

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.10) (2018) 371-374

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Trace Crawler

E Umamahewari
1
*, Krishnaveni S

2
, Xiao-Zhi Gao

3

1School of Computing Science and Engineering, VIT University, Chennai, India.

2Assistant Professor, SRMIST, Kattankulathur, Chennai
3Lappeenranta University of Technology, FInland

*Corresponding author E-mail: umamaheswari.e@vit.ac.in

Abstract

The Object Request Broker (ORB) manages the interaction between clients and servers using the Internet InterORB Protocol (IIOP). The

ORB trace file comprises of messages, trace points, and wire tracing. These trace files are usually large and at times they can grow to 1-2

GBs. For debugging an ORB problem, the developer must determine whether the problem is in the client or in the server of the distribut-

ed application. Typically during debugging process, developer have to switch between source codes and trace logs back and forth multi-

ple times. Often browsing the right source code file, opening it in the IDE and then moving to the line from where the trace is originated.

This work proposes a tool which will help developers and service engineers to browse through source code and corresponding trace by

providing integrated framework. The Aim of the tool is to build an application to parse and analyse ORB trace files. The application will

fetch relevant details for the failing entries, and will perform the preliminary analysis. In this way a lot of time and human effort can be

saved. The customers such as defense, military organizations can themselves view relevant details about the failures of their application

by this tool, without having to compromise on confidentiality with minimal effort and time.

Keywords: Object Management Group, CORBA - Common Object Request Broker Architecture, IDE- Integrated development environment, IIOP - Inter-

net InterORB Protocol, Eclipse Plugin.

1. Introduction

T CORBA the leading middleware solution standard was devel-

oped by OMG for providing interoperability among distributed

objects. CORBA enables the exchange of information, independ-

ent of Operating systems, hardware platforms, and programming

languages [1] [2]. Essentially CORBA is a design specification for

ORB, where ORB implements the mechanism required for dis-

tributed objects to communicate with local machines or remote

machines, which were developed using different languages and

different locations in a network [3]. Traces are generated when

communication happens between client and server [4]. These trac-

es help in understanding ORB [5].

Pattern Matching Java: Java supports pattern matching via its

character and assorted string classes. Because that low-level sup-

port commonly leads to complex pattern-matching code, Java also

offers regular expressions to help write simpler code. A regular

expression, also known as a regex or regexp, is a string whose

pattern (template) describes a set of strings. The pattern deter-

mines what strings belong to the set, and consists of literal charac-

ters and metacharacters, characters that have special meaning

instead of a literal meaning. Java’s java.util.regex package sup-

ports pattern matching via its Pattern, Matcher, and PatternSyn-

taxException classes.

Eclipse Plugin Development: A software component in Eclipse is

called a plug-in. The Eclipse platform allows the developer to

extend Eclipse applications like the Eclipse IDE with additional

functionalities via plug-ins [6]. Eclipse application uses a runtime

based on a specification called OSGi. A software component in

OSGi is called a bundle. An OSGi bundle is an Eclipse plug-in.

ORB is an object Bus which enables objects to make transparent

request and send response to other objects locally and remotely

even on a different platform [7] [8]. ORB is an implementation of

CORBA and IIOP specs. An ORB uses CORBA Interface Reposi-

tory to locate and communicate with a requested component. ORB

achieves this inter-operability by assuring everything is in IDL [9].

A programmer while creating a component uses CORBA’s Inter-

face Definition Language (IDL) to declare its public interfaces or

the compiler of the programming language to translate the lan-

guage statements into appropriate IDL statements. The statements

are then stored in the Interface Repository as metadata. Applica-

tions which require simpler functionality can avoid the complexity

of CORBA and go with SOAP or REST. Currently ORB is widely

used in implementing Java EE. Standalone CORBA programs

(Either in Java or C++ or other languages) can easily communi-

cate to the Application servers like (WebSphere and WebLogic

[10]. While debugging ORB often involves browsing to the right

source code file, opening it in the IDE, moving to the line from

where the trace is originated, switch between code and logs back

forth multiple times, depending upon the problem the trace logs

can be large. This is cumbersome, frustrating and time taking pro-

cess. It is necessary for the service engineer to visualize the execu-

tion path in the code to understand what is happening instead of

manually going through all the trace points and thread related

information. Fetching relevant details for the failing entries, and

acting on the defect is a time taking process. IOR are usually rep-

resented as Strings, they contain the hostname and port of the

Object. Apart from this they also store ORB profiles. ORB pro-

files contains a variety of information ranging from ORB’s major

and minor version (Helpful in identifying the features supported

by the other ORB.). To identify an object, the server uses an ob-

ject key that is opaque to anybody except the hosting server. The

http://creativecommons.org/licenses/by/3.0/

272 International Journal of Engineering & Technology

client obtains object key from object reference. The IOR and Ob-

ject Keys are hex data that is needed to be decoded. Manual As-

sumptions may turn wrong in these cases so automating this will

help service engineer save their time and effort.

