

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.12) (2018) 13-19

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Software Agent Based Technique for Load Balancing in

Partitioned Cloud

Mandeep Kaur
1
, Dr. Rajni Mohana

2
*

1 School of Computer Applications, Lovely Professional University, Phagwara, Punjab (India)

2Computer Science & Engineering and Information Technology, Jaypee University of Information Technology,
Waknaghat, Solan (India)

*Corresponding author E-mail: rajni.mohana@juit.ac.in

Abstract

Large number of users are shifting to the cloud system for their different kind of needs. Hence the number of applications on public cloud
is increasing day by day. Public clouds considered and is the most convenient platform for common cloud users with generic needs and

lesser security concerns. Public cloud can cater to the needs of a large group of users and provide a variety of services. Lower cost and
timely availability are the other advantages one expects from public clouds. These features make it very much convenient and attractive
choice. But on the other hand, handling public cloud become unmanageable in comparison to other counterparts. Monitoring so many
users, tasks and resources are difficult task. Sometimes public clouds are divided on geographically. Geographic partitioning of public
cloud can resolve these issues by adding manageability and efficiency in this situation. But, partitioned clouds introduce different ends
for submission and operations of cloudlets and virtual machines. This ends for task submission and resource allocation adds complexities
also. A concrete mechanism is to be designed for handling the load allocation and processing of the nodes. The proposed work is ad-
dressing the same issue by advising a combination of centralized and decentralized load balancing. The main objective of this work is to

fix a VM for a cloudlet, which can process it in minimum time and without overloading or underloading the datacenters. Another objec-
tive under consideration is to reduce the number of jobs left unhandled due to threshold constraints.

Keywords: Cloud Computing, Public Clouds, Geographical Cloud Partitioning, Software Agents, Centralized Load Balancing, Decentralized Load Bal-

ancing, Static Load Balancing..

1. Introduction

This Cloud Computing has the potential to affect a large part of IT
industry. Nowadays developers need not to concern about the
over-provisioning or under-provisioning of resources. Elasticity of
resources without spending a large amount of funds is a unique
concept of its kind [1]. Basic characteristics of Cloud Computing

such as user friendliness, virtualization, automatic adaptation,
scalability, resource optimization, pay-per-use, service SLAs,
infrastructure SLAs etc. is attracting users in masses [2]. Cloud
Computing is proving itself so beneficial, but the performance and
efficiency of services is needed to be maintained. Handling con-
current jobs, users and processes through such a large set of ma-
chines is a very difficult task. Load balancing is one of the major
concerns in success of cloud computing. Imbalanced load among
servers is a major challenge in cloud computing. Many kinds of

troubles occur due to overloaded as well as under load servers.
Under loaded servers cause energy inefficiency, inefficient use of
resources and add on to the management overheads. On the other
hand overloaded servers can cause delay in response, low speed of
processing, decreased throughput, increased makespan etc. To
handle both these situations it is very important to adapt a load
balancing mechanism which can distribute tasks evenly among all
available servers. But load balancing is not a very simple task as it

seems. Load management becomes even more challenging when
we are considering a large public cloud. A public cloud has nu-
merous nodes, scattered around in various geographic locations.

Small partitions are more manageable as compared to a large
group of nodes. So handling load will become simple and effi-
cient.

Further, use of Software Agents can increase the efficiency and
management of these partitions. By adding software agents to our

load balancing mechanism we can expect all the advantages asso-
ciated with a common set of characteristics of software agents.
Software agents add intelligence and automation to the processes.
Being autonomous in nature, agent based components do not de-
mand much of the user intervention. Interoperability makes agents
to communicate with users, applications and other agents. This
feature also facilitates extensibility. An agent can learn from and
respond to the environment, it is deployed in. Above all the agents
can be trained as per individual requirements of its user entities.

Involving all above features in load balancing mechanism can
prove amazingly beneficial. This paper is an attempt to implement
Software agents along with the concept of cloud partitioning. With
the help of software agents we expect improved speed, better effi-
ciency, reduced throughput and reduced makespan.

