

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Offline Signature Verification using Intelligent Algorithm

Kamlesh Kumari, Sanjeev Rana

Deptt. of CSE, M. M. University, Mullana, Ambala *Corresponding author E-mails:savyakamlesh@gmail.com

Abstract:-

Signature verification is important in banking, legal, financial transactions for security purpose. Offline signature verification is a complex task because active information i.e. temporal information is missing in static image. There is no standard feature extraction method for offline signature identification as in case of other behavior modalities e.g. in automatic speech recognition like LPCC (Linear Predictive Ceptral Coefficients).Our research presents an intelligent algorithm for feature extraction based on image difference of genuine signature image and questioned signature image. Six features i.e. average object area, entropy, standard deviation, mean, Euler no., and area are analyzed. Best results are reported using combination of Average Object Area, Mean, Euler No. and Area. CEDAR (Center of Excellence for Document Analysis) database is used for offline signature verification. The database consists of static signature samples taken from 55 users. The Proposed algorithm is quite efficient as it is less computationally. Experiments are performed with both models i.e. Writer-Independent (WI) system and Writer-Dependent.

Keywords: Center of Excellence for Document Analysis (CEDAR), K-nearest neighbor (kNN), Support Vector Machine (SVM), Writer-Independent (WI), Writer-Dependent (WD)

1. Introduction

Biometric system works by going through four phases. This includes image capturing phase, feature extraction phase, matching phase and decision phase. The sample is presented at sensor, which capture the unique information. This unique information is known as feature set. This is made into the form, which can be processed and known as template. This template is matched with stored database and decision is made to accept or reject the user. Physiological characteristics are related to the shape of the body.e.g Face, DNA. Behavioral modalities are related to human behavior that may change over time like signature, typing rhythm. Signature verification is important in banking, legal, financial transactions for security purpose .Proficient handwritten signature authentication system still plays a key role in data protection. Forensic Document Expert evaluates features in signature based on the abrupt change in the direction of strokes, pen lift, pen pause, letter forms etc. Letter forms are the important features for examination of signature. For legal and social acceptance, handwritten signature is used for personal authentication. Offline signature verification has been an intense research field. Forensic Science Institutes are in search of offline signature verification system that can be used in forensic analysis. Figure 1 shows Samples of three users.

Fig.1: Samples of three users

1.1 Advantages

1. Hardware expenditure is less in offline signature verification system.

2. Offline signature verification will decrease the disruption to receive practices with respect to dealings where Personal verification has to be authenticated.

Due to geographic location, emotional state, age, posture, illness etc., there are some variations in the signatures of the same person.

The paper is organized as follows: Section 1 describes the introduction. Section 2 presents the related work. Section 3 describes Architecture. Section 4 describes Experimentation. Section 5 presents the conclusion

2. Related Work

Each feature has its own significance and the contribution of discriminative feature affects the accuracy of offline signature verification system [1]. There is no standard feature extraction method for offline signature recognition as in case of automatic speech recognition [2]. Writer-Independent (WI) offline signature verification using feature extraction based on Average object area and entropy is proposed [3].Table 1 shows the features and classifier used by some of the researchers for offline signature verification.

3. System Architecture:

The figure 2 describes the architecture used for offline signature. The input to system is the images of a genuine and a questioned signature. Output of the system determines whether questioned signature is Genuine Signature or Forged.

3.1 Algorithm for feature selection:

INPUT: Offline Signature image pair

OUTPUT: Average Object Area, Mean, Euler No., Area Step 1: Resize the image pair.

Step 2: Calculate the absolute difference of image pair.

Step 3: Calculate Average Object Area, Entropy, Standard

Deviation, Mean, Euler No., and Area of the image obtained in Step-2

Step 4: Calculate the accuracy with combination of features obtained in Step 3 with proposed architecture.

Step 5:-Select the combination of features that gives more accuracy.

3.2 Datasets Details:-

Publically available database CEDAR [17] is used. The training data set contained offline signatures (24 original, 24 forged) of each of the 55writter. The database comprises of 1320 offline genuine images and 1320 offline forged signature images corresponding to 55 signers. The motivation was to test that system whether it works on input that it has never seen. Two forgeries differ from each other is not important to us. Table 2 shows the feature values extracted for Genuine Signature pair for one user. Table 3 shows Feature values extracted for Genuine – Forged Signature pair for one user.

