

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper



## Bipolar Fuzzy Soft Hyperideals and Homomorphism of Gamma-Hypersemigroups

K.Arulmozhi<sup>1</sup>, V.Chinnadurai<sup>2</sup>, M.Seenivasan<sup>3</sup>

<sup>1</sup>Department of Mathematics, Vels Institute of Science, Technology and Advanced Studies, (VISTAS) Chennai-600117 Department of Mathematics, Annamalai University, Annamalainagar-608002 \*Corresponding author E-mail:emseeni@rediffmail.com

#### Abstract

In this paper, we introduce the concept of bipolar fuzzy soft gamma hyperideals in gamma hyper semigroups. We define bipolar fuzzy soft hyper ideals, bi-ideals and interior ideals of gamma hyper semigroups and discuss some properties.

*Keywords*: Soft set,  $\Gamma$ - hyper semigroups, bipolar valued fuzzy set, hyper ideal, homomorphism.

## 1. Introduction

Zadeh [18] introduced the concept of fuzzy sets in 1965. Algebraic hyper structures represent a natural extension of classical algebraic structures, and they were originally proposed in 1934 by Marty [7]. One of the main reasons which attract researchers towards hyperstructures is its unique property that in hyperstructures composition of two elements is a set, while in classical algebraic structures the composition of two elements is an element. Zhang [19] introduced the notion of bipolar fuzzy sets. Lee [4] used the term bipolar fuzzy sets as applied to algebraic structures. Bipolar fuzzy Γ-hyperideals in Γ-hyper semigroups was studied by Naveed Yaqoob et al [14]. Soft set theory was introduced by Molodtsov [8] in 1999, and its a new mathematical model for dealing with uncertainty from a parameterization point of view. Maji et al [6] studied the some new operations on fuzzy soft sets. Aygunoglu and Aygun [3] introduced the notion of a fuzzy soft group. The concept of bipolar fuzzy soft sets has been introduced by Naz et al [12]. Aslam et al [2] worked on bipolar fuzzy soft sets and their special union and intersection. Bipolar fuzzy soft Γ-semigroups was introduced by Muhammad Akram et al [10]. **F**-semigroups was introduced by Sen and Saha [16]. In this paper, we define a new notion of bipolar fuzzy soft Γ- hyper semigroups and investigate some of its properties with examples.

## 2. Preliminaries

In this section, we list some basic definitions.

#### Definition 2.1[16]

Let  $S = \{a, b, c, ...\}$  and  $\{\alpha, \beta, \gamma, ...\}$  be two non-empty sets. Then S is called a  $\Gamma$ -semigroup if it satisfies the conditions (i)  $a\alpha b \in S$ .

(ii) $(a\beta b)\gamma c = a\beta(b\gamma c) \forall a, b, c \in S and \alpha, \beta, \gamma \in \Gamma$ .

#### **Definition 2.2**

A map  $\circ$ : H × H  $\rightarrow$  P<sup>\*</sup>(H) is called a hyper operation or join

operation on the set H, where H is a non-empty set and  $P^*(H) = P(H) \setminus \{\phi\}$  denotes the set of all non-empty subset of H. A hypergroupoid is a set H together with a (binary) hyperoperation.

#### **Definition 2.3**

ſ

A hypergroupoid (H, $\circ$ ), which is associative, that is  $x \circ (y \circ z) = (x \circ y) \circ z$  for all x, y,  $z \in H$ , is called a hyper semigroup. Let A and B be two non-empty subsets of H. Then we define

$$A \circ B = \begin{cases} \bigcup_{a \in A, b \in B} a \circ b, & a \circ B = \{a\} \circ B \\ A \circ b = A \circ \{b\} \end{cases}$$

## Definition 2.4[1]

Let S and  $\Gamma$  be two non-empty sets. S is called a  $\Gamma$ -hypersemigroup if every  $\gamma \in \Gamma$  is a hyperoperation on S that is  $x\gamma y \subseteq S$  for every  $x, y \in S$ , and for every  $\alpha, \beta \in \Gamma$  and  $x, y, z \in H$  we have  $x\alpha(y\beta z) = (x\alpha y)\beta z$ . If every  $\gamma \in \Gamma$  is a hyper operation, then S is a  $\Gamma$ -semigroup. If  $(S, \gamma)$  is a hypergroup for every  $\gamma \in \Gamma$ , then S is called a  $\Gamma$ -hypergroup. Let A and B be two non-empty subsets of S and  $\gamma \in \Gamma$ . We define  $A\gamma B = \bigcup\{a\gamma b | a \in A, b \in B\}$ .