1.1 Contribution

Following a static threshold value to decide a service providing

node in public cloud can cause less than optimal utilization of
resources. Public cloud is an integration of a large number of re-
sources and handling large number of users and their requests. At
a given time there can be drastic changes in load status of the

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:rajni.mohana@juit.ac.in

14 International Journal of Engineering & Technology

nodes. The proposed algorithm considers a node for load alloca-
tion beyond the threshold values allocated to it. Another area
aimed in current work is to reduce the execution and wait time of
job by allocating cloudlets to the nodes with the best possible set
of available resources and least execution time.

1.2 Paper Structure

In following sections of this paper, a decentralized load manage-

ment technique is discussed. Section-II contains the background of
partitioned public cloud and load balancing. Section-III contains
the terminology, commonly used under current context. Section-
IV discusses various metrics used for evaluation of load balancing
algorithms. Section-V explains the literature review and existing
work done in this area. In Section-VI contains the details about the
proposed methodology of load balancing. Section-VII shows an
experimental, simulation-based evaluation along with the retrieved.

Section-VIII Finally, concludes this paper and identifies paths for
future work. At the end all the references are mentioned in Sec-

tion-IX.

2. Background

A public cloud is comprised of the infrastructure and computa-
tional resources, which are available for common public. Its own-
ership and operation rest with an operator. Consumer uses infra-

structure external to his organization. Public cloud gives its con-
sumers very limited control over the infrastructure and computing
resources. Another attribute of public cloud is that it accommo-
dates a large number of nodes in it. These nodes are geographical-
ly scattered around the world. Managing such a large number of
geographically distant nodes is very complex. Implementing load
balancing in such clouds is a very difficult task. Collecting load
information of all these nodes and then using this information for

balancing load is almost infeasible. It is a challenging job to de-
cide which task to be allocated to which node, which node is over-
loaded or which node is underloaded. Hence, it is better to divide
these large clouds in smaller partitions.

3. Terminology

3.1 Public Cloud

Provides scalable and elastic IT-enabled capabilities to customers
who are not part of providers’ organization. Public cloud compu-
ting promotes scaling and sharing of resources which helps users
in saving cost and offers multiple options to choose an appropriate

technology.

3.2 Cloud Partitioning

When a cloud environment is very large and complex it can be
divided in small parts. It simplifies the cloud management, includ-
ing load balancing. [3]

3.3 Cloud Partitions

A cloud partition is a Subarea in large cloud which can be man-
aged separately. While load balancing every partition represents
an individual, independent unit which can be assigned to tasks. [3]

3.4 Workload

The workload is the total time, which a processor takes to com-
plete tasks allocated to it. [4]

3.5 Load Balancing

Process to systematically distribute the tasks to various nodes,
ensuring that none of the nodes are overloaded or underloaded. [5]

4. Metrics

Following metrics can be considered to evaluate the performance
of a load balancing algorithm.

4.1 Makespan

Makespan can be described as the longest time of processing by

when all the jobs would have been finished on all the hosts in a
cloud. This parameter is one of the most important criteria to eval-
uate performance of load balancing algorithms. Minimal
makespan is desired from an algorithm. [6]

4.2 Number of Overloaded Hosts

A predefined threshold value defines if a host is overloaded or not.
Count of such hosts, exceeding the threshold values is important

to determine the overall status of the system.
Overloaded hosts are considered a risk to SLA fulfillment as these
directly affect the performance of cloud. The aim of algorithm
should be to minimize the number of overloaded hosts. [7]

4.3 Inter-host Communication Cost

For any migration, communication is required between host, VMs
and other hosts. There is a communication cost involved in this in
the form of the number of messages being passed, time taken to

process those messages, resources being consumed in communica-
tion etc. Load balancing algorithm should be able to minimize this
cost.

4.4 Percent of all VMs to be located in the Host

This parameter shows the minimum and maximum percentage of
VMs to be located in a host. This parameter has a limitation that
only a count of VMs is considered and not other parameters.

