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Abstract 
 
The findings of this paper are focused on the dynamics and control of a quadcopter using a modified version of a Linear Quadratic Regu-
lator (LQR) control approach. The classical LQR control approach is extended to include an integral term to improve the quad copter 
tracking performance. The mathematical model is derived using the Newton-Euler method for the nonlinear six DOF model that includes 
the aerodynamics and detailed gyroscopic moments as a part of the system identification process. The linearized model is obtained and it 
is characterized by the heading angle (yaw angle) of the quadcopter. The adopted control approach is utilizing the LQR method to track 
several trajectories i.e. helical and lissajous curve with significant variation in the yaw angle. The integral term is introduced to the con-

troller in order to minimize the steady state errors observed. The controller is modified to overcome difficulties related to the continuous 
changes in the operation points and to eliminate the chattering that was observed in the control technique. Numerical non-linear simula-
tions are performed using MATLAB & Simulink to illustrate to accuracy and effectiveness of the proposed controller. 
 
Keywords: quadcopter; LQR; gain scheduled; dynamics and control. 

 

1. Introduction 

Over the years, the quadcopter has caught the attention of many 
researchers due to their resilience, versatility, compact size and 
their vast applications in various fields. There is a potential wide-
spread use of these vehicles in the civil sector such as inspection 
of terrain, pipelines and buildings, firefighting, aerial photog-
raphy, search and rescue, mapping, remote sensing, etc., as well 
for intelligence, reconnaissance and surveillance in the military 

sector [1]. It is a very highly non-linear system that has six de-
grees of freedom (DOM) but has only four actuators to control the 
outputs, which makes it an under actuated system by a degree of 
two. Moreover, the design of a controller is also subjected to the 
consideration of controller saturation where the motor dynamics 
have to be carefully designed in order to achieve practical control 
effort from the rotors when implemented to the physical hardware 
[2].  

Researchers have been working to improve the performance of the 
quadcopters, especially when it comes to the response and stability 
of the system. Thus, researchers have designed various control 
techniques like Proportional-Integral-Derivative (PID), Linear 
Quadratic Regulator (LQR), Sliding Mode Control (SMC), Model 
Predictive Control (MPC) and Back-stepping to control the quad-
copter [3-10]. The controllers designed are linear in nature, there-
fore when implemented on the actual non-linear system, the con-
troller reflects dissimilar effects on the system. Moreover, exter-

nal, unaccounted for, disturbances and other inherent system limi-
tations also propagate undesired performance of the system in 
real-time applications.  

The LQR control is one of the conventional non-linear control 
techniques that is widely used in a range of control system appli-
cations. In many literatures, it has been compared to other conven-
tional control approaches like PID control or fuzzy control. The 
implementation of the LQR control technique in an inverted pen-

dulum system produced better performance results with acceptable 
overshoot and undershoot and a faster response when compared to 
the PID controller’s performance [11]. Even though limited in 
linear systems, the LQR method is very useful when non-linear 
systems are linearized, especially multivariable systems, about 
defined equilibrium points. An example of that is an indoor micro 
quadrotor that was subjected to the performance comparison of a 

PID and LQR control where the results of the LQ control tech-
nique were favourable [12]. 

This study aims on improving the design of a gain scheduled LQR 
controller by adding an integral term that minimizes the steady 
state error of the output. Detailed mathematical model is formulat-
ed using Newton-Euler method for the quadcopter, taking in ac-
count the gyroscopic rotor dynamics and also aerodynamic drag 
and moment terms, whereas the actuator saturation and chattering 

of the control input signal is considered during the design of the 
controller. 