Also 
$$A\Gamma B = \bigcup \{a\gamma b | a \in A, b \in B \text{ and } \gamma \Gamma \} = \bigcup_{A \not B}$$
. Let S be a

 $\Gamma$ -hypersemigroup and let  $\gamma \in \Gamma$ . A non-empty subset A of S is called a  $\Gamma$ -hypersubsemigroup of S if  $a_1\gamma a_2 \subseteq A$  for every  $a_1, a_2 \in A$ . A  $\Gamma$ -semihypergroup S is called commutative if for all x, y  $\in$  S and  $\gamma \in \Gamma$  we have xyy = yyx.

**Definition 2.5 [8 ]** Let U be an universel set and E be the set of parameters. P(U) denote the power set of U. Let A be a non empty subset of E then the pair (F, A) is called a soft set over U, where F is a mapping given by  $F: A \rightarrow P(U)$ .

#### **Definition 2.6**

[18] Let X be a non-empty set. A fuzzy subset  $\mu$  of X is a function from X into the closed unit interval [0,1]. The set of all fuzzy subset of X is called the fuzzy power set of X and is denoted by FP(X).

Copyright © 2018Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **Definition 2.7**[4]

A bipolar fuzzy set A in a universe U is an object having the form  $A = \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}$ , where  $\mu_A^+: X \to [0,1]$  and  $\mu_A^-: X \to [-1,0]$ . Here  $\mu_A^+(x)$  represents the degree of satisfaction of an element x to the property and  $A = \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}$  and  $\mu_A^-(x)$  represents the degree of satisfaction of x to some implict counter property of A. For the simplicity the symbol  $\langle \mu_A^+, \mu_A^- \rangle$  is used for the bipolar fuzzy set  $A = \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}$ .

#### Definition 2.8 [2]

Let U be the universe set and E be the set of parameter. Let  $A \subseteq E$ and  $BF^U$  denotes the set of all bipolar fuzzy subsets of U. Then a pair (F, A) is called a bipolar fuzzy soft sets over U, where F is a mapping given by  $F: A \rightarrow BF^U$ .

It is defined as  $(F, A) = \{ \langle x, \mu_a^+(x), \mu_a^-(x) \rangle : x \in Uand a \in A \}$  For any

$$\begin{aligned} \mathbf{a} \in \mathbf{A}, \mathbf{F}(\mathbf{a}) &= \left\{ \left\langle \mathbf{x}, \mu_{\mathbf{F}(\mathbf{a})}^+(\mathbf{x}), \mu_{\mathbf{F}(\mathbf{a})}^-(\mathbf{x}) \right\rangle : \mathbf{x} \in \mathbf{U} \right\} \\ &= \left\langle \mu_{\mathbf{F}(\mathbf{a})}^+(\mathbf{x}), \mu_{\mathbf{F}(\mathbf{a})}^-(\mathbf{x}) \right\rangle. \end{aligned}$$

#### Definition 2.9 [2]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U, then (F, A) AND (G, B) denoted by (F, A)  $\land$  (G, B) is defined as (F, A)  $\land$  (G, B) = (H, C) where  $C = A \times B$  and  $H(a, b) = F(a) \cap G(b)$ , for all  $(a, b) \in A \times B$ .

#### **Definition 2.10 1**[2]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U, then (F, A) OR (G, B) denoted by (F, A)  $\lor$  (G, B) is defined as (F, A)  $\lor$  (G, B) = (H, C) where C = A × B and H(a, b) = F(a)  $\lor$  G(b), for all (a, b)  $\in$  A × B.

#### Definition 2.11 [2]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U then their extended union is a bipolar fuzzy soft set over U denoted by (F, A)  $\cup_{\varepsilon}$  (G, B) and is defined by (F, A)  $\cup_{\varepsilon}$  (G, B) = (H, C) where C = A  $\cup$  B, H: C  $\rightarrow$  BF<sup>U</sup> and

$$H(c) = \begin{cases} F(c) & \text{if } c \in A - B \\ G(c) & \text{if } c \in B - A \\ F(c) \cup G(c) & \text{if } c \in A \cap B \end{cases}$$

#### **Definition 2.12** [2]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U then their extended intersection is a bipolar fuzzy soft set over U denoted by  $(F, A) \cap_{\varepsilon} (G, B)$  and is defined by  $(F, A) \cup_{\varepsilon} (G, B) = (H, C)$  where  $C = A \cup B$ ,  $H: C \to BF^U$  and

 $H(c) = \begin{cases} F(c) & \text{if } c \in A - B \\ G(c) & \text{if } c \in B - A \\ F(c) \cap G(c) & \text{if } c \in A \cap B \end{cases}$ 

#### Definition 2.13[13]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U such that  $A \cap B \neq \phi$ . The restricted union of (F, A) and (G, B) is defined to be a bipolar fuzzy soft set (H, C) over U where  $C = A \cap B$  and  $H(c) = F(c) \cup G(c)$ , for all  $c \in C$ . This is denoted by  $(H, C) = (F, A) \cup_R (G, B)$ .

