

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.29) (2018) 670-673

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Study on the Operating Systems for Low End IOT Devices

Anusha R
1*

, B.Soundarya
2
, G.Priyanka

3
, V.Soniya

4

 1 Assistant Professor, St.Peters Engineering College,Hyderabad

*Corresponding Author E-mail : amanuknr@gmail.com

Abstract

The IOT interconnect billions of devices and they can be connected to internet. IOT run on high end devices which use traditional
operating systems like Linux and low end devices with less computational power, memory etc. The large scale deployment of the system
will need appropriate OS for the development, deployment and maintenance of the devices. In this paper we research on OS that could
run on low end devices for IOT.

Keywords: IOT operating systems, Low end devices, Contiki, RIOT, Free RTOS

1. Introduction

IOT emerged with the availability of cheap, energy efficienttiny
devices. Many protocols were developed for IOT network stack
which enabled these devices reachable from internet. The

heterogeneous devices used in IoT are of two types. The first
category consists of high end devices like smart phones,
Raspberry Pi, etc. The second category uses low end devices like
the Arduino, Zolertia Z1, OpenMote nodes. These highly
constrained low end devices are challenging for the OS designers.
Internet Engineering Task Force (IETF) classified these low end
devices into 3 based on their memory capacity.
Class 0 devices with the smallest resources (<<10 kB of RAM)
Class 1 devices have medium-level resources (∼10 kB of RAM)-

allows applications with advance features- E.g. routing and secure

communication protocol
Class 2 devices have more resources but constrained compared to
high end devices
The Class 0 device’s, resource constraints leads to using a proper
OS unsuitable. Thus, the software running on them are hardware-
specific. Class 2 devices are less specialized The software can
transform these devices into routers, servers or host with standard
network stack and reprogrammable applications running on the

stack. Thus new models emerge on these portable hardware
independent software and applications running on class 1 IOT
devices and above. Companies like Google, Huawei, ARM have
designed OS specifically for these IOT devices. Application
programming interfaces (APIs) will support the wide range of IoT
use cases, to facilitate large-scale software development,
deployment, and maintenance which can be provide by the OS. In
this paper we will focus on OS for class 1 and class 2.

The traditional OS like Linux can’t run on low end IOT devices
because of resource constraint. Thus IOT faces lack of
interoperability with many solutions. Thus only with the
emergence of OS with consistent API and SDK across IOT
platform will they be able to use their potential. The
interoperability of IOT devices with internet means compatibility

with network IP protocols, compatibility with programming
languages, tools used in internet

2. Requirement For An IOT OS

Here we give an overview on the requirement of low end IOT

device OS

2.1. Technical Properties

1. Small memory: The IOT devices are resource constrained
specially in terms of memory. These devices can provide only
Kilobytes of memory. Thus the OS for IOT devices must fit into
these memory constraints. It must provide the IOT application
designers a set of optimized library and efficient data structures.
Balance must be found between programming guidelines, coding

conventions and configurability to fit wide range of use cases.
2. Heterogeneous Hardware support: IOY devices work with 8
bit, 16 bit 32 bit microcontroller families. The Heterogeneity of
devices occur as many types of devices work together for a
particular task. Thus the OS for IOT devices must support this
Heterogeneity of hardware and communication technologies.
3. Network connectivity: The main feature of IoT is
interconnectivity. The devices in Iot are interconnected among

themselves and to internet. Thus they are equipped with network
interfaces. Communication technologies are used to address low
power radio technologies, and wired technologies. Thus the IoT
OS must support this combination of multiple link technology and
network stacks based on IP.
4. Energy efficiency: Most of the IoT devices run on batteries or
similar energy resources. The IoT hardware has features to run in
an energy efficient manner. Hence unless the IoT software utilizes

these features energy efficiency can’t be achieved. Thus the IoT
OS must provide energy saving options and use these functions as
much as possible
5. Real Time Capabilities:Precise timing and timely execution is
must for IoT devices. The IoT OS must be a real time OS which
can fulfill timely execution and operates with a deterministic run
time.