2. Dynamic model 

It is imperative to establish a coordinate system and develop 
mathematical model using the Newton-Euler equations of motion 

that reflect the dynamics of the system. Thus, system identifica-
tion prior to modelling helps in obtaining an accurate model. A 
number of physical parameters such as mass, moment of inertia 
and arm length are to be determined based on the configuration of 
the quadcopter. In this case, the model is developed for an X con-
figuration quadcopter including inertial moments (Ix, Iy, Iz), aero-
dynamic translational (Ktx, Kty, Ktz) and rotational (Krx, Kry, Krz) 
drag constants, gravitational constant g, mass of the quadcopter m, 
moment arm l, angular velocity of the body (p, q, r), Euler angles 

(φ, θ, ψ), rotor’s inertia Ir, rotor’s speed ωr, thrust force F and 
torque produced by the rotors T. The system coordinates of the 
quadrotor is illustrated in Figure 1. 
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Figure 1: System coordinates of quadcopter [10] 

The equations of motions are derived through Newton-Euler ap-

proach which are shown in Eqn. 1 to Eqn. 9, where (𝑥, 𝑦, 𝑧), 

( �̇�, �̇�, �̇�) and (�̈�, �̈�, �̈�) are components of position, velocity and 

acceleration vectors in the world coordinate frame, (𝑠, 𝑐, 𝑡) denote 

sin, cosine and tangent trigonometric function and (𝑢1 , 𝑢2, 𝑢3 , 𝑢4) 

are the components of the control input vector defined by Eqn. 10 
to Eqn. 13, respectively. 

�̈� =  −(𝐾𝑡𝑥  �̇� − 𝑚𝑢1( 𝑠𝜑𝑠𝜓  + 𝑐𝜑𝑠𝜃𝑐𝜓))/𝑚 

 
(1) 

�̈� =  −(𝐾𝑡𝑦  �̇� +𝑚𝑢1(𝑠𝜑𝑐𝜓 − 𝑐𝜑𝑠𝜃𝑠𝜓))/𝑚 

 
(2) 

�̈� =  −(𝑔𝑚 +𝐾𝑡𝑧  �̇� − 𝑚𝑢1𝑐𝜃𝑐𝜑)/𝑚 

 
(3) 

�̇� = 𝑝 + 𝑟𝑐𝜑𝑡𝜃 + 𝑞𝑠𝜑𝑡𝜃 

 
(4) 

�̇� = 𝑞𝑐𝜑 − 𝑟𝑠𝜑 

 
(5) 

�̇� = 𝑟𝑐𝜑/𝑐𝜃 + 𝑞𝑠𝜑/𝑐𝜃 

 
(6) 

�̇� = −
𝐾𝑟𝑥𝑝 − 𝐼𝑥𝑢2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟

𝐼𝑥
 (7) 

�̇� =  (−𝐾𝑟𝑦𝑞 + 𝐼𝑦𝑢3− 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟)/𝐼𝑦 

 
(8) 

�̇� =
−𝐾𝑟𝑧𝑟 + 𝐼𝑧𝑢4 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞

𝐼𝑧
 

 

(9) 

𝑢1 =
𝐹1 + 𝐹2+𝐹3+𝐹4

𝑚
 

 

(10) 

𝑢2 =
(−𝐹1 +𝐹2+𝐹3−𝐹4)𝑙

𝐼𝑥
 

 

(11) 

𝑢3 =
(−𝐹1 −𝐹2+𝐹3+𝐹4)𝑙

𝐼𝑦
 

 

(12) 

𝑢4 = (𝑇1 −𝑇2+𝑇3−𝑇4)/𝐼𝑧 (13) 

From Eqn. 1 to Eqn. 9, it can be clearly seen that the system is 
under actuated as it has four inputs (𝑢1 ,𝑢2 , 𝑢3 , 𝑢4) and six coordi-

nate outputs (𝑥, 𝑦, 𝑧,𝜑, 𝜃, 𝜓).  

3. LQR controller design 

Eqn. 14 shows the compact form of the nonlinear dynamical mod-
el, where 𝐱 is the input vector and 𝐮 is the control input vector of 

the quadcopter. These vectors are defined as in Eqn. 15 and Eqn. 
16. 

 �̇� = 𝐟(𝐱,𝐮) 

 
(14) 

𝐱 = (𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�, 𝜑, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟)  

 
(15) 

𝐮 = (𝑢1, 𝑢2 , 𝑢3 , 𝑢4) (16) 

The linearization of the model at equilibrium produces Eqn. 17. 
Eqn. 18 and Eqn. 19 are resulted from solving Equation 17. 
 