Hence, in case VMs are heterogeneous, this parameter does not
provide the exact load status of each cloud. [8]

4.5 Throughput

This parameter determines how fast a host can produce output to
requests submitted to it. The maximum rate at which a host can
finish jobs allocated to it is its throughput. Throughput depends
upon various factors such as load at a time, data rate, resource

availability etc. [9]

4.6 Average Imbalance Level

This is a parameter to determine deviation of multiple resources
on all hosts and then combines them together with weights to de-
note the load balance effect. This parameter considers multiple
resources like CPU, memory and bandwidth together. [10]

4.7 Capacity-Makespan

This parameter is derived from the makespan. It considers the
required capacity and processing time. Capacity makespan is cal-
culated by finding sum of product of required capacity and its
processing time. [11]

International Journal of Engineering & Technology 15

4.8 Imbalance Score

This metric considers multiple resources. It helps in determining
the extent to which a host is being over-utilized, above a pre-
defined threshold. All hosts’ individual imbalance score is to be

summed up to calculate overall imbalance of a system. Any load
balancing algorithm which cares about this metric has to minimize
its value. [12]

4.9 Number of Migrations

VM migration is an effective way to implement load balancing.
But contrary to this, it causes performance degradation. A trade-
off is to be maintained between load balancing and performance

level. This parameter cannot be used alone for affective load bal-
ancing. [13]

4.10 SLA Violation

In a cloud computing environment, resources are provided in the
form of services, as per need specified in requests. While provid-
ing these services, clients as well as providers have to stick to an
SLA. The main cause of SLA violation can be migrations. Hence

efforts are required to be made to minimize the SLA violations.
[14]

5. Potential of Use Of Software Agents

Software Agents are the kind of programs with ability to make
decisions regarding what is required to be done in a particular
situation. These possess the ability to work autonomously. When

deployed in a system, multiple agents are put together to achieve
system goals. The existence of multiple agents in the system cre-
ates need of abilities like Cooperation, Collaboration and Negotia-
tion. There are various decision making points in the processes of
cloud computing where user has to decide about the providers’
selection, service and cost negotiations, finalizing the services
according to specific needs and drafting SLAs. On the other hand,
providers have their own part of decision making which involves

selecting requests according to availability of resources, carrying
out the execution of selected tasks, to predict future requirements
of resources, etc. Software agents have ability to make all these
decisions on behalf of both users, as well as providers. Multi
Agents System (MAS) with pre-defines roles and responsibilities
of each agent can contribute at large scale. [15]

Each Agent having pre-defined roles and responsibilities and ca-

pabilities to work together in a cooperative and collaborative
manner. A large variety of software agents are available to choose
from for a particular use. Figure 1 shows the classification of
software agents.

Fig. 1: Classification of Software Agent [16]

6. Related Work

Load balancing in cloud computing has been a very popularly

discussed issue. Many researchers have focused their work to-
wards resolving load balancing challenges in cloud computing.
Hui Zhang et al. have discussed various issues relevant to this area
such as service availability, reliability, SLA etc. [15] . Michael

Pantazoglou et al. have suggested three algorithms for initial VM
Placement, Partial VM Migration, and Full VM Migration. These
algorithms are designed, focusing on the issues of elasticity,
scalability, high cost etc. [16]. Matthias Sommer et al. have ad-
dressed the issue of energy consumption and its effects by propos-
ing a novel proactive VM migration policy utilizing forecasts
(PRUF) in Cloud data centers using a predictive overload detec-
tion. They have used short-term VM utilization [17]. Sadeghi

Milani et al. have analyzed various existing load balancing tech-
niques and presented a comparative approach to their applicability
[18]. Stefano Sebastio et al. have suggested basic evaluation of a
cloud partitioning approach to allocate requests in volunteer cloud.
These requested tasks are validated using the Google workload
data to trace [19]. Suguna R et al. have proposed a strategic model
which dynamically partitions nodes on different cloud along with
load balancing [20]. Abhay Kumar Agarwal et al. have presented a

new algorithm based upon the existing load balancing algorithms
and have concluded that Throttled Load Balancing Algorithm is
best among all the existing algorithms in use [21]. As per the ex-
isting work discussed above, there is a need for simple as well as
reliable method which can reduce the execution time, overheads,
delays etc. and can efficiently utilize the available resources. In
comparison to the above approaches, our proposed algorithm is
combining centralized and decentralized methods of load balanc-

ing which provides control as well as flexibility and liberty to
choose the best possible options available around the cloud. Final-
ly the algorithm is evaluated with the help of common parameters.