The log files grow large in size (1-2 GB) and it is hard to analyse

without a tool. In case of any urgent defect it will be hard to ana-

lyse the file all at once. If the engineer is new to ORB and wants

to know how it actually works it’s hard for them to navigate from

the trace log to source to know its exact functionality. So, having a

UI which will directly lead to source code will be beneficial. Nav-

igating to source code directly will clearly state the problem of the

defect and will take less time for the engineer to analyse the prob-

lem. Apart from all these instead of reading line by line to find the

problem a preliminary analysis can be done to know the exact

problem, so that it takes less time for the engineer to turn down the

defect.

The main aim of this work is to develop a one point ORB trace

analysis tool. The tool should be developed in such a way that the

results obtained are accurate with minimal work load. . Obtaining

relevant data based upon the exceptions occurred and providing a

clear view to the Service Engineer is also focused in this work. To

integrate the trace file with IDE an eclipse plugin is used. This

plugin creates view where ORB traces can be viewed and pattern

matching is used to get relevant data and fetch information accord-

ing the line. These data will help them in finding the cause of de-

fect quickly than usual. The hex data should be interpreted cor-

rectly and displayed when selected.

Trace Crawler will help Service Engineer to visualize the execu-

tion path in the code to understand what is happening, instead of

manually going through all the trace points and thread related

information. It will be useful for service engineers, developers

involved in WAS, ORB and similar products/applications. These

machine learning should be done in cloud so that to use more stor-

age and process resources and store the patterns [11] [12]. But

handling the security issues of cloud should be a challenge [13].

The cloud platform should ensure both the privacy and security of

the data [14].

Section 2: The detailed description of the proposed system is ex-

plained with the objectives, hardware and software requirements.

Section 3: This section deals with the proposed system architec-

ture explained using UML diagrams

Section 4: This section discusses the advantages of the proposed

system over the existing system with experimental results.

Section 5: This section discusses about the process of implementa-

tion of the proposed system.

2. Proposed System

Aim: Making it a convenient and ease of access as its one point

ORB trace analysis tool.

Objective(s)

 Integrating the trace file to IDE. Making the hex data readable.

 Provide relevant information for defect fixing. Analysing large

log files.

 Exception based Information gathering.

Hardware Requirements: Hardware - Pentium Speed - 1.1 GHz,

RAM - 8 GB, Hard Disk - 20 GB Eclipse Memory- 8GBs

Software Requirements: Operating System: Windows Family,

Linux, Technology: Java and J2EE, Eclipse IDE: Any version,

Java Version: IBM Java 8

Trace Crawler for ORB traces is flexibly designed. The Trace

Crawler is developed in such a way that it is easily understandable

to programmers and functionalities developed can be reused with

ease. Figure 1: representation view about the features of Web

Sphere Application.

An eclipse based plugin is developed as the ORB source code is in

java and most of the developers use eclipse as they can use deploy

their own plugins in it and use. So, based upon the requirements, a

separate view for the trace logs in the same IDE is created.

Fig. 1: WEBSPHERE Application

An eclipse plugin is developed with a view, is developed where

the trace file will be loaded. The complete file cannot be loaded all

at once as JVM cannot load the file all at once, a buffered reading

is used to read few lines at a time, in a way to overcome the prob-

lem of heap dump. So, to redirect the traces to source code a selec-

tion listener is added to the view which will take it to the eclipse

editor. Based upon the line selected it will use pattern matching to

find whether it is a hex data or trace line and based upon that it

will either show the decoded hex data or lead to the source code.

Based upon the exceptions in the log file the related data have to

be captured i.e. in case of communication failure the frequently

failing IP/port combinations and in case of marshal exception the

thread related information is captured.