𝟎 = 𝐟(𝐱𝑠𝑠 , 𝐮𝑠𝑠) 

 
(17) 

𝐱𝑠𝑠 = (𝑥𝑠𝑠 ,𝑦𝑠𝑠 , 𝑧𝑠𝑠 , 0,0,0,0,0,𝜓𝑠𝑠 , 0,0,0) 

 
(18) 

𝐮𝑠𝑠 = (𝑔, 0,0,0) (19) 

The linearized model is obtained around the steady states values to 
design the LQR controller as can be seen in Eq. 20, where 
𝛿𝐱 = 𝐱 − 𝐱ss  and  𝛿𝐮 = 𝐮 − 𝐮𝒔𝒔 while Jacobian matrix 𝐀 and 𝐁 

are given by Eqn. 21 and Eqn. 22, respectively. 

𝛿�̇� = 𝐀𝛿𝐱 + 𝐁𝛿𝐮 

 
(20) 

𝐁 =
𝜕𝐟

𝜕𝐮(𝐱𝑠𝑠,𝐮𝑠𝑠)
= 

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

 

 

 

(21) 

𝐀 =
𝜕𝐟

𝜕𝐱(𝐱𝑠𝑠,𝐮𝑠𝑠)
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −
𝐾𝑡𝑥
𝑚

0 0 𝑔𝑠𝜓 𝑔𝑐𝜓 0 0 0 0

0 0 0 0 −
𝐾𝑡𝑦
𝑚

0 −𝑔𝑐𝜓 𝑔𝑠𝜓 0 0 0 0

0 0 0 0 0 −
𝐾𝑡𝑧
𝑚

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 −
𝐾𝑟𝑥
𝐼𝑥

0 0

0 0 0 0 0 0 0 0 0 0 −
𝐾𝑟𝑦
𝐼𝑦

0

0 0 0 0 0 0 0 0 0 0 0 −
𝐾𝑟𝑧
𝐼𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(22) 

As found in Ref. [10], the system has a rank of 12, which makes it 
observable and controllable with output feedback 𝐲 = (𝑥,𝑦, 𝑧, 𝜓). 
The control input vector can be computed using LQR controller as 
in Eqn. 23 where 𝐮 = 𝛿𝐮 + 𝐮𝑠𝑠  . The gain matrix 𝐊 that is used to 

minimize cost function in Eqn. 24 can be computed using the fol-
lowing Matlab command 𝐊 = 𝐥𝐪𝐫(𝐀,𝐁, 𝐐,𝐑). In Eqn. 24, 𝐐 is the 
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symmetric positive definite weighting matrices for the system 
state and 𝐑 is the symmetric positive definite weighting matrices 

for the control input. 

𝛿𝐮 = −𝐊𝛿𝐱 

 
(23) 

J = ∫ (𝛿𝐱𝑇𝐐𝛿𝐱+ 𝛿𝐮𝑇𝐑𝛿𝐮)
∞

0
dt (24) 

The designed controller is tested by tracking a time varying helical 
trajectory with varying heading angle ψ. The controller switch for 
the gain scheduling is described in Eqn. 25, where the gain is 
recomputed after every 30 degrees. The controller is also used 
with a continuous gain in which the gain changes as a function of 
the heading angle. 

𝐮(𝐱) =

{
 
 
 

 
 
 𝐮1 (𝐱;

π

12
) ,             0 ≤ 𝜓(𝑡) ≤

π

6

𝐮2 (𝐱;
π

4
),             

π

12
≤ 𝜓(𝑡) ≤

π

3
⋮
⋮

𝐮12 (𝐱;
23π

4
),             

11π

6
≤ 𝜓(𝑡) ≤ 2π

 (25) 

The integral term is introduced to the controller as shown in Eqn. 
26, where 𝝈 is the derivative of the error term between the output 

of the tracking states and their reference value, and 𝑦 is the subset 

of the measureable state vector 𝑥 and has the same dimension as 

the control vector 𝑢. 

�̇� = 𝑦 − 𝑟 (26) 

As 𝑦 =  𝐶𝑥, Eqn. 26 can also be represented as Eqn. 27. 