7. Proposed Model

7.1 Assigning jobs to the cloud partition

We can use four partition status types:
1. Idle
2. Normal
3. Overload
4. Full

7.2 Significance of Full (fourth status type)

Partitioning concept is applied in case of large and public cloud.
When idle, normal or overload is calculated it sees a particular
percentage of nodes which are idle, and entire partition is declared
idle. Similarly, if a particular percentage of nodes in a partition are
overloaded the entire partition is declared overloaded. In case of
public cloud, let us say even if 90% is the threshold for overloaded

partition, 10% will hold a sufficient number of nodes to handle
minor sized jobs. But in the current model, these 10% are being
neglected. Hence, if a partition is calculated with an overload but
still has some capacity, then this capacity can be used for job which
have no time constraint, critical, small or are of high priority.

In short, in overload situation, chances of allocation are still there.
Full shows that there is no way to allocate a partition to a job, i.e.

even overloaded situation has been handled already.

For this functionality of Balancer Agent will include a tracking
record of individual nodes also. Till now, what is considered is the
sum of all the load of all nodes in a partition.

16 International Journal of Engineering & Technology

Fig. 2: Components of proposed model

7.3 Algorithm

1. While job do

2. Client Agent (CA) submits a request to the Balancer
Agent (BA)

3. BA determines the resource requirements of the job
4. BA compares request of resources with availability
5. If current partition is capable to handle job itself by

checking its load status (idle, normal, high).
6. If load status is idle or normal, then compare this parti-

tion’s capacity with requirement of resources. And if the
partition has sufficient resources, then allocate job to the

same partition.
7. If current partition is overloaded then Control is sent

over to the Central Controller Agent (CCA) traverse all
other partitions and create 2 lists:

a. List of all partitions with load status idle or
normal.

b. List of all overloaded partitions, i.e. partitions
with load status high.

8. If the count of the first list is >=1 i.e. there is any node
with load status idle or normal then

a. Single partition: Compare resources with the
requirement. If sufficient resources, then allo-
cate.

b. Multiple partitions:
i. Compare the capacity of all the par-

tition and find out one with maxi-
mum resources (for each resource
individually)

ii. Compare the requirements of re-

sources with capacity of above parti-
tion. If sufficient “all” resources,
then allocate tasks to this partition.

c. No Partition: Step 6

9. If all other partitions are showing overloaded situation,
then the node level search is required. So, collect indi-
vidual node’s load status from partition load balancers.

10. To traverse all nodes. Collect all nodes with idle or
normal load status. Store their available resource capaci-
ty.

11. Fix the nodes/partitions (node or partition depends upon

Point-1 in remaining) with maximum available capaci-
ties.

12. Compare these with the job’s resource requirement.
13. If job’s resource requirements can be fulfilled with

available “all” resources of a node, allocate the job to
that node and that partition as:

a. Single partition: Compare resources with the
requirement. If sufficient resources, then allo-

cate.
b. Multiple partitions:

i. Compare the capacity of all the
nodes and find out one with maxi-
mum resources (for each resource
individually)

ii. Compare the requirements of re-
sources with capacity of above (max)
partition. If sufficient resources,
then allocate tasks to this partition.

c. No nodes/Partition: Step 12

14. If no partition has sufficient capacity, then “No alloca-
tion is possible”.

15. End

7.4 Agents Involved in the Process

For achieving above said goals 3 software agents can be created

and deployed as follows:

Client Agent (CA)

 Submit the tasks to a resource provider

 Submit resource requirements of that task

Balancer Agent (BA)

 Located inside the partitions

 Invoked whenever a task is submitted to the relevant parti-
tion

 Makes load allocation decisions within a partition

 Does load related account keeping for a partition?