#### **Definition 2.14** [11]

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U such that  $A \cap B \neq \phi$ . The restricted intersection of (F, A) and (G, B) is defined to be a bipolar fuzzy soft set (H, C) over U where  $C = A \cap B$  and  $H(c) = F(c) \cap G(c)$ , for all  $c \in C$ . This is denoted by  $(H, C) = (F, A) \cap_R (G, B)$ .

#### Definition 2.15 [9]

Let (F, A) be a bipolar fuzzy soft set over U for each  $t \in [0,1]$ 

and  $s \in [-1,0]$  the set  $(F,A)^{(t,s)} = (F^{(t,s)},A)$  where  $(F,A)^{(t,s)}_a = \{x \in U | \mu_{F(a)}^p(x) \ge t, \mu_{F(a)}^N(x) \le s\}$  for all  $a \in A$ .

#### **Definition 2.16**[17]

Let  $\phi: H_1 \to H_2$  and  $h: E_1 \to E_2$  be two maps,  $A \subseteq E_1$  and  $B \subseteq E_2$ , where  $E_1$  and  $E_2$  are sets of parameters viewed on  $H_1$  and  $H_2$ , respectively. The pair ( $\phi$ , h) is called a fuzzy soft map from  $H_1$  to  $H_2$ . If  $\phi$  is a hypergroup homomorphism, then ( $\phi$ , h) is called a fuzzy soft homomorphism from  $H_1$  to  $H_2$ .

#### Definition 2.17 [3]

Let (f, A) and (g, B) be two fuzzy soft sets over  $H_1$  and  $H_2$ , respectively, and ( $\phi$ , h) be a fuzzy soft function from  $H_1$  to  $H_2$ (i) The image of (f, A) under the soft function ( $\phi$ , h) denoted by ( $\phi$ , h)(f, A), is a fuzzy soft set over  $H_2$  defined by ( $\phi$ , h)(f, A) = ( $\phi$ (f), h(A)), where for all  $b \in h(A)$  and for all  $y \in H_2$ , then

$$\Phi(f)_{b}(y) = \begin{cases} \bigvee & \bigvee \\ \varphi(x)=y & h(a)=b \end{cases} f_{a}(x), \text{ if } x \in \varphi^{-1}(y) \\ 0 & \text{ otherwise} \end{cases}$$

(ii) The inverse image of (g, B) under the fuzzy soft function  $(\phi, h)$  denoted by  $(\phi, h)^{-1}(g, B)$ , is a fuzzy soft set over B defined by  $(\phi, h)^{-1}(g, B) = (\phi^{-1}(g), h^{-1}(A))$ , where for all  $a \in h^{-1}(A)$  and for all  $x \in H_1$ ,  $\phi^{-1}(g)_a(x) = g_{h(a)}(\phi(x))$ . If  $\phi$  and h is injective(surjective), then  $(\phi, h)$  is said to be injective (surjective).

#### Definition 2.18 [15]

Let  $(\phi, \psi)$  be a fuzzy soft  $\Gamma$ -function from X to Y. If  $\phi$  is a homomorphism function from X to Y, then  $(\phi, \psi)$  is said to be fuzzy soft  $\Gamma$ -homomorphism. If  $\phi$  is isomorphism function from X to Y and  $\psi$  is one to one mapping from N to M, then  $(\phi, \psi)$  is said to be fuzzy soft  $\Gamma$ -isomorphism.

### **3.Bipolar Fuzzy Soft Γ- Hyper Ideals**

In this section, we introduce the notion of bipolar fuzzy soft gamma hyperideals in gamma semigroups and discuss some of its properties S denotes the  $\Gamma$ - hyper semigroup.

