection. An 

imitation type of simulator had been proposed by [2].  A NAO 
humanoid robot is used in this research. The simulator equipped 
with Microsoft Kinect will capture the motion of the instructor and 
mapped to NAO robot. The communication between the human 
and humanoid robot used Robot Operating System (ROS) frame-
work.  
In other work by [3], a joint trajectory optimized controller for a 
humanoid robot simulator had been proposed. The proposed simu-
lator is based on Open Dynamics Engine and GLScene graphics 

library which visualized the feedback. In this research, a realistic 
dynamics approach allows the testing without accessing the real 
hardware. iCub simulator had been design by [4], [5] to reduce the 
learning process for exploration and computation. The simulator 
consider the confidence function in order for the robot autono-
mously adapted the environment. 
Ogura had proposed an integration of robot motion environment 
and the developed dynamics simulator. The simulation specifica-

tion can be included to the robot motion. This research proposed a 

new method, where a new module can be added easily to the 
simulator. In the experiment the simulation embedded brain 
changes the motion planning of block moving problem is illustrat-
ed.  

A virtual model simulator had been proposed by [7] adapting 
Danevit-Hartenberg formulation. The robot dynamics can be visu-
alized, and the control algorithm can be embedded to the simula-
tor. The proposed simulator is integrated to a robot system and the 
produced good performance. Lening proposed a software frame-
work called BiRRTOpt which is divided into two main section; 
Guess and Optimization. The simulator shows good performance 
and have the ability to compute a collision free and optimized 

trajectory 
A virtual simulator for a Mitsubishi Movemaster RV-M1 Robot 
had been proposed by [9]. The developed simulator system focus-
es on education in the university. The main objective is to increase 
the student’s interactivity with the robot by using the Unity and 
the Oculus Rift headset (for gaming) to increase the visualization 
process. The system will allow the student to do off line pro-
gramming of the real robot 

A different type of simulator based on tendon driven system had 
been introduced by [10]. The developed simulator has the ability 
to realize the human motion naturally. The performance of the 
simulator is good but facing difficulties on the real hardware. An 
industrial type of robot simulator developed by [11] to simulate 
the production line environment and to test the feasibility of work 
process. The proposed simulator try to reduce the human error 
when working in a poor environment.  
Other type of robot simulator for robot research also had been 

proposed by [12] with internet control robot simulator, [13] with 
3D collision avoidance robot simulator, [14] with wireless robot 
simulator, [15] with trajectory optimization simulator and human-
oid robot soccer simulator by [16]. 
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In this paper, the generated neural controller for the robot arm 
motion optimizing three different objective functions: shortest 
time, shortest distance and optimum stability had been proposed. 
These criteria cover a wide range of robot motion required during 
the execution of task. The generated neural controllers are imple-
mented in the simulated platform to test and compare the perfor-
mance. The advantage of the proposed method is that a single 
neural controller is employed to generate the robot arm motion in 

a wide range of initial and goal locations. The robot simulator 
selects the neural controller based on the task required to perform.  

2. Kinematics Analysis 

In performing a task such as moving an object, pick and place the 
robot arm motion and energy utilization must be carefully selected 

to complete the task successfully. In the earlier stage of this re-
search, the simulator is developed in MATLAB environment and 
the 3-dimensional drawing had been design using Solidwork. The 
visualisation is much easier, and it allow the motion to be simu-
lated before the fabrication process. This is also to make sure the 
mechanism, mechanical and electronic parts are all in its best posi-
tion. In the next stage of the research, the 3D solid modelling will 
be embedded to the simulator for better visualization. MATLAB is 

used to interact with the real robot due to its flexibility and ability 
to interface with controller board via USB connector.  

2.1. Forward Kinematics and D-H Parameters 

The forward kinematics of the simulator can be determined via 
Denavit-Hartenberg (D-H) analysis  [17], [18]. By using this 
method, homogeneous transformation matrix is determined, which 
specifies the position and orientation of the robot with respect to 

the base as in Figure 1(a) and (b) [17, 18]. D-H parameters for the 
robot left hand for assigned frames are shown in Table 1.  
 