�̇� = 𝐶𝑥 − 𝑟 (27) 

Block diagram of the gain-scheduled integral control is shown in 
Figure 2. The new control law in definition of the optimal gain 
values of the states K1 and the optimal integral values K2 is de-

fined in Eqn. 28. The gain matrix 𝑲𝒊 can be computed using the 

following Matlab command 𝑲𝒊 = 𝐥𝐪𝐢(𝐒𝐘𝐒,𝐐,𝐑), where K1 is the 

optimal gain values for the weighting matrix of the states 𝑸𝒙 and 
K2 is the optimal gain values for the weighting matrix of integral 

tracking states 𝑸𝜹. This comes from the augmented state vector 

given as Eqn. 30. 

𝑲𝒊 = ( 𝐾1   𝐾2)  

 
(28) 

𝒖 = −𝐾1(𝒙− 𝒙𝒔𝒔) − 𝐾2𝝈 

 
(29) 

𝛿 = (𝑥   𝜎)𝑇 (30) 

 
Fig. 2: Block diagram of gain-scheduled integral control 

The cost function can be written as follow: 

J = ∫ (𝛿𝑇𝐐𝜹𝛿 + 𝐮
𝑇𝐑𝐮)

∞

0
dt 

 
(31) 

𝐐𝜹 =  (
Q𝑥 0
0 Q𝜎

)  

 

(32) 

J = ∫ (𝛿𝐱𝑇𝐐𝒙𝛿𝐱+ 𝛿𝛔
𝑇𝐐𝝈𝛿𝛔+ 𝛿𝐮

𝑇𝐑𝛿𝐮)
∞

0
dt (33) 

4. Results and discussions 

The performance of the controller is assessed through simulations 
using MATLAB and Simulink environment. The parameters used 
in the simulation are taken from Ref. [10], considering the actua-
tors’ saturation limits. The 𝐐 and 𝐑 matrices are computed manu-

ally by trial and error tuning method. These matrices are diagonal 
and have the following values: 𝐐 =  diag(10, 10, 10, 1, 1, 1, 1, 1, 

10, 1, 1, 1) and 𝐑 = diag(0.001, 0.001, 0.001, 0.001) while for the 

weighting matrix for integral part, the numerical value is 𝐐𝛔 =
 diag(0.001, 0.001, 0.1, 0.1). 

The simulation results presented on the proposed controller are 
based on the following cases: (1) tracking of helical trajectory 
using gain-scheduled LQR control, (2) tracking of helical and 
lissajous trajectory with using gain-scheduled integral LQR con-
trol and (3) controller input for the scheduled gain and the contin-

uous gain. In the simulations, the red dotted lines represent the 
planned trajectory whereas the blue lines represent the actual tra-
jectory as a result of the designed controller. Figure 3 and Figure 4 
show the effect of gain scheduled integral LQR control on a heli-
cal trajectory. Figure 5 and Figure 6 show the same effect using a 
lissajous curve trajectory. The lissajous curve is parametrized by 
Eqn. 34 and Eqn. 35. For this simulation, A = 10, B = 5, a = 2, b = 
3 and 𝜔 = 0 are used. 

𝑥 = 𝐴sin(𝑎𝑡 + 𝜔) 

 
(34) 

𝑦 =  𝐵 𝑠𝑖𝑛 (𝑏𝑡) 

 
(35) 

 
(a) 

 
(b) 
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Fig. 3: Gain Scheduled LQR: (a) Helical trajectory tracking in 2D and 3D 

(b) Tracking of states 

 
(a) 

 
(b) 

Fig. 4: Gain Scheduled Integral LQR: (a) Helical trajectory tracking in 2D 

and 3D (b) Tracking of states 

 
(a) 

 
(b) 

Fig. 5: Gain Scheduled LQR: (a) Lissajous trajectory tracking in 2D and 

3D (b) Tracking of states 

 

 
(a) 

 
(b) 

Fig. 6: Gain Scheduled Integral LQR: (a) Lissajous trajectory tracking in 

2D and 3D (b) Tracking of states 

 

As calculated, the percentage decrease in the steady state error in 
tracking the heading angle 𝝍 of helical trajectory is 95.6% (4.3854 

to 0.222) and 56.5% (0.0865 to 0.0376) that of the lissajous curve. 
For tracking state 𝒛, a percentage decrease of 94.8% (0.1155 to 

