

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 49-54

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

RAPID-Risk Assessment of Android Permission and Application

Programming Interface (API) Call for Android Botnet

Zubaile Abdullah
1, 2

*P, Madihah Mohd Saudi
2,3

P

1
PUniversiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia

P

2
PFaculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Malaysia

P

3
PCybersecurity and Systems Research Unit, Islamic Science Institute (ISI), Universiti Sains Islam Malaysia (USIM), Malaysia

*Corresponding author E-mail: 26Tzubaile@uthm.edu.my

Abstract

Android applications may pose risks to smartphone users. Most of the current security countermeasures for detecting dangerous apps
show some weaknesses. In this paper, a risk assessment method is proposed to evaluate the risk level of Android apps in terms of confi-

dentiality (privacy), integrity (financial) and availability (system). The proposed research performs mathematical analysis of an app and
returns a single easy to understand evaluation of the app’s risk level (i.e., Very Low, Low, Moderate, High, and Very High). These
schemes have been tested on 2488 samples coming from Google Play and Android botnet dataset. The results show a good accuracy in
both identifying the botnet apps and in terms of risk level.

Keywords: Android Analysis; Android Botnet; Feature Selection; Risk Assessment.

1. Introduction

In recent years, there has been a tremendous growth of
smartphone users around the world. According to a report by the
International Data Corporation (IDC), the global shipment of
smartphones grew 3.4% in first quarter of 2017 compared to the
year 2016 [1]. Among others smartphone’s operating software
(OS), Android operated smartphone had dominated the market

with 85% of market shares. The combination with other software
or an application (app), smartphone users now can conveniently
store and process sensitive information such as pictures, personal
credentials and online banking transaction in their smartphones.
As a result, they became an ideal target for cyber-criminal activi-
ties by malicious person. Currently, the cyber-criminal incidents
of Android operated smartphone occurred frequently compared to
other OS operated smartphone [2].

Users are supposed to download and install Android application
(app) from Google official applications market named Google
Play Store; however, users also can download an application from
other third party market. These unofficial markets provide free or
non-paying apps and games in which if users download from
Google Play Store, they have to pay for those apps. This attracts
users to the unofficial market [3] and possibly exposes smartphone
users to download and install malicious applications (malware),

which camouflaged as benign software from these markets. Fur-
thermore, anybody can upload any type of app to this unofficial
app market which is low in security implementation [4], thus it is
easier for malware authors to upload their malware app to this
market. By default, Android app has limited capabilities in using
smartphone resources, sensitive data and system functions and
needs to request permissions to do so. To perform certain tasks on
the smartphone such as sending messages through Short Message
System (SMS), an app must request specific permission from a

smartphone user during installation.

Fig. 1: Permission request during app installation

For example, as shown in Figure 1, an Android app can only send
text messages if it has the SEND_SMS permission granted (AC-
CEPT button) by smartphone user during installation. In this pro-
cess, smartphone user will be prompted with a list of the permis-
sions required by an app just before the installation. The permis-
sion system purpose is to help users avoid privacy or security

invasive applications. However, many users do not pay attention
to or understand this permission system [5], thus blindly grant
permissions to possibly a malware app. As an example, a calcula-
tor app which request SEND_SMS or READ_SMS probably is a
suspected malicious app because by mean this kind of app need
neither send SMS nor read SMS for normal behaviour. Granting
such permission to this kind of request possibly expose the user to

mailto:zubaile@uthm.edu.my

50 International Journal of Engineering & Technology

subscribe to a premium rate number without their knowledge until
they received the phone bill.

The malware apps payload of smartphone come in various forms,
such as viruses, Trojans, worms and mobile botnet. However,
mobile botnet is more dangerous as they pose serious threats [6-8].
The effect of mobile botnet attacks is disastrous as credential in-
formation is exposed to an attacker, user activities and location are

leaked, a smartphone user being overbilled because of unauthor-
ized Short Message System (SMS) used, a smartphone can be
remotely control by an attacker for other various malicious deeds
and smartphone resources are overloaded by malicious activities.
In short, privacy and financial of user will be compromised while
the performance of the user’s smartphone system possibly will be
downgraded.
Fortunately, many researches on Android malware detection had

been done recently. However, only few research contributions
dealt with Android botnet analysis and detection. Furthermore,
most of these researches concentrated on numbers of features
(permission and API) appearances in Android malware rather than
associating these features with their risk to smartphone users. The-
se are the motivation of this research in filling the gap which is not
covered by previous research.