#### **Definition 3.1**

A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft  $\Gamma$ -subhypersemigroup over S if (i)  $\inf_{x \in yyz} \mu_{F(a)}^+(x) \ge \min\{\mu_{F(a)}^+(y), \mu_{F(a)}^+(z)\}$ 

(ii)  $\sup_{x \in y\gamma z} \mu_{F(a)}^{-}(x) \leq \max\{\mu_{F(a)}^{-}(y), \mu_{F(a)}^{-}(z)\} \text{ for all } x, y, z \in S, \\ \gamma \in \Gamma \text{ and } a \in A.$ 

## Definition 3.2

A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft left  $\Gamma$ -hyperideal over S if (i) inf  $u_{\tau}^{\pm}$  (x)  $\geq u_{\tau}^{\pm}$  (z)

(1) 
$$\lim_{x \in vvz} \mu_{F(a)}(x) \ge \mu_{F(a)}(z)$$

(ii)  $\sup_{x \in y\gamma z} \mu_{F(a)}^{-}(x) \leq \mu_{F(a)}^{-}(z) \text{ for all } x, y, z \in S, \ \gamma \in \Gamma \text{and } a \in A.$ 

**Definition 3.3**A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft right  $\Gamma$ -hyperideal over S if

- (i)  $\inf_{x \in y\gamma z} \mu_{F(a)}^+(x) \ge \mu_{F(a)}^+(y)$
- (ii)  $\sup_{x \in y\gamma z} \mu_{F(a)}^{-}(x) \leq \mu_{F(a)}^{-}(y) \text{ for all } x, y, z \in S, \ \gamma \in \Gamma \text{ and } a \in A.$

#### **Definition 3.4**

A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft  $\Gamma$ -hyperideal of S if (i) inf  $\mu^+$  (v) > max( $\mu^+$  (v)  $\mu^+$  (z))

(i)  $\inf_{x \in vvz} \mu_{F(a)}^+(x) \ge \max\{\mu_{F(a)}^+(y), \mu_{F(a)}^+(z)\}$ 

(ii)  $\sup_{x \in y\gamma z} \mu_{F(a)}^{-}(x) \leq \min\{\mu_{F(a)}^{-}(y), \mu_{F(a)}^{-}(z)\} \text{ for all } x, y, z \in S, \\ \gamma \in \Gamma \text{ and } a \in A.$ 

#### **Definition 3.5**

A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft  $\Gamma$ -hyperbi-ideal over S if (i)  $\inf_{p \in Xav \emptyset z} \mu_{F(a)}^{+}(p) \ge \min\{\mu_{F(a)}^{+}(x), \mu_{F(a)}^{+}(z)\}$ 

(ii)  $\sup_{\substack{p \in xay \beta z}} \mu_{\overline{F}(a)}(p) \le \max\{\mu_{\overline{F}(a)}(x), \mu_{\overline{F}(a)}(z)\} \text{ for all } x, y, z \in S, \\ \alpha, \beta \in \Gamma \text{ and } a \in A.$ 

#### **Definition 3.6**

A bipolar fuzzy soft set (F, A) over a  $\Gamma$ -hypersemigroups S is called a bipolar fuzzy soft  $\Gamma$ -hyperinterior ideal over S if (i)  $\inf_{p \in xav \emptyset z} \mu_{F(a)}^{+}(p) \ge \mu_{F(a)}^{+}(y)$ 

(ii)  $\sup_{\substack{p \in x\alpha y\beta z}} \mu_{F(a)}^{-}(p) \le \mu_{F(a)}^{-}(y)$  for all  $x, y, z \in S$ ,  $\alpha, \beta \in \Gamma$  and  $a \in A$ .

#### Theorem 3.7

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroups over S, then (F, A)  $\land$  (G, B) and (F, A)  $\lor$ 

(G, B) are bipolar fuzzy soft  $\Gamma$ - hypersubsemigroup of S. Proof. Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroups over S defined as (F, A)  $\land$  (G, B) where  $C = A \times B$  and  $H(a, b) = F(a) \cap G(b)$ , for all  $(a, b) \in C = A \times B$ , x, y, z  $\in S\gamma \in \Gamma$ 

$$\begin{split} \inf_{z \in x \gamma y} \{ \mu^+_{H(a,b)}(z) \} &= \inf_{z \in x \gamma y} \{ \min\{ \mu^+_{F(a)}(z), \mu^+_{G(b)}(z) \} \} \\ &= \min\{ \inf_{z \in x \gamma y} \mu^+_{F(a)}(z), \inf_{z \in x \gamma y} \mu^+_{G(b)}(z) \} \end{split}$$