http://www.sciencepubco.com/index.php/IJET

671 International Journal of Engineering & Technology

6. Security: The IoT device are connected to internet and are must
meet security and privacy standards. IoT security challenges
include data integrity, authentication, and access control in various
parts of the IoT architecture. Thus, the OS for the IoT must
provide the necessary mechanisms and retain the flexibility and
usability

2.2. Nontechnical Properties

1. Open standards: An important feature of OS is to provide
portability across architectures without any effort. Standard APIs
allow software portability among OS. At the network level, the
open-access specification, by the IETF is preferred. These
standards improve portability and interoperability.
2. Certification: The critical system developed in
electrical/electronic safety related systems requires real-time
capabilities, robustness, or determinism. Thus it is unavoidable to

get certified through independent institutions like IEC 61508
standard. The entire software running on IoT system must be
certified when used for safety critical systems.
3. Documentation: Any software requires complete and easily
understandable documentation. The documentation for embedded
systems must be intense and easily understood as it they are
difficult to understand in the first sight. The complete and
understandable documentation simplifies the use of OS and

application design.
4. Licence and Maturity of code: There are 3 types of licences-
non free which is given as binary code or they will charge to get
the source code. The second type is permissive open source which
is highly accepted in industry due to their high degree of freedom.
The third type which is open source or copyleft licenses offers
higher code quality and secure code due to extensive contributors
and reviewers. The maturity of the OS can be measured if the OS

is widely deployed in applications after thorough testing.
5. OS provider: The OS code may be given by the OS developer
or by a third party who provides commercial support. The open
source OS will be distributed by the developer themselves which
will provide support through online forums. The way of
distribution and supportof OS is dependent on its licence.

2.3. Key Design Choices

The applicability of Os for IoT depends on technical and

organizational factors. Here we will review the technical and non
technical aspects of OS design.
1. Architecture and modularity: When any OS is designed the
kernel model is first to be thought of. The exokernel approach
focus on avoiding resource conflict and checking access level.
Microkernel approach provides more functionality in the kernel
with less memory and more flexibility. The monolithic approach,
the components of the system are developed together which leads

to more efficient and simpler design.
2. Scheduling model: There are 2 types of scheduler. The pre-
emptive scheduler which can interrupt the current task and give
control to another after a particular time limit. The non pre-
emptive or cooperative model doesn’t allow the interruption of
any running task. The pre-emptive scheduler needs a timer to be
active at any given time which prevents the IoT device to enter
into deepest power save model

3. Memory Allocation: As memory is a scarce resource in IoT
devices, sophisticated methods to handle them is required. The 2
methods af memory allocation are static method and dynamic
method. Static methods don’t provide flexibility during runtime.
To use dynamic memory allocation for applications with real-time
requirements, the OS has to provide special implementations for
deterministic malloc() and must find solutions to deal with out-of
–memory situations. It leads to a more complex system and may

conflict with real-time requirements.
4. Network buffer management: The central component of IoT
OS is the network stack which allows memory sharing among the

layers. The memory handling may be achieved by copying the
memory which is expensive or by passing pointers between layers
which is not flexible and convenient. Thus a central memory
manager must be used to resolve the memory for packet handling
either by allocating them to each level or by passing reference
between layers.
5. Programming model: This defines how programmer can
model the program. There are 2 ways by which we can get it done.

In event driven method every task must be triggered by an
external event which is achieved by an event loop. In
multithreaded model the developer can run each task in its own
thread and communicate using IPC API. The event driven systems
are memory efficient and multithreading makes application design
easier.
6. Programming Languages and debugging tools: The
programming languages used can be either standard programming

languages like C,C++ or OS specific languages. The use of
standard programming languages will enhance portability and can
use well known development tools. They also enable the use of
standard debugging tools. The OS specific languages improve
system performance and safety.
7. Driver model and hardware abstraction layer: IoT systems
must interact with the environment passively through sensors and
actively through actuators. Many peripheral devices are also

connected to them. Thus a flexible and convenient driver interface
is important for IoT OS. This can abstract the underlying hardware
from CPU, memory etc. This can improve the system design even
though it creates the runtime over head.
8. Testing: The distributed nature and constraints of the hardware
makes thorough testing a challenging, but crucial task. Hardware
related testing is done using hardware emulation tools or networks
emulators like MSPSim, Emul8 etc

3. Categories Of OS:

1. Event driven OS: This is the most promising approach for IOT
OS. This model all the events are triggered by external interrupts.
This approach is efficient in memory utilization and low
complexity. IT poses some substantial constraint for programmer
as all programs can’t be represented in finite state machine.