3. System Architecture

This eclipse based plugin, revolves inside eclipse IDE. In this

plugin, the trace file and the project name from the current work-

space is loaded as the input. Two views are created in the eclipse

IDE, One is the trace view where the entire trace file will be load-

ed. This view will direct the developer to the source code of the

trace selected in the view. Apart from moving to the source file

words can be searched, like the general search operation. When

the hex data is clicked the plugin identifies what kind of data is

selected and when clicked, it will produce the relevant details.

Apart from all this an analysis can be done on the file and neces-

sary details are obtained from the trace log. According to the ex-

ceptions present in the file, data is obtained and these data is col-

lected. The Figure 2: Represents the sequence of the entire system.

This depicts the flow of the entire system.

Fig. 2: Sequence-Admin

International Journal of Engineering & Technology 273

4. Process of Implementation

The project is developed in Java Programming Language by using

the Eclipse Juno Integrated Development Environment (IDE). The

Java Development Kit (JDK) is used which includes a variety of

custom tools that helps to develop plugins.

Plugin Development: Developing an eclipse plugin as it the most

commonly used IDE among ORB developers. This plugin takes

the trace log and project name (from the current workspace) as

input. Provides us a view with trace log from where we can navi-

gate to the source code of the traces. Presenting the hex data in a

more readable format.

Filter View: In this view we get the traces for a particular excep-

tion. Thread and other related information of that exception is

represented in this module.

Post Processing Data: Collecting the data based upon the excep-

tions in that given file. Representing the data in an understandable

format. Helping the engineer to find out the problem in the defect.

Experimentation: Crawler is implemented in Java and evaluated

with the experts in ORB to verify whether it is capturing the cor-

rect data and redirecting to the correct source file. To evaluate the

performance of the tool, we can just see how quickly the file is

loaded and how file operations are happening. Handling a large

data is a big task and still some work needs to be done on it. While

handling the file operations we need to look at various techniques

to minimize the load in RAM. So loading the file completely into

memory will be a problem.

Optimization: To improve the performance of file operations a

strategy is being proposed such that the file will not be loaded into

memory and the file operations will be done directly to the file

without any memory wastage. This code is further optimized in

such a way

that it can be used for any other log files. As this is going to be

an open source plugin changes can be done depending upon the

requirements and used for other log file. This code is so generic

and making changes to it is easy as only the patterns have to be

changed.

Evaluation: A correctness evaluation of this crawler is performed

by ORB experts. The goals include: evaluating the efficiency of

Crawler in pattern matching, analysing the data from file, and

capturing the accurate data. More than performance data correct-

ness is the major evaluation for this project. As it all depends on

the data captured. These data is used in defect fixes if this data is

wrong then it will be waste of time for the engineer to find out

what went wrong.

Screen Shots: Figure 3 & 4 represents the screen shots of the de-

veloped tool. Figure 3 represents the filter view with marshal ex-

ception and Figure 4 represents the post processing data details.

Fig. 3: Filter view with marshal exception.

Fig. 4: Post processing data details.

5. Advantages of Trace Crawler

This project is application development to automate things in the

current digital technology. This helps in reducing the workload of

engineer. Computers are faster and accurate than humans so the

accurate results will be produced through this. The cumbersome

process is replaced with an interesting plugin which is easy to

install and use. It saves around 15min per defect and decreases the

turnaround times too. This can be made useful for other trace files

apart from ORB and is user friendly.

Organizational Feasibility: The application would contribute to the

overall objectives of the organization. It would provide a quick,

automatic and cost effective solution to the log files. It would

provide a solution to many kinds of log files which needs a look

up to the source code. As the new system is flexible and scalable it

can also be upgraded and extended to meet other complex re-

quirements which may arise in the future.

Economic Feasibility: The project is economically feasible as it

only requires a system with a Windows or Linux operating sys-

tem. The application needs an eclipse IDE and this plugin can be

added to it. The users should be able to understand how to give

input and navigate through files in the view.

Technical Feasibility: To develop this application, an eclipse IDE

with 4GB memory allocated to it is needed and the user is required

to have knowledge with the eclipse plugins and an understanding

of ORB is required. The current project is technically feasible as

the plugin was successfully deployed in an eclipse IDE having

Windows 7 operating system.

Behavioral Feasibility: The application is behavioral feasible since

it requires no technical guidance, all the modules are user friendly

and execute in a manner they were designed to.