 Only access point for the controller agent to fetch, load

status of a partition

Centralized Controller Agent (CCA)

 Centralized load distributor

 It interacts with balancers for load allocation decisions

 Balancer agents invoke a controller when a partition gets

overloaded

 Invoke other partitions’ balancers to assess and share load

status

 The node is decided on the basis of the following criteria:

 Maximum amount of available resources

 Enough resources to cater the needs of the job

8. Experiments and Implementation

A multistep process is to be performed for allocating a specific
task to a resource. The primary objective is the allocation of task
in such a manner that processing time can be reduced and all the
available resources are utilized equally. For attaining these objec-
tives following set of processes are to be performed:

8.1 Overall Process

Fixing an Appropriate Partition

All the resource providers are grouped as per their geographical
location. Whenever a task is submitted, first priority is always a
provider available at the nearby location. Many economic, opera-
tional, and legal issues can be the reason behind it. But in case the
nearest possible resource provider has been already busy then
another resource provider from a neighboring partition is to be

searched. This task is the responsibility of the Controller Agent
(CCA) because that is the only global entity, having equal and
open access to all the partitions in a public cloud. Here is how it is
done:

 Acquire the list of resource providers, along with their

respective partition ids

International Journal of Engineering & Technology 17

 Acquire the load status of all the partitions, which is the

sum of load status of all the resource providers in a par-

tition

 Choose a partition wherever the maximum number of
resources are available.

Once a partition is chosen, updated load status of all the resource
providers of that partition is collected. Finally, the list of resource
providers in chosen partition are saved for further considerations.

Fixing an Appropriate ResourceProvider

Whether first step is performed or not, i.e. whether a local parti-

tion is chosen or a remote one, subsequent steps are always exe-
cuted. Finding an appropriate resource provider is the responsibil-
ity of a Balancer Agent (BA). Balancer Agent keeps track of load
status of all the resource providers under a partition and share this
status with CCA whenever it is required. The system must have
acquired the list of resource providers before initiating this step.
This list either would have acquired from CCA or the current par-
tition is the local partition itself. The next task is to fix one re-

source provider from this list. Following are the activities to be
performed for under this process:
Acquire the list of resource instances with each resource provider
in the list.

Fig. 3: Overall sequence of processes

Fixing an Appropriate ResourceProvider

Whether first step is performed or not, i.e. whether a local parti-
tion is chosen or a remote one, subsequent steps are always exe-
cuted. Finding an appropriate resource provider is the responsibil-
ity of a Balancer Agent (BA). Balancer Agent keeps track of load
status of all the resource providers under a partition and share this
status with CCA whenever it is required. The system must have

acquired the list of resource providers before initiating this step.
This list either would have acquired from CCA or the current par-
tition is the local partition itself. The next task is to fix one re-
source provider from this list. Following are the activities to be
performed for under this process:

 Acquire the list of resource instances with each resource

provider in the list.

 Acquire the load status of each instance of resources.

 Find out the resource provider with maximum number
of resource instances having available resources with

them

 Chosen resource provider and its resource instances will
be considered in subsequent steps.

The output of this process will be a resource provider along with
the list of resource instances belonging to it.

Fixing an Appropriate Instance of Resource

This step chooses the most appropriate instance of resources to
which a task can be allocated. For this selection two aspects are to
be considered: a) The task should be allocated to an instance
where it will take minimum execution time. b) The chosen node

should not be overloaded. The first aspect is straightly a relation
between the available resource capacity vs resource requirement
of the current task. Second aspect considered the already running
load or number of tasks on the resource instance. An instance,
fulfilling both the criteria, in best manner will be chosen as the
final instance where tasks can be sent. In this process following
activities are to be performed:

 Acquire the capacity of resources with each resource in-

stance.

 Acquire the resource requirement of current task.

 Compare the capacity and requirement and find out

which instance can finish the task in minimum time.

 Check if the chosen instance is already having some

pending jobs. Also, the load status due to those jobs.

 Chose the instance with minimum execution time and

appropriate load status.

The output of this process will be the resource instance to
which the task can be allocated finally.

Allocation of Task

Once the resource instance is chosen now task will be associated
with this instance. All the required parameters are set and load
status of resource instance, corresponding resource provider and

corresponding partition are updated.