Tuble 1. I cutules used by researcher				
Feature Extraction	Offline	Classifier	Ref:	
	Database			
Histogram of	CEDAR	SVM	4	
Templates (HOT)				
Global and Local	Manipuri	SVM	5	
Features	signature			
Histogram of curvature	UTSig	SVM	6	
(HOC) and histogram of				
gradient (HOG)				
Geometric and local	DB1	Artificial	7	

Table 1. Features used by researcher

binary pattern		Neural Network	
onary pattern		Support Vector	
		Machine	
HOG	15 People	GPNN(General	8
noo	databasa	DAMNN(General Decreasion Neurol	0
	uatabase	Networks)	
Dramo and		modified V meanest	0
Pyramid	FIDA	modified K-nearest	9
histogram of oriented	FUM-	neighbor (MKNN)	
gradient (PHOG)	PHSDB		10
KAZE	MCYT-75	SVM	10
Invariant Directional		Longest Common	11
Feature		Subsequence	
		algorithm	
		(LCS)	
KAZE	CEDAR	SVM	12
features in the BoVW			
model			
ULBP	BHSig260,	Nearest Neighbour	13
	GPDS-100	(NN) Euclidian	
		distance	
Entropy Eccentricity,		Artificial Neural	14
Standard Deviation.		Networks ANNs):	
Convex Area and			
orientation			
LDP.LBP. LDerivP	MCYT	k-Nearest Neighbor	15
,,		Classifier (KNNC)	
		Linear Discriminant	
		Classifier (LDC)	
Zernike moments	CEDAR	Harmonic mean	16
Zernike moments	CLDAK	discimilarity	10
		uissiinianty	
		measure	

Images

Table 2: Feature values extracted for Genuine Signature pair

	Average	Standard		Euler	
Entropy	Object area	Deviation	Mean	No.	Area
0.377511	16.04762	0.26037	0.073134	-18	724
0.380287	13.89796	0.261611	0.073893	-14	730.75
0.346965	10.89091	0.246532	0.064996	-18	643.5
0.392051	15.8	0.266841	0.077148	-19	763.625
0.373523	12.5283	0.258582	0.072049	5	708.625
0.374322	14.17021	0.258941	0.072266	-6	711.875
0.361812	11.14035	0.253301	0.068902	-9	682.25
0.321402	8.693548	0.234671	0.058485	-23	588.125
0.333463	10.125	0.240301	0.061523	-29	616.5
0.396696	15.38298	0.268894	0.078451	0	765.625
0.37192	15.34884	0.257863	0.071615	-12	698.25
0.352781	17.02778	0.249193	0.066515	-26	660.625
0.350295	9.790323	0.248057	0.065864	-23	658.875
0.317913	8.428571	0.233031	0.057617	-21	577.875
0.313081	11.81818	0.23075	0.056424	-2	554.125
0.408161	15.36735	0.273931	0.081706	-29	808.25
0.37192	9.041096	0.257863	0.071615	-24	714.75
0.369106	8.945205	0.256596	0.070855	-13	703.875
0.372722	12.49057	0.258223	0.071832	-24	712.75
0.3683	11.22414	0.256233	0.070638	0	695.5
0.298804	7.625	0.223949	0.052951	-4	525.5
0.375121	9.970149	0.259299	0.072483	-42	729.5
0.335167	7.320513	0.241091	0.061957	-14	620.75

 Table 3: Feature values extracted for Genuine – Forged Signature pair

	Average				
	Object	Standard		Euler	
Entropy	area	Deviation	Mean	No.	Area
0.269661	9.042553	0.209746	0.046115	-2	458
0.3091	10.01961	0.228863	0.055447	3	547.75
0.286028	8.846154	0.217777	0.049913	11	487.375
0.282791	8.388889	0.2162	0.049154	-6	489.25
0.321837	10.8	0.234876	0.058594	9	575.875
0.300608	7.6875	0.224813	0.053385	12	526.25
0.280468	6.892308	0.215065	0.048611	18	477.875
0.286489	6.779412	0.218002	0.050022	9	497.625
0.279536	6.194444	0.214609	0.048394	31	474.125
0.257198	7.388889	0.20353	0.043294	17	425.375
0.351124	9.369231	0.248437	0.066081	29	640.125
0.261061	8.847826	0.205467	0.044162	7	434.375
0.268711	8.46	0.209276	0.045898	20	449.625
0.295182	10.66667	0.222207	0.052083	17	508.625
0.275324	11.5	0.212542	0.047418	20	462.125
0.31966	9.067797	0.233853	0.058051	13	569
0.282791	11.92105	0.2162	0.049154	12	479.5
0.298353	10.3617	0.223732	0.052843	15	516.5
0.250373	7.403846	0.200086	0.041775	13	410.75
0.297901	9	0.223515	0.052734	19	513.5
0.251353	7.588235	0.200582	0.041992	19	410.875
0.286489	10.47727	0.218002	0.050022	12	490.25
0.309987	8.142857	0.229284	0.055664	9	550.5