2. Related Work

Plenty of research has been made to lessen the increasing threat to
the Android system brought by malware. Kirin detected Android
malware based on dangerous permission combinations or suspi-
cious action strings [9]. Another research approach by [10] ex-
tended Kirin method by increasing the number of permissions to

define more permission combinations. However, as there are a few
differences in requested or used permissions between benign apps
and malware, permission-based approaches suffer the problem of
low detection rate.
To overcome the shortcomings of permission based approaches,
multi-category feature based approaches were proposed by re-
searchers. This method extracted other static features other than
permissions such as an application imported package, application
programming interface (API) call, Java code, intent, string, data

flow, control flow and hardware components. DroidAPIMiner
performed frequency analysis and data flow analysis to all APIs
used in an app to calculate most frequently used APIs [11]. Other
research that used multi-category features is Drebin which per-
formed a broad static analysis to extract Android application fea-
tures consists of permissions, sensitive APIs, network address and
application hardware components [12]. Although more features
are extracted to overcome the shortcoming of permission based

approaches, multi-category feature approaches still suffered same
shortcoming which is these features cannot associate Android
application risk to smartphone users.
Due to permission based and multi category based shortcomings,
some researchers attempted to detect Android malware from the
viewpoint of Android application risks. In [13] observed that An-
droid apps in the same category usually request similar permis-
sions. They proposed Rare Critical Permission (RCP), which is a

set of permission that less requested by same app category. They
concluded that an Android app is suspicious to be malware if its
request permissions, which matched the RCP list, thus will trigger
the Rare Pairs of Critical Permissions (RPCP). RPCP functions is
to calculate the app’s risk and the threshold to determine if the app
if benign or malicious. In [14] propose probabilistic generative
models to rank risks of Android apps including the simple Naive
Bayes, Mixture of Naive Bayes, and Hierarchical Mixture of Na-

ive Bayes models. Each model estimates the probability that an
application would request the permissions. They concluded that
the Naive Bayes model gives a promising risk scoring by proving
it with real-world datasets. However, both [13-14] approaches
have limitation as their approaches cannot state what threat an

Android application may cause such as financial losses, leakage of
user privacy, or degrading the operating system to smartphone
users. This research on the other hand motivated by works done in
[15-16]. Both works used permission as features and calculate the
requested permission (by an application) risk towards
smartphone’s user based on risk impact to financial, privacy and
smartphone system. As discussed earlier, the differences of the
requested permissions between benign apps and malware are rela-

tively small, the above approaches are deficient inherently thus
can further be improved. To solve such problem, this research
added an additional feature which is API calls to gain better result.

3. Methodology

In this section, the process of risk assessment and the botnet detec-

tion scheme based on permission requested and API call is pre-
sented. To detect whether an application is benign or botnet, it
requires a thorough analysis of features (permission and API call)
of applications. This research employed static analysis towards
Android APK files from two datasets: botnet and benign Android
applications. This process is illustrated in Figure 2 and outlined in
the following section.

Fig. 2: Features extraction and risk computation phase and process

3.1. Dataset

a) Botnet Dataset: The Android botnet dataset used in this re-
search is downloaded from [17]. The dataset consists of 1929
Android botnet samples in 14 different Android botnet fami-
lies. These samples cover the majority of existing Android

botnet from year from 2010 (the first appearance of Android
botnet) to 2014. For the purpose of this research, 1500 An-
droid botnet samples were randomly selected and analyzed.

b) Benign Dataset: A total of 1000 benign apps were down-
loaded from Google Play Store, an official market that host
Android application. It is reasonable to assume that all apps
from Google Play Store perform no malicious activities and
can be used to construct the benign app dataset. The reason

is a malicious app detection system, called Google Bouncer,
had deployed by Google to detect the malicious apps up-
loaded by developers [18]. Any malicious app found by
Google Bouncer that may be harmful to users will be re-
moved by Bouncer from Google Play Store. The collected
benign apps belong to different categories such as games,
applications, education, health, fitness and communications.