8.2 Simulation setup

Table 1: Simulation Parameters

Parameter Value

Partition Count 2

Datacenter Count 4

VM Count 24 (6 bound to each DC)

Cloudlet Count 40

Datacenter Broker Count 2

VM Resources Heterogenous

Cloudlet Requirements Heterogenous

8.3 Results

Simulations are performed using the cloudSim tool as per values
specified in Table II. The proposed algorithm is evaluated based
upon two parameters which are makespan and numbers of jobs
detained (not served immediately after their arrival due to over-
loaded resources). These parameters are compared with SJF and
FCFS algorithms, implemented in similar setups. As can be seen in
Figure 2 proposed algorithm is capable to serve better count of jobs

as compared to other 2 algorithms. Reason is introduction of 4th
load state which has enhanced utilization of resources even better.
2 out of 5 times none of the jobs were left detained.

18 International Journal of Engineering & Technology

Fig. 4: No. of jobs detained due to overloaded resources

Second comparison is made between the average, maximum and
minimum makespan of 3 of these algorithms. Results obtained

from 5 times execution shows that SJF and the proposed algo-
rithms produce almost similar results, i.e. takes a similar time to
execute the assigned set of jobs. Also, as all the algorithms under
consideration handle variable count of job every time, hence
makespan is calculated considering the minimum number of jobs
being handled by any of these three algorithms.

Fig. 5: Makespan Comparison

These results show that proposed algorithm is capable to produce
better results when compared to FCFS algorithm, but more im-

provements are required to make its results better than SJF algo-
rithm.

9. Conclusion

An attempt is made in this paper to improve the performance of
job scheduling algorithms in cloudsim environment. Targeted
cloud type is Public cloud and we are considering mainly geo-
graphical partitioned cloud where the number of nodes and re-

sources are grouped together and considered for allocation to the
tasks. An attempt is made to enhance the allocation process be-
yond threshold limits. During initial implementation attempts for
achieving this target, the proposed algorithm is producing better
results than basic algorithms such as FCFS. In future, further ef-
forts can be put to implement advanced techniques of load balanc-
ing to make the performance of proposed work compatible to
more modern and advanced algorithm under use. Another point of

consideration in future work is to find a systematic method to
determine the threshold values to measure load states and appro-
priate number of load states, to efficiently handle task execution as
well as resource utilization.

References

[1] Michael Armbrust, "A View of Cloud Computing," Communica-

tions of ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] Luis M. Vaquero1, "A Break in the Clouds: Towards a Cloud Defi-

nition," ACsM SIGCOMM Computer Communication Review, vol.

39, no. 1, pp. 50-55, 2009.

[3] Xu, G., Pang, J. and Fu, X., "A load balancing model based on

cloud partitioning for the public cloud," Tsinghua Science and

Technology, vol. 18, no. 1, pp. 34-39, 2013.

[4] M. Xu, W. Tian and R. Buyya, "A survey on load balancing algo-

rithms for virtual machines placement in cloud computing," Con-

currency and Computation: Practice and Experience, pp. 1-22, 2017.

[5] K. Cho, P. Tsai, C. Tsai and C. Yang, "A hybrid meta-heuristic al-

gorithm for VM scheduling with load balancing in cloud compu-

ting," Neural Computing and Applications, vol. 26, no. 6, pp. 1297-

1309, 2014.

[6] Y. M. a. D. T. X. Song, "A Load Balancing Scheme Using Federate

Migration Based on Virtual Machines for Cloud Simulations,"

Mathematical Problems in Engineering, pp. 1-11, 2015.

[7] X. Song, Y. Ma and D. Teng, "Cloud brokering mechanisms for

optimized placement of virtual machines across multiple provid-

ers," Future Generation Computer Systems, vol. 28, no. 2, pp. 358-

367, 2012.

[8] Chaudhary, A. Bhadani and S., "Performance Evaluation of Web

Servers using Central Load Balancing Policy over Virtual Machines

on Cloud," Proceedings of the Third Annual ACM Bangalore Con-

ference ACM no. 16, pp. 1-5, 2010.