2. Multithreading: This is a traditional approach for most of the
OS used in high end devices. In this approach each thread run its
own work and manages its own stack. It produces some memory
overhead due to stack over provisioning and context switching.
3. Pure RTOS: This provides more real time features for
industrial and commercial context. The strict constraints of this
model makes it inflexible and difficult to port to other hardware.

4. Promising Iot OS

In this section we will discuss about some of the promising IoT
OS. Here we will discuss about open source, closed source OS.
Most of the OS is written in C language while some hardware
specific part may be implemented in Assembly level languages.

4.1. Open Source OS

1. Contiki[2][3]: Contiki was developed by Adam Dunkels in
2002 and is the most widely used OS for constrained nodes.
Initially it was used for memory constrained 8 bit MCUs used in
WSN. Now it’s used for 32 bit ARM processors. It has a
monolithic kernel with a core system and set of process acting
together as a single system. It supports event driven, co-operative
scheduling with light weight pseudo threading. It also supports

various network stacks like uIP stack which supports IPv6,
6LoWPAN, RPL, and CoAP and Rime Stack which supports
distributed programming abstractions. It also provides features of
a shell, a file system, a database management system, runtime

672 International Journal of Engineering & Technology

dynamic linking, cryptography libraries, and a fine grained power
tracing tool. The testing facilities include unit testing, regression

testing, and full system integration testing. Its code can be
automatically tested using TravisCI.

Table I: Overview of OS for IoT

Name Architecture Scheduling
Programming

Model

Targeted

Device

Class

Supported

MCU

Families

Programming

Languages
Licence

Network

Stack

Contiki monolithic Cooperative Event driven Class 0+1 AVR, ARM 7,

ARM cortex-

M

C BCD uIP, RIME

RIOT Microkernel Preemptive,

tickless

Multithreading Class 1+2 AVR, ARM 7,

ARM cortex-

M, x86

C, C++ LGPLv2 Open

WSN, ccn-

lite

Free

RTOS

Microkernel Preemptive Multithreading Class 1+2 AVR, ARM,

x86, Renasas

C Modified

GPL

none

2. RIOT [4]–[6]: RIOT was developed as a developer friendly

programming model and API in 2013. It is a micro-kernel based
RTOS along with multithreading. Special efforts are put to
develop efficient context switching, IPC (blocking and non
blocking), and a small thread control block to deal runtime
overhead. The tickless scheduler will put RIOT into deepest sleep
mode which will be woken by interrupts. RIOT supports network
stacks, including its own 6LoWPAN stack, 6TiSCH stack, Open
WSN, CCN-lite. The default network stack gncr stores the

metadata in a centralized network buffer and communication by
passing pointers between layers. It has a wide range of features,
such as a shell, crypto libraries, or sophisticated data structures.
RIOT provides a set of unit tests and applications for smoke and
regression testing. CI testing is performed on the web-based
service platform Travis.
3. Free RTOS [7]: It was developed by Richard Barry in 2002
with a pre-emptive microkernel which also supports

multithreading. It has a simple architecture with functionalities
like thread handling mutexes, semaphores, and software timers. It

doesn’t have its own network stack but supports the 3rd party
network stacks. Real Time Engineers Ltd. offers an official Free
RTOS +TCP add-on supporting an Ethernet-based IPv4 stacks
with support for UDP, TCP, and supporting protocols. Testing and
debugging is also performed by 3rd party solutions.

4.2. Closed Source OS:

There are several closed OS preferable for IoT devices. Some

vendors offer limited access to their source code for the users.
These OS are typically designed for other domains and lack
features like energy saving mechanisms and standardized
protocols. Below are few examples of OS which run on class 0
and class 1 devices.