3.2. Features Extraction

In this phase, an APK file is unzipped. An APK is an acronym
word for Android Application Package, a compressed (zipped) file
of any Android application. Generally, an APK file contains .dex
files, resources, assets, certificates, and Android manifest file. The
Android manifest file contains Android application package’s

International Journal of Engineering & Technology 51

name, permission request and the minimum API version that the
application needs. APKTool is used to unzip the APK file [19].
Once the APK file is unzipped, the AndroidManifest.xml is trans-
formed into readable format. The readable manifests for each 1500
Android botnet and 1000 benign applications are then recorded to
a new document format and used for features extraction works.
Features that being extracted are requested permissions and API
calls of 2500 Android applications (botnet and benign). The re-

quested permissions of each of these applications are then com-
pared with 138 Android permission in Android system [20] using
string similarity method. For each sample, if requested permission
matches with the Android permission that permission is noted as 1
to indicate its presence in the sample while 0 indicate the absence
of the permission.
Let R be a vector containing set of 138 Android permission. For
every ith application in the Android application dataset (botnet

and benign), RRiR = {rR1R, rR2R, rR3R,…rj} and r is deter-
mined by Equation (1):

if jRthR permission exist
Otherwise (1)

The process to detect for the API call presence in Android apps on
the other hand is slightly different from the process of permission

occurrence detection. There are hundreds of API calls of Android
app however, it is not documented systematically. Thus, in this
research, an extensive analysis of each 2500 class.dex is done to
search for suspicious API call and generated an API call list of the
Android botnet. The list is compared with research done by [3, 21-
25]. The API calls of each 2500 Android applications are then
compared with the cumulative API call list using the same method
as permission occurrence detection above and with the changes of
permission to the API call in Equation (1). Further in this phase,

the number of botnet apps is reduced to 1499 and the number of
benign apps is reduced to 989 because 12 samples are found cor-
rupted and cannot be processed. The result from this phase is used
in botnet features selection process.

3.3. Botnet Features Selection

As previously mentioned, android system has a total of 138 per-
missions and hundreds of API calls. However, not all of these

features are requested and being called by the applications in the
dataset. The feature selection plays an import role in risk assess-
ment of Android botnets. In this research, the relevance of selected
features is based on their impact to privacy and financial of
smartphone users and smartphone system. Through a comprehen-
sive analysis on the applications, 20 permissions and 20 API calls
which are of interest for botnet writers are presented in Table 1.

Table 1: Selected Feature

Feature Category Feature Name

PERMISSION

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

ACCESS_NETWORK_STATE

CALL_PHONE

DISABLE_KEYGUARD

INSTALL_PACKAGES

INTERNET

MOUNT_UNMOUNT_FILESYSTEMS

PACKAGE_USAGE_STATS

READ_CONTACTS

READ_EXTERNAL_STORAGE

READ_LOGS

READ_PHONE_STATE

READ_SMS

REBOOT

RECEIVE_BOOT_COMPLETED

RECEIVE_SMS

RESTART_PACKAGES

SEND_SMS

SET_ALARM

UPDATE_DEVICE_STATS

WRITE_APN_SETTINGS

WRITE_CONTACTS

WRITE_EXTERNAL_STORAGE

API CALLS invalidateAuthToken

android/app/Activity;->setContentView

startActivityForResult

openInputStream

sendOrderedBroadcast

startService

android/media/MediaPlayer;->stop

isConnectedOrConnecting

sendMultipartTextMessage

sendTextMessage

getDeviceId

getDeviceSoftwareVersion

getLine1Number

getSimSerialNumber

getSubscriberId

getVoiceMailNumber

Cipher(AES/CBC/PKCS5Padding)

getSystemService

java/net/URL;->openStream

sendSMS

The most frequent permission requested is the INTERNET while

the frequent APIs used by botnet are getSystemService, get
DeviceId, and getSubscriberId. Table 2 lists the top 10 of the fea-
tures frequently called and used by Android botnet with their pos-
sible threat.