[9] Wenhong Tian, Yong Zhao, Yuanliang Zhong, "A dynamic and

integrated load-balancing scheduling algorithm for Cloud datacen-

ters," IEEE International Conference on Cloud Computing and In-

telligence Systems, pp. 311-315, 2011.

[10] Wenhong Tian, Minxian Xu, Yu Chen, "A new paradigm for the

load balance of virtual machine reservations in data centers," IEEE

International Conference on Communications (ICC), pp. 4017-4022,

2014.

[11] A. Singh, M. Korupolu and D. Mohapatra, "Server-storage virtual-

ization: integration and load balancing in data centers," Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, p. 53, 2008.

[12] Jinhua Hu, Jianhua Gu, Guofei Sun, Tianhai Zhao, "A Scheduling

Strategy on Load Balancing of Virtual Machine Resources in Cloud

Computing Environment," 3rd International Symposium on Parallel

Architectures, Algorithms and Programming, pp. 89-96, 2010.

[13] Wei-Tao Wen, Chang-Dong Wang. De-Shen Wu, "An ACO-Based

Scheduling Strategy on Load Balancing in Cloud Computing Envi-

ronment," Ninth International Conference on Frontier of Computer

Science and Technology, IEEE, pp. 364-369, 2015.

[14] Sanjay K. Dhurandher, Mohammad S. Obaidat, Isaac Woungang,

Pragya Agarwal, Abhishek Gupta, Prateek Gupta, "A Cluster-Based

Load Balancing Algorithm in Cloud Computing," IEEE ICC 2014 -

Mobile and Wireless Networking Symposium, pp. 2921-2925, 2014.

[15] Hui Zhang, Guofei Jiang, Kenji Yoshihira, and Haifeng Chen,

"Proactive Workload Management in Hybrid Cloud Computing,"

IEEE TRANSACTIONS ON NETWORK AND SERVICE MAN-

AGEMENT, vol. 11, no. 1, pp. 90-100, March 2014.

International Journal of Engineering & Technology 19

[16] Michael Pantazoglou, Gavriil Tzortzakis, Alex Delis, "Decentral-

ized and Energy-Efficient Workload Management in Enterprise

Clouds," IEEE Transactions on Cloud Computing, vol. 4, no. 02, pp.

196-209, April-June 2016.

[17] Matthias Sommer, Michael Klink, Sven Tomforde, J¨org H¨ahner,

"Predictive Load Balancing in Cloud Computing Environments

based on Ensemble Forecasting," IEEE International Conference on

Autonomic Computing, pp. 300-307, 2016.

[18] Alireza Sadeghi Milani, Nima Jafari Navimipour, "Load balancing

mechanisms and techniques in the cloud environments," Journal of

Network and Computer Applications, vol. 71, pp. 86-98, 2016.

[19] Stefano Sebastio, Antonio Scala, "A Workload-Based Approach to

Partition the Volunteer Cloud," IEEE Conference on Collaboration

and Internet Computing, pp. 2010-2018, 2015.

[20] Xiaomin Zhu, Ji Wang, Hui Guo, Dakai Zhu, "Fault-Tolerant

Scheduling for Real-Time Scientific Workflows with Elastic Re-

source Provisioning in Virtualized Clouds," IEEE TRANSAC-

TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, vol. 27,

no. 12, pp. 3501-3517, December 2016.

[21] M. Xu, W. Tian and R. Buyya, "A Survey on Load Balancing Algo-

rithms for Virtual Machines Placement," Wiley InterScience, pp. 1-

22, Feb 2017.

[22] Suguna R, Divya Mohandass, Ranjani R, "A novel approach for

Dynamic Cloud Partitioning and Load Balancing in Cloud Compu-

ting Environment," Journal of Theoretical and Applied Information

Technology, vol. 62, no. 3, pp. 662-667, 2014.

[23] Abhay Kumar Agarwal, Atul Raj, "A New Static Load Balancing

Algorithm in Cloud Computing," International Journal of Computer

Applications, vol. 132, no. 2, pp. 13-18, 2015.