Table 1. D-H Parameter for the Robot Simulator 

 Joint, i αi ai di θi 

OA 90
0 

0 d1 θ1 

B 0 a1 0 θ2 

C 0 a2 0 θ3 

D 0 0 0 Gripper 

 
By substituting these parameters, the transformation matrices T1 

to T6 can be shown in equation (1). The end effector or gripper 
position can be easily determine with given join angle and it can 
be generated from the transformation matrix below [19].  
 

  
            

        

        

        

    

                                        (1) 

 

where;  

                          

                           

                   

                  
                  

                 
 

 
(a) 

 
(b) 

Fig. 1: (a) Kinematics Model of the Robot (b) Coordinate Frame of the 

Robot 
 
The orientation of the end effector is shown in the first three col-
umns whereas the last column represents the position of end effec-
tor.   

2.2. Inverse Kinematics Analysis 

Inverse kinematics analysis is very important in robot research. It 
is the vice versa of forward kinematics where the joint angle can 
be determined if the end effector position is known. The solution 
is more complex than direct solution since there is no unique ana-
lytic solution. Geometric approach (Figure 2) is utilized in the 
simulator and the inverse kinematics of the mobile robot is deter-
mined as in equations below [20], [21]. 
 

                             (2) 

 

                          (3) 

 

                          (4) 

 

 
Fig. 2: Inverse kinematics analysis of the robot simulator 

3. Simulator Design 

Figure 3 shows the 3D modelling of the robot arm developed us-
ing Solidwork software. The developed model will be embedded 
to the simulator in the next stage of the simulator development. 

 

 

 

 

 
 

 

Fig. 3: 3D Modelling of the robot arm 
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The complete simulator is shown in Figure 4 and it is developed in 
MATLAB environment. The simulator will be connected to the 
real robot via Graphical User Interface (GUI) as in Figure 5. The 
real robot and simulator can be controlled automatically and 
manually using the developed GUI. In the first stage, the gener-
ated neural controller using multi-objective optimization will be 
implemented in this simulator to verify the performance before it 
can be tested on the real robot. Robustness, capability to solve 

complicated calculation, data acquisition and manipulation are the 
characteristics MATLAB is utilized to develop the simulator. 
Other advantage of MATLAB is the capability to interact with 
laser range finder, camera and robot controller. The key specifica-
tions of the robot simulator are shown below: 
 
Arm length – 54 cm 
Total height – 134 cm 

Robot width – 52 cm 
Upper body weight – 14 kg 

 

 

 

 

 

 
Fig. 4: Robot Arm Simulator 

 

 

 

 

 

 

Fig. 5: Robot arm simulator GUI 

4. Robot Arm Motion via MOEA 

4.1. Artificial Neural Networks (ANN) 

A feed forward neural network (FFNN) with single hidden layer is 
utilized to generate the optimum path of the robot arm as in Figure 
6 [22]. FFNN is chosen due to its simplicity and robustness com-
pared to back propagation NN [23] 
A set of generated FFNN for the robot arm to move from starting 

to a goal position receives three inputs which is the differences 
between the robot hand start and goal positions in Cartesian coor-
dinate system. Three output units for each FFNN represent shoul-
der (θ1), upper arm (θ2) and lower arm angles (θ3). The weight 
connections between the neural controllers are optimized using 
genetic algorithm.  
 

 
Fig. 6: Feed forward neural network 

4.2. Genetic Algorithm (GA) 

In this simulator an extended multi-population genetic algorithm 
is utilized, where the subpopulations apply different evolutionary 
strategies [24]–[26]. The summary of GA parameters is shown in 

Table 2. 
 

Table 2: Summary of genetic algorithm parameter. 

Number of Subpopulations 3 

Number of Individuals 500, 500, 400 

Maximum Generations 80 

4.3. Fitness Function 

Three different objective functions had been considered in this 
work namely optimum time (OT), optimum distance (OD) and 
optimum energy (OE). These objective functions are considered 
based on a wide range of robot motion characteristics to execute 
every day task. 

The first fitness function is the shortest time for the robot hand 
simulator to move from its starting to the goal position. Thus the 
fitness function is to optimize the number of step for the robot to 
reach the final position. 
 
f1 step                                          (5) 

 
The second fitness function is shortest distance is as follows: 
 

f2 i – sd)                         (6) 
 
where, 

i - summation of robot hand distance  
sd  - shortest distance. 
 