4. Experimental Setup:

The results are reported using 5-fold cross validation. K-nearest neighbor (kNN), Boosted Tree and SVM are used for classification.

4.1 Experiment Using Combination Of Features:

The experiments were performed with various combinations of features. The table 4 shows that Average Object Area, Euler Number is significant features. The

Combination of Average Object Area, Euler Number, Table 4: Accuracy (%)

means and Area gives better result using SVM. The Performance of the two features i.e. entropy and Standard Deviation are not as good as Euler Number. The combination of Average Object Area, Euler Number, means and Area gives better result using KNN and Boosted Tree also as compared to another feature.

Sample	Features	SVM	KNN	Boosted
Size				Tree
20	Average Object	87.9	82.9	86.7
	Area+mean+Euler+Area			
	Euler	86.3	64.1	86.3
15	Average Object	86.4	82.4	86.4
	Area+mean+Euler+Area			
	Euler	85.9	66.5	85.9
10	Average Object	87.4	82.1	87.4
	Area+mean+Euler+Arean			
	Euler	85.5	73.4	85.5
5	Average Object	84.4	81.1	84.4
	Area+mean+Euler+Area			
	Euler	83.5	73.6	83.5

Table 5: Accuracy w.r.t varying number of training samples

4.2. Experiment with different sample size:

The experiments were performed with different sample size. Accuracy increases with the sample size increase as shown in table 5.

4.3 Experiment with different signer:

Table 6 shows Accuracy decreases with more signers.

	Table 6: Accuracy decreases with more signers				
Users	Features	SVM	KNN	Boosted	
				Tree	
10	Average Object	91	87.8	89.1	
	Area+mean+Euler No.+Area				
	Euler No.	87.6	78.5	88	
20	Average Object	90.2	88.9	89.2	
	Area+mean+Euler No.+Area				
	Euler No.	88.2	80.7	87.9	
30	Average Object	88.8	84.9	87.8	
	Area+mean+Euler No.+Area				
	Euler No.	87.8	71.2	87.8	
40	Average Object	89.0	83.4	87.7	
	Area+mean+Euler No.+Area				
	Euler No.	87.8	67.0	87.9	

4.4 Experiment with each user:

The experiments were performed with each user using combination of

selected features (i.e. Average Object Area, Mean, Euler No., and Area) as mentioned in feature selection algorithm. Writer dependent model have more accuracy than writer independent model. For some user, we obtain 100 % accuracy as table 7 shows.

5. Conclusion

In this paper, an intelligent algorithm for offline signature authentication has been presented. The algorithm is tested against CEDAR dataset using KNN, SVM and Boosted Tree. The comparison of the proposed algorithm with other research is generally considered a rather hard task due to various degrees of freedom regarding the type or number of signatures utilized during the training and testing phase. Proposed algorithm is quite efficient as it is less computationally. The numbers of signature pair used in WI model are less for each user as compared to other research .WD model gives better result than WI using proposed algorithm.

Acknowledgment

The author would like to thank the CEDAR research group that built CEDAR signature dataset.