Table II: Key features of OS for IoT

Name Category MCU/ MMU <32KB RAM 6LoWPAN
RTOS

scheduler
HAL

Energy

Efficient MAC

Layer

Contiki Event driven Yes Yes Yes No Yes Yes

RIOT Multithreading Yes Yes Yes Yes Yes No

free RTOS RTOS Yes Yes No Yes No No

1.ThreadX [8]: This is developed by Express Logic and taken
over by ARM. It is a microkernel RTOS with multithreading and
pre-emptive scheduler. Network stack, file system, GUI must be
purchased as separate products.
2. VxWorks [9]: developed by Wind River in 1983. It has a
monolithic kernel that supports ARM and Intel platforms. It
supports IPv6 but not 6LoWPAN stack.
3. PikeOS [10]: This was developed by SYSGO AG in 1991.This
is a microkernel RTOS which supports safety and security and

also acts as hypervisor for many OS. It has multiple API and also
supports guest OS.

5. Conclusion:

In this paper we have analyzed the various requirements for an OS
that could be used for IoT low end devices. We have surveyed the

available OS which could be used best. We have focused on open
source OS code which provides higher transparency, trust
worthiness and security. WE have also identifies 3 categories of
OS which are equivalent to Linux. In multithreaded OS RIOT is
the most prominent OS. Event driven OS are designed to fit
devices with less resources of which Contiki is the most
prominent open source OS. RTOS focus on worst case execution
time and interrupt latency in which Free RTOS is the best. In the

long run, the nature of most open source OS increases the
probability and fits better the needs of SMEs. According to recent
studies such companies will
be driving IoT innovation in the near future. According to our
study we conclude that there are many OS for IoT for users to

choose from depending on their requirements. As the IoT field is
developing at a rapid pace, however, the final word is yet to be
made regarding what type of architecture and capabilities an ideal
OS for the IoT should have.

References

[1] A.Dunkels, B.Grönvall, and T. Voigt, “Contiki—A lightweight and

flexible operating system for tiny networked sensors,” in Proc. 29th

Annu. Int. Conf. Local Comput. Netw. (LCN), 2004, pp. 455–462

[Online].Available: http://dblp.uni-trier .de /db/ conf/lcn

/lcn2004.html# DunkelsGV04

[2] “Contiki operating system,” [Online]. Available:

http://www.contikios.org.

[3] E.Baccelli,O.Hahm,M.Günes,M.Wählisch,andT.C.Schmidt,“RIOT

OS: Towards an OS for the Internet of Things,” in Proc. 32nd IEEE

INFOCOM, 2013.

[4] E. Baccelli, O. Hahm, H. Petersen, and K. Schleiser, “RIOT and the

evolution of IoT operating systems and applications,” ERCIM

News, vol. 2015, no. 101, 2015 [Online]. Available: http://ercim-

news.ercim. eu/en101/special/riot-and-the-evolution-of-iot-

operating-systems-and applications

[5] “RIOT operating system,” [Online]. Available: http://www.riot-

os.org

[6] “Berkeley’s OpenWSN project,” [Online]. Available:

http://openwsn. berkeley.edu/

[7] R. Barry. “FreeRTOS, a free open source RTOS for small

embedded real time systems,” [Online]. Available;

http://www.freertos.org

[8] Express Logic Inc. “ThreadX,” [Online]. Available: http://rtos.com/

products/threadx/

[9] Wind River Syst. “VxWorks,” [Online]. Available:

http://www.windriver. com/products/vxworks/

673 International Journal of Engineering & Technology

[10] SYSGO.“PikeOS,”[Online].Available:http://www.sysgo.com/produ

cts/ pikeos-rtos-and-virtualization-concept/

[11] E. Upton and G. Halfacree, Meet the Raspberry Pi. Hoboken, NJ,

USA: Wiley, 2012.

[12] Arduino due,” [Online]. Available: http://arduino.cc/en/Main/

arduinoBoardDue

[13] Redwire Llc. “Redwire Econotag II,” [Online].

Available:http://redwire.myshopify.com/products/econotag-ii

[14] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas

Tsiftes, Operating Systems for Low-End Devices in the Internet of

Things: A Survey, IEEE Internet Of Things Journal, Vol. 3, No. 5,

October 2016