Table 2: Top 10 of Features, Description and Possible Threat

Feature Description Possible Threat

INTERNET Allows an app to open network sockets An app can connect to Internet and communicates with malicious

remote server.

READ_PHONE_STATE Allows an app read only access to phone

state.

An app can read the phone number of the device, current cellular

network information and the status of any ongoing calls

getSystemService Allow an app to access to system services An app can access phone system service capabilities

getDeviceId Allow an app to get unique device ID such

as the IMEI

An app can access sensitive data

startService Allow an app to request to be started An app can be executed when phone booting

ACCESS_NETWORK_STATE Allows app to access information about

networks

An app can view information about device communication

RECEIVE_BOOT_COMPLETED Allows an app to receive the broadcast

after the system finished booting

An app to run itself every time smartphone is started

getSubscriberId Allow an app to get unique subscriber ID An app can access sensitive information

SEND_SMS Allows an app to send SMS messages An app can send SMS to premium rate number or spam another user

in smartphone contact list

READ_SMS Allows an app to read SMS messages An app can read SMS received including Transaction Authorization

Code (TAC) sent by bank

52 International Journal of Engineering & Technology

Table 3: Features Patterns (Partial List)

Feature Representation Patterns

P1 ACCESS_COARSE_LOCATION

P2 ACCESS_FINE_LOCATION

P3 ACCESS_NETWORK_STATE

P4 CALL_PHONE

P5 DISABLE_KEYGUARD

P6 INSTALL_PACKAGES

P7 INTERNET

P8 MOUNT_UNMOUNT_FILESYSTEMS

P9 READ_CONTACTS

P10 READ_EXTERNAL_STORAGE

P11 READ_LOGS

P12 READ_PHONE_STATE

P13 READ_SMS

P14 REBOOT

P15 RECEIVE_BOOT_COMPLETED

P16 RECEIVE_SMS

P17 RESTART_PACKAGES

P18 SEND_SMS

P19 UPDATE_DEVICE_STATS

P20 WRITE_APN_SETTINGS

P21 WRITE_CONTACTS

P22 WRITE_EXTERNAL_STORAGE

AP1 invalidateAuthToken

AP2 setContentView

AP3 startActivityForResult

AP4 openInputStream

AP5 sendOrderedBroadcast

AP6 startService

AP7 MediaPlayer;->stop

AP8 isConnectedOrConnecting

AP9 sendMultipartTextMessage

AP10 sendTextMessage

AP11 getDeviceId

AP12 getDeviceSoftwareVersion

AP13 getLine1Number

AP14 getSimSerialNumber

AP15 getSubscriberId

AP16 getVoiceMailNumber

AP17 Cipher(AES/CBC/PKCS5Padding

AP18 getSystemService

AP19 java/net/URL;->openStream

AP20 sendSMS

1. P3, P4, P5, P7, P10, P12, P13, P14, P16, P17, P18,

P19, P22, P23, AP6, AP11, AP15, AP18

2. P3, P7, P11, P13, P14, P16, P17, P19, P24, AP6,

AP9, AP10, AP11, AP18, AP20

3. P3, P7, P16, AP6

4. P3, P4, P7, P8, P10, P13, P14, P16, P17, P19, P24,

AP3, AP4, AP6, AP10, AP11, AP13, AP15, AP18,

AP20

5. P3, P4, P7, P10, P11, P12, P13, P14, P16, P17,

P19, P24, AP6, AP9, AP10, AP11, AP13, AP18,

AP20

6. P1, P2, P3, P4, P5, P7, P8, P10, P13, P14, P16,

P17, P18, P22, P24, AP2, AP3, AP4, AP5, AP6,

AP7, AP8, AP11, AP17, AP18, AP19

7. P1, P2, P3, P4, P5, P7, P8, P11, P12, P13, P14,

P16, P18, P22, P24, AP3, AP4, AP5, AP6, AP7,

AP8, AP11, AP14, AP15, AP17, AP18