If the robot hand simulator is required to move with high stability, 
a constant acceleration fitness function had been introduced. A 

gradually increasing velocity at the beginning of the motion and 
gradually decreasing motion toward the goal position had been 
considered. Therefore, the stability fitness function is as follows: 
 
f3 hand + (vhand_end * w) + (nvc * w)        (7) 
 
where, 
Σahand - summation of robot hand acceleration 

vhand_end - simulator velocity toward the goal position 
w - weight function 
nvc - number of velocity changes 

5. Results 

In order to test the performance of the robot simulator, the gener-

ated neural controller are tested with two different set of initial 
and goal position as tabulated in Table 3. In this experiment, the 
behaviour of generated neural controller will be compared and 
discussed. 
The Pareto front of the 80th generation simultaneously optimizing 
all three objective function for the left hand simulator is shown in 
Figure 7. The Pareto front has 12 neural controllers and the best 
neural controller had been chosen from the generated Pareto front, 

NC1. The chosen neural controller had been implemented in the 
simulated environment as in Figure 8. 
Utilizing the same neural controller (NC1), the robot simulator 
had been tested its performance by selecting two different goal 
position (P2) as in Table 3. The neural controller shows good per-
formance optimizing all three-objective function, shortest time, 
shortest distance and high stability. It can be observed from the 
motion the speed of the robot arm is constant and produce the 
optimum distance and time (Figure 9). The same generated neural 

controller is further tested in a different goal position in x-axis 
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direction. The goal position is shifted 10 cm from its original 
position (Figure 10) and the robot arm manage to execute the task 
successfully. 

 

Table 3 Simulation parameters 

Experimental Setup 
Start Position End Position 

xinit yinit zinit xg yg zg 

Neural 

Controller 1 

(NC1) 

Position 1 

(P1) 
22 2 -50 15 38 -36 

Position 2 

(P2) 
22 2 -50 5 38 -36 

 

 
Fig. 7: Selected neural controller 

 

 
Fig. 8: Fully Developed Robot Simulator 

 

 
Fig. 9: Robot arm motion for position 1 (P1), initial (20, 2,-50) and goal 

(15, 38,-36) 

 

 
Fig. 10: Robot arm motion for position 2 (P2), initial (20, 2,-50) and goal 

(5, 38,-36) 

The shoulder, upper arm and lower arm angle comparison is 
shown in Figure 11. At the initial stage of the motion, the robot 
simulator shows the same angle for each joint of P1 and P2. The 
slight change only occurs half of the trajectory due to different 
goal position. A similar trajectory shown in Figure 12, when the 
end effector move from its initial to the goal position in x, y and z-
axis.  
The velocity and acceleration comparison (Figure 13) show more 

significant analysis. A similar velocity profile is shown for both 
P1 and P2 but a different performance for acceleration comparison. 
The acceleration is increasing when the robot try to move from the 
bottom of the table and avoid the acceleration. Toward the end of 
the trajectory, the acceleration is not gradually decreased thus the 
fitness function need to be further improved. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 11: Comparison between P1 and P2 for (a) Shoulder angle (θ1) (b) 

Upper arm angle (θ2) (c) Lower Arm angle (θ3) 

 

 
(a) 

 

 
(b) 

 
 

 

 

 

NC1 
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(c) 

Fig. 12: Comparison between P1 and P2 for (a) x-axis (Rx) (b) y-axis (Ry) 

(c) z-axis (Rz) 

 

 
(a) 

 
(b) 

Fig. 13: (a) Velocity and (b) Acceleration profile comparison of the robot 

simulator end effector  

6. Conclusion 

In this paper a MATLAB GUI Robot arm simulator had been 
developed and tested. The performance of the simulator is tested 

by implementing the generated neural controller to the system and 
the results show optimized trajectory of the robot arm. Two differ-
ent initial and goal positions of the robot arm had been tested on 
the generated neural controller and the arm motion show good 
performance. The robot arm is successfully reach the goal position 
utilizing only one neural controller and simultaneously optimizing 
distance, speed and energy.  
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