Table 7: Accuracy (%) for each WI mode	1
--	---

User	Svm	Knn	Boosted Tree(Bag)
1	91.3	95.7	96
2	89	91.3	93
3	97.8	93.5	97.8
4	93.5	91.3	93.5
5	91.3	87	82.6
6	97.8	95.7	95.7
7	89.1	89.1	87
8	91.3	91.3	91.3
9	97.8	97.8	95.7
10	100	100	100
11	97.8	97.8	95.7
12	97.8	93.5	97.8
12	97.8	97.8	97.8
14	100	100	97.8
14	07.8	07.8	01.3
15	97.8	97.8	91.5
10	100	100	97.8
17	100	100	97.8
10	78.2	100	71.0
19	18.3	09.0	/8.3
20	93.5	84.8	93.5
21	80.4	/8.3	80.4
22	67.4	69.6	63
23	56.5	54.3	50
24	93.5	93.5	93.5
25	100	100	100
26	89	89	89
27	97.8	95.7	97
28	100	97.8	89.1
29	93.5	95.7	91.3
30	97.8	97.8	97.8
31	93.5	8/	91.3
32	100	100	100
33	97.8	97.8	100
34	97.8	97.7	97.8
35	95.7	97.8	97.8
36	91.3	78.3	87
37	97.8	978	95.7
38	93.5	95.7	97.8
39	65.2	65.2	63
40	87	84.8	84.8
41	97.8	97.8	97.8
42	71.7	73.9	84.8
43	95.7	95.7	89.1
44	89.1	82.6	89.1
45	91.3	91.3	95.7
46	100	100	97.8
47	84.8	78.3	82.6
48	69.6	65.2	67.4
49	91.3	89.1	93.5
50	97.8	93.5	95.7
51	89.1	87	89.1
52	84.8	80.4	82.6
53	80.4	76.1	87
54	97.8	95.7	97
55	89	89	89

References

- Kamlesh Kumari, V.K Shrivastava, "Factors Affecting the Accuracy of Automatic Signature Verification ",IEEE,2016
- [2] Kamlesh Kumari, V.K Shrivastava, "A Review of Automatic Signature Verification", ICTCS, 2016
- [3] Kamlesh Kumari, Sanjeev Rana "Writer-Independent Off-Line Signature Verification", International Journal of Computer Engineering & Technology (IJCET),9(4),2018,pp.85-89

- [4] Boudamous, Feriel, et al. "An-open system for off-line handwritten signature identification and verification using histogram of templates and SVM." Advanced Technologies for Signal and Image Processing (ATSIP), 2017 International Conference on. IEEE, 2017.
- [5] Longjam, Teressa, and Dakshina Ranjan Kisku. "A supervised manipuri offline signature verification system with global and local features." Embedded Computing and System Design (ISED), 2017
- [6] Soleimani, Amir, Kazim Fouladi, and Babak N. Araabi. "Persian offline signature verification based on curvature and gradient histograms." Computer and Knowledge Engineering (ICCKE), 2016 6th International Conference on. IEEE, 2016.
- [7] Kumar, Ashok, and Karamjit Bhatia. "A robust offline handwritten signature verification system using writer independent approach." Advances in Computing, Communication & Automation (ICACCA2017), 3rd International Conference on. IEEE, 2017.
- [8] Taşkiran, Murat, and Zehra Gülru Çam. "Offline signature identification via HOG features and artificial neural networks." Applied Machine Intelligence and Informatics (SAMI), 2017 IEEE 15th International Symposium on. IEEE, 2017.
- [9] Harfiya, Latifa Nabila, Agus Wahyu Widodo, and Randy Cahya Wihandika. "Offline signature verification based on pyramid histogram of oriented gradient features." *Informatics and Computational Sciences (ICICoS), 2017 1st International Conference on.* IEEE, 2017.
- [10] Okawa, Manabu. "Offline Signature Verification with VLAD Using Fused KAZE Features from Foreground and Background Signature Images." *International Conference on Document Analysis and Recognition (ICDAR,*. IEEE, 2017.
- [11] Salama, Mostafa A., and Walid Hussein. "Invariant directional feature extraction and matching approach for robust off-line signature verification." *Image, Vision and Computing (ICIVC), International Conference on.* IEEE, 2016.
- [12] Okawa, Manabu. "Offline signature verification based on bag-ofvisual words model using KAZE features and weighting schemes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2016.
- [13] Pal, Srikanta, et al. "Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset." 2016 12th IAPR Workshop on Document Analysis Systems (DAS). IEEE, 2016.
- [14] Chauhan, Prachi, Subhash Chandra, and Sushila Maheshkar. "Static digital signature recognition and verification using neural networks." *Information Processing (IICIP), 2016 1st India International Conference on.* IEEE, 2016.
- [15] Swapna, D., et al. "A survey on local patterns for signature verification." Communication and Signal Processing (ICCSP), 2016 International Conference on. IEEE, 2016.
- [16] Chen, Siyuan, and Sargur Srihari. "Use of exterior contours and shape features in off-line signature verification." Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on. IEEE, 2005.
- [17] www.cedar.buffalo.edu/NIJ/publications.html