8. P1, P2, P3, P4, P5, P7, P8, P9, P10, P11, P12, P13,

P14, P16, P17, P18, P22, P23, P24

9. P1, P2, P3, P4, P5, P7, P8, P9, P10, P13, P14, P16,

P17, P18, P19, P21, P22, P23, P24, AP3, AP4,

AP6, AP7, AP8, AP11, AP15, AP18, AP19

10. P1, P2, P3, P4, P5, P7, P9, P10, P11, P13, P14,

P16, P17, P24, AP3, AP4, AP6, AP7, AP8, AP11,

AP14, AP15, AP17, AP18

3.4. Joint Feature Vector and Pattern

Based on the result in features extraction and features selection,
each of the botnet and benign app features are transferred to the
feature vector table to view their features pattern. After removing
duplicates patterns, there are 348 unique features patterns (from
1499 patterns) of Android botnet and 548 unique features pattern
(from 989) of benign apps. Table 3 shows a partial list of both

botnet and benign apps pattern. The patterns are used to calculate
the risk score and risk level of each app.

3.5. Features Threat Score

In particular, the Android malware and botnet distribution by ma-
licious persons are always motivated by privacy exposure of vic-
tim, financial profit to attacker and degrading operating system of
smartphone [16, 26, 27, 15]. Thus, this research had classified the

app features into three risks which are privacy risk, financial risk
and system risk.
Privacy risk refers to potential leakage of user privacy when fea-
tures are granted (permission) by the user during Android app
installation and used (API calls) during app execution. Financial
risk refers to the potential financial losses of the victim. System
risk refers to potential smartphone system components perfor-
mance degrading and unauthorized modification to storage and
files of smartphone. These classifications are presented in Table 4.

Table 4: Risk Classification and Threat Score

Risk

Classification

Features Threat

Score

Privacy READ_EXTERNAL_STORAGE

setContentView

ACCESS_COARSE_LOCATION

INTERNET

UPDATE_DEVICE_STATS

openInputStream

ACCESS_FINE_LOCATION

READ_LOGS

READ_CONTACTS

READ_PHONE_STATE

READ_SMS

RECEIVE_SMS

getDeviceId

getDeviceSoftwareVersion

getLine1Number

0.2

0.2

0.4

0.4

0.4

0.4

0.8

0.8

1

1

1

1

1

1

1

Risk

Classification

Features Threat

Score

getSimSerialNumber

getSubscriberId

getVoiceMailNumber

1

1

1

Financial ACCESS_NETWORK_STATE

CALL_PHONE

SEND_SMS

sendMultipartTextMessage

sendTextMessage

sendSMS

0.6

1

1

1

1

1

System invalidateAuthToken

startActivityForResult

MediaPlayer;->stop

isConnectedOrConnecting

Cipher(AES/CBC/PKCS5Padding)

DISABLE_KEYGUARD

RESTART_PACKAGES

sendOrderedBroadcast

java/net/URL;->openStream

INSTALL_PACKAGES

MOUNT_UNMOUNT_FILESYSTEMS

WRITE_CONTACTS

WRITE_EXTERNAL_STORAGE

startService

REBOOT

RECEIVE_BOOT_COMPLETED

WRITE_APN_SETTINGS

getSystemService

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.8

0.8

0.8

1

1

1

1

Each of the features in Table 4 is given a threat score value constructed
from works done in [16] and also adapted from the NIST Special Publi-
cation 800-30 Revision 1 [28] based on impact towards privacy, financial
and system as shown in Table 5.