6. Results and Discussion

This approach achieves minimizing the work load of an engineer

and automating the existing manual work. As computer work is

more efficient and accurate compared to human work this saves a

lot of time and effort. This increases the understanding over ORB

through the navigation.

Performance Metrics:

Response Time: The response of the application is accurate. As it

takes time to load to file and to display, it takes a few secs. In

these few seconds, we cannot perform any operation in eclipse

IDE as is the UI is not responsive.

Storage: The Eclipse IDE is allocated a memory of 4GB as this

memory is further used to allocate the file space. The files should

be loaded into memory and perform some operations. Large

amount of memory is allocated as these trace logs are large in size

and to minimize this memory we are further going to use _le oper-

ations so that the memory will not be affected.

274 International Journal of Engineering & Technology

Existing System - Proposed System Comparison: This is totally a

new system. The manual analysis is automated and this can be

useful for the types of trace logs generated. This automation re-

duces human effort and time. This will help the developer or engi-

neer to understand the actual working of an ORB or any other

system it wants to use. As navigating is already a part of java.

Navigating through trace files will be an addition to it. Synthesis

of process: It is challenging to map the patterns according to re-

quirements. As pattern matching is mostly accurate but can have

mismatches. The data to be captured should be very accurate to

have better pattern matching. Machine Learning plays a vital role,

since each step of the project will depend on the previously cap-

tured data. In order to capture the data, the data has to be stored in

an efficient way. So the data is stored through lists and maps. The-

se machine learning should be done in cloud so that to use more

storage and process resources and store the patterns. These lists

and maps are used to store the last searched words and their index,

as to reduce the turnaround times and perform word wraps.

7. Conclusion and Future Work

A system is proposed that will help in leading to source code

through trace logs. This is going to be a generic system which can

be used by any log file. This is going to be an open source plugin

so that those who need can change the code accordingly. This is

an automation to reduce manual effort, as automating things will

lead to minimizing the time and effort to fix a defect. Further this

plugin can be changed according to the trace logs and will help the

developers or engineers in debugging process. As of now the file

is stored in the RAM and operations are performed on it. We can

make the machine learn the common failing patterns and detect

the pattern, this will help to identify the defect in one go. These

machine learning can be done in cloud, so that more storage, and

process resources will be available to store patterns.

References

[1] What is corba? http://www.corba.org/
[2] Overview of CORBAhttp://www.cs.wustl.edu/~schmidt/corba-

overview.html

[3] CORBA::ORB Class Reference-
http://www.dre.vanderbilt.edu/Doxygen/6.0.1/html/libtao-

doc/a00122.html

[4] Common Object Request Broker Architecture (CORBA)
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.

0/com.ibm.etools.mft.doc/bc22400_.htm

[5] Common Object Request Broker Architecture-
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Ar

chitecture. Last Viewed: 14-5-2017

[6] Eclipse Plugin Develop-
menthttps://www.packtpub.com/mapt/book/application-

development/9781782160328/1. Last Viewed: 14-5-2017.

[7] The Object Request Broker (ORB) Architecture-
http://www.nyu.edu/classes/jcf/g22.3033-

007/handouts/g22_3033_011_h41.htm

[8] ORB Basicshttp://www.omg.org/gettingstarted/orb_basics.htm
[9] Object request bro-

kerhttps://en.wikipedia.org/wiki/Object_request_broker

[10] CORBA
ORBhttps://docs.oracle.com/cd/E13211_01/wle/wle50/jref/jprorb.h

tm

[11] D.M. Ajay and E. Umamaheswari, “An Initiation for Testing the
Security of a Cloud Service Provider”, Smart Innovation, Systems,

Technologies, Springer Publications 2016, Pg. No 35-41.

[12] D M Ajay, Umamaheswari .E, “Why, How Cloud Computing –
How Not, and Cloud Security Issues”, Global Journal of Pure and

Applied Mathematics (GJPAM), Volume 12, Number 1, 2016.

[13] Umamaheswari E, Ajay DM, Umang Sindal, “Scope of Internet of
Things: A Survey”, Asian Journal of Pharmaceutical and Clinical

Research, April 2017.

[14] D.M. Ajay, Umamaheswari E, “Evaluating the Efficiency of Secu-

rity Mechanisms in Cloud Environments”, International Journal of

Control Theory and Applications, Vol.9, No.51, 2016.