0.0059) is observed for the helical trajectory, whereas a minor 
increase in steady state error of 4% (0.00 to 0.04) is seen for the 

lissajous curve.  It is observed that these states were largely sub-
jected to minimization of the steady state error whereas the 𝒙 and 

𝒚 states, due to the coupling, depicted very less change seen in 

Figures 4(b) and 6(b). Furthermore, the limitations of the control 
efforts need to be considered during design due to physical im-
plementation. Figure 7(a) shows the control efforts to track the 
helical trajectory for the gain-scheduled case. Due to switching 
discretely between operating points, the control input signals show 
a form of discontinuity and chattering which can affect the physi-
cal implementation of the control law. Figure 7(b) illustrates the 
elimination of chattering by the employment of a continuous gain. 

 
(a) 
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(b) 

Fig. 7: Control input for the helical trajectory: (a) gain-scheduled,                      

(b) continuous gain 

5. Conclusion 

To summarize, quadcopters have been introduced and the detailed 
mathematical model for them has been derived, which includes the 
aerodynamic drag and gyroscopic moment terms that are often 
ignored in various literatures by using the Newton-Euler approach. 

Then, a parameter varying linearized model is obtained by linear-
izing the nonlinear model around the steady state values. The LQR 
control approach is designed that uses gain scheduling as a func-
tion of the heading angle(𝜓) in order to eliminate the limitation in 

tracking caused by linearization about an operating point. The 
tolerance of the heading angle was set as 𝜓𝑡𝑜𝑙 =  𝜋/6 that would 

render the gain values over multiple operating points for the track-
ing signal. Furthermore, an integral term has been included to the 
proposed gain-scheduled controller. It is observed that the tracking 
issue is resolved with minimized steady state error in the tracking 
signals. The continuous gain control law is able to overcome chat-

tering and discontinuity problems of control input signals as ob-
served in the gain scheduled controller. To improve the tracking, 
the model can be designed such that the steady state error of the 
tracking signals 𝑥 and 𝑦 are also minimized. The designed control-

ler can be tested and implemented on a quadcopter hardware in the 
loop real time simulation, to observe and assess the performance 
of the designed controller in the real world.          

References  

[1] Nanomi K,  Kendoul F, Suzuki S, Wang W & Nakazawa D (2010), 

Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro 

Aerial Vehicles. Springer 

[2] Hoffmann GM, Huang H, Waslander SL & Tomlin CJ (2007), 

Quadrotor helicopter flight dynamics: theory and experiment. AI-

AA Guidance, Navigation and Control Conference 

[3] Okasha M, Shah J, Fauzi W & Hanouf Z (2017), Gain scheduled 

linear quadratic control of quadcopter. IOP Conference Series: Ma-

terials Science and Engineering 270, 012009 

[4] Bouabdallah S, Noth A & Siegwart R (2004), PID vs LQ control 

techniques applied to an indoor micro quadrotor. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems 

[5] Li J & Li Y (2011), Dynamic analysis and PID control for a quad-

rotor. International Conference in Mechatronics and Automation 

[6] Bouabdallah S & Siegwart R (2005), Backstepping and sliding-

mode techniques applied to an indoor micro quadrotor. IEEE Inter-

national Conference in Robotics and Automation  

[7] Nicol C, Macnab CJB & Ramirez-Serrano A (2011), Robust adap-

tive control of a quadrotor helicopter. Mechatronics 21, 927-938  

[8] Mueller WM & D’Andrea R (2013), A model predictive controller 

for quadrocopter state interception. European Control Conference  

[9] Elkholy H (2014), Dynamic Modeling and Control of A Quadrotor 

using Linear and Nonlinear Approaches. Thesis, American Univer-

sity in Cairo 

[10] Sawyer S (2015), Gain-Scheduled Control of a Quadcopter UAV. 

Thesis, University of Waterloo 

[11] Nasir A, Ahmed M & Rahmat M (2008), Performance comparison 

between LQR and PID controller for an inverted pendulum system. 

International Conference on Power Control and Optimization 

[12] Bouabdallah S, Noth A & Seigwart R (2014), PID vs LQ control 

technniques applied to an indoor micro quadrotor. Autonomous 

Systems Laboratory Swiss Federal Institute of Technology 

 

 