Table 5: Impact Level and Threat Score

Likehood of

Impact
Capabilities Threat Score

Very Low Features as risk sources do not have any

capabilities to perform threat

0.2

Low The capabilities of risks sources to per-

form a threat are low

0.4

Moderate The capabilities of risks sources to carry

out a threat are moderate

0.6

High The capabilities of risk sources to carry

out a threat are real and high

0.8

Very High The capabilities of risk sources to carry

out a threat are definite and very high

1

International Journal of Engineering & Technology 53

3.6. Computation of Apps Risk and Level

In this phase, each Android app risk score and level is calculated.
The first step is to calculate each app’s risk toward privacy, finan-
cial and system based on Equation (2)-(4):

 (2)

 (3)

 (4)

where RSP = risk score for privacy, RSF = risk score for financial,

RSS = risk score for system, Fp = privacy related features, ff =
financial related features, fs = system related features, tsp = threat
score for privacy, tsf = threat score for financial, tss = threat score
for system and F = frequency of features in an app.
Further, the Total Risk Score (TRS) of an application is calculated
based on the Equation (5):

 (5)

An app Total Risk Score (TRS) is the normalization of risk score
of privacy, financial and system of the given app. The TRS value
is then compared with NIST Risk Score Guide in [28] as shown in
Table 6.

Table 6: Risk Score and Risk Level

Risk Score Risk Level

0 - 20 Very Low

21 - 40 Low

41 - 60 Moderate

61 - 80 High

81 - 100 Very High

4. Results and Discussion

The proposed risk assessment is evaluated within two datasets
previously mentioned. The graph in Figure 3 shows the results of
the evaluation.

Fig. 3: Android app Risk.

From 1499 Android botnet samples, it is found that 1440 is cate-
gorized as High Risk (96.06%), 58 samples are in Medium Risk
(3.87%) and only 1 sample in Very Low Risk Category (0.07%).
Whereas, for 989 Android benign samples, only 172 samples cat-

egorized in High Risk (17.39%), 808 samples in Medium Risk
(81.70%) and 9 samples in Low Risk (0.91%).

5. Conclusion

This research has presented a risk-based approach to differentiate
a botnet app and benign. Features of the app are extracted to de-
scribe on how an application can manipulate user granted permis-
sions and coded API call. This research classifies an application
risks into privacy risk, financial risk and system. The results show
that this proposed risk assessment is capable of detecting Android
botnet at a satisfying accuracy rate. In addition, a pattern that is

generated can also be used in the Android botnet detection.
For future work, to improve detection rate, this research is plan-
ning to conduct a hybrid Android botnet analysis such as combin-
ing a static analysis with dynamic analysis, to solve the problems
entangled with static analysis. Further, this research is going to
implement a response mechanism after detection using the Apop-
tosis Immune System in the future.

Acknowledgement

This work was supported by the Ministry of Higher Education
(MOHE), Malaysia [Grant No: USIM/FRGS/FST/32/50114] and
Universiti Tun Hussein Onn Malaysia [Tier 1 Vot: U892].

References

[1] IDC: Smartphone OS Market Share. (n.d.).

https://www.idc.com/promo/smartphone-market-share/os.

[2] Tong, F., & Yan, Z. (2017). A hybrid approach of mobile malware

detection in Android. Journal of Parallel and Distributed

Computing, 103, 22–31.

[3] Somarriba, O., Zurutuza, U., Uribeetxeberria, R., Delosières, L., &

Nadjm-Tehrani, S. (2016). Detection and visualization of android

malware behavior. Journal of Electrical and Computer Engineering,

2016, 1-17.

[4] Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., & Zou, W.

(2012). Smartdroid: an automatic system for revealing ui-based

trigger conditions in android applications. Proceedings of the

Second ACM Workshop on Security and Privacy in Smartphones

and Mobile Devices, pp. 93–104.

[5] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D.

(2012). Android permissions: User attention, comprehension, and

behavior. Proceedings of the Eighth Symposium on Usable Privacy

and Security, pp. 1-14.

[6] Eslahi, M., Salleh, R., & Anuar, N. B. (2012). Bots and botnets: An

overview of characteristics, detection and challenges. Proceedings

of the IEEE International Conference on Control System,

Computing and Engineering, pp. 349–354.

[7] Xiang, C., Binxing, F., Lihua, Y., Xiaoyi, L., & Tianning, Z. (2011).

Andbot: Towards advanced mobile botnets. Proceedings of the 4th

USENIX Conference on Large-Scale Exploits and Emergent

Threats, pp. 1-7.

[8] Yusof, M. Bin, Mohd Saudi, M., & Ridzuan, F. (2017). A

systematic review and analysis of mobile botnet detection for GPS

exploitation. Advanced Science Letters, 23(5), 4696–4700.

[9] Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight

mobile phone application certification. Proceedings of the 16th

ACM Conference on Computer and Communications Security, pp.

235–245.

[10] Liang, S., & Du, X. (2014). Permission-combination-based scheme

for android mobile malware detection. Proceedings of the IEEE

International Conference on Communications, pp. 2301–2306.

[11] Aafer, Y., Du, W., & Yin, H. (2013). Droidapiminer: Mining api-

level features for robust malware detection in android. Proceedings

of the International Conference on Security and Privacy in

Communication Systems, pp. 86–103.

[12] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., &

Siemens, C. (2014). DREBIN: Effective and explainable detection

of android malware in your pocket. Proceedings of the Ndss, pp.

23–26.

54 International Journal of Engineering & Technology

[13] Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-rotaru, C., &

Molloy, I. (2012). Android permissions: A perspective combining

risks and benefits. Proceedings of the Symposium on Access

Control Models and Technologies, pp. 13-22.

[14] Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-

Rotaru, C, & Molloy, I. (2012). Using probabilistic generative

models for ranking risks of Android apps. Proceedings of the 2012

ACM Conference on Computer and Communications Security, pp.

1-12.

[15] Ye, Y., Wu, L., Hong, Z., & K Huang. (2017). A risk classification

based approach for android malware detection. KSII Transactions

on Internet and Information Systems, 11(2), 959–981.

[16] Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A.,

& Sgandurra, D. (2018). Risk analysis of Android applications: A

user-centric solution. Future Generation Computer Systems, 80,

505–518.

[17] Stakhanova, N., & Ghorbani, A. A. (2015). Android Botnets: What

URLs are telling us. Proceedings of the Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics, pp. 78–91.

[18] Mahindru, A., & Singh, P. (2017). Dynamic permissions based

Android malware detection using machine learning techniques. In

Proceedings of the ACM 10th Innovations in Software Engineering

Conference, pp. 202–210.

[19] ApkTool. (n.d.). A tool for reverse engineering Android apk files.

https://ibotpeaches.github.io/Apktool/.

[20] Android Developers. (n.d.). Permissions overview.

https://developer.android.com/guide/topics/permissions/overview

[21] Deepa, K., Radhamani, G., & Vinod, P. (2015). Investigation of

feature selection methods for android malware analysis. Procedia

Computer Science, 46, 841–848.

[22] Fereidooni, H., Moonsamy, V., Conti, M., & Batina, L. (2016).

Efficient classification of Android Malware in the wild using robust

static features. In W. Meng, X. Luo, S. Furnell, & J. Zhou (Eds.),

Protecting Mobile Networks and Devices: Challenges and Solutions.

Florida: CRC Press, pp. 181–209.

[23] Karim, A., Salleh, R., & Shah, S. A. A. (2015). DeDroid: A mobile

botnet detection approach based on static analysis. Proceedings of

the IEEE 12th International Conference on Ubiquitous Intelligence

and Computing and IEEE 12th International Conference on

Autonomic and Trusted Computing and IEEE 15th International

Conference on Scalable Computing and Communications and Its

Associated Workshops, pp. 1327–1332.

[24] Qiao, M., Sung, A. H., & Liu, Q. (2016). Merging permission and

api features for android malware detection. Proceedings of the

IEEE 5th IIAI International Congress on Advanced Applied

Informatics, pp. 566–571.

[25] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A

new android malware detection approach using Bayesian

classification. Proceedings of the IEEE 27th International

Conference on Advanced Information Networking and Applications,

pp. 121–128.

[26] Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011).

A survey of mobile malware in the wild. Proceedings of the 1st

ACM Workshop on Security and Privacy in Smartphones and

Mobile Devices, pp. 3–14.

[27] Jorgensen, Z., Chen, J., Gates, C. S., Li, N., Proctor, R. W., & Yu,

T. (2015). Dimensions of risk in mobile applications: A user study.

Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy, pp. 49–60.

[28] National Institute of Standards and Technology Gaithersburg.

(2012). Guide for conducting risk assessments. NIST Special

Publication.