 $\geq \min\{\min\{\mu^+_{F(a)}(x), \mu^+_{F(a)}(y)\}, \min\{\mu^+_{G(b)}(x), \mu^+_{G(b)}(y)\}\}$ 

- $= \min\{\{\min\{\mu_{F(a)}^{+}(x), \mu_{G(b)}^{+}(x)\}, \min\{\mu_{F(a)}^{+}(q), \mu_{G(b)}^{+}(q)\}\}\$
- $= \min\{(\mu_{F(a)}^{+} \cap \mu_{G(b)}^{+})(x), (\mu_{F(a)}^{+} \cap \mu_{G(b)}^{+})(y)\}$
- $= \min\{\mu_{H(a,b)}^{+}(x), \mu_{H(a,b)}^{+}(y)\}.$ and

 $\sup_{z \in x \gamma y} \{ \mu_{H(a,b)}^{--}(z) \} = \sup_{z \in x \gamma y} \{ \max\{ \mu_{F(a)}^{--}(z), \mu_{G(b)}^{--}(z) \} \}$ 

- $= \max\{\sup_{z \in x\gamma y} \mu_{F(a)}^{+}(z), \inf_{z \in x\gamma y} \mu_{G(b)}^{+}(z)\}$
- $\geq \max\{\max\{\mu_{F(a)}^{-}(x), \mu_{F(a)}^{-}(y)\}, \min\{\mu_{G(b)}^{-}(x), \mu_{G(b)}^{-}(y)\}\}$
- $= \max\{\{\max\{\mu_{F(a)}^{+}(x), \mu_{G(b)}^{+}(x)\}, \max\{\mu_{F(a)}^{-}(y), \mu_{G(b)}^{-}(y)\}\}\$
- $= \max\{(\mu_{F(a)}^- \cup \mu_{G(b)}^-)(x), (\mu_{F(a)}^- \cup \mu_{G(b)}^-)(y)\}$
- $= \max\{\bar{\mu_{H(a,b)}}(x), \bar{\mu_{H(a,b)}}(y)\}.$

Hence  $(F, A) \land (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup over S.Similarly it can be shown that  $(F, A) \lor (G, B)$  are bipolar fuzzy soft  $\Gamma$ -hypersub semigroup over S.

#### Theorem 3.8

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hyperleft (resp.right) ideals over S, then (F, A)  $\land$  (G, B) and (F, A)  $\lor$  (G, B) are bipolar fuzzy soft  $\Gamma$ -hyperleft (resp.right) ideals of S. Proof. Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$  -hyperleftideals over S defined as (F, A)  $\land$  (G, B) where  $C = A \times B$  and  $H(a, b) = F(a) \cap G(b)$ , for all  $(a, b) \in C = A \times B$ , x, y, z  $\in$  S and  $\gamma \in \Gamma$ .  $\inf_{z \in x \gamma y} { \mu_{H(a,b)}^+(z) } = \inf_{z \in x \gamma y} { \min\{\mu_{F(a)}^+(z), \mu_{G(b)}^+(z)\} }$ 

- $= \min\{\inf_{z \in xyy} \mu_{F(a)}^+(z), \inf_{z \in xyy} \mu_{G(b)}^+(z)\}$
- $= \min\{\mu_{F(a)}^{+}(y), \mu_{G(b)}^{+}(y)\}$
- $= \mu^+_{H(a,b)}(y)$ .

and

 $\sup_{z \in x \gamma y} \{ \mu^-_{H(a,b)}(z) \} = \sup_{z \in x \gamma y} \{ \max\{ \mu^-_{F(a)}(z), \mu^-_{G(b)}(z) \} \}$ 

- $= \max\{\sup_{z \in xvv} \mu_{F(a)}^{-}(z), \inf_{z \in xvv} \mu_{G(b)}^{-}(z)\}$
- $\leq \max\{\mu_{F(a)}^{\cdot}(y), \mu_{G(b)}^{-}(y)\}$
- $= \mu_{H(a,b)}^{-}(y)$

Hence  $(F, A) \land (G, B)$  are bipolar fuzzy soft  $\Gamma$ -left (resp.right) hyperideals over S.

Similar proof shows that  $(F, A) \lor (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -left (resp.right) hyperideals over S.

#### Theorem 3.9

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hyperbi-ideals over S, then (F, A)  $\land$  (G, B)and (F, A)  $\lor$  (G, B) are bipolar fuzzy soft  $\Gamma$ -hyperbi-ideals of S.

Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft  $\Gamma$ -hypersemigroups over S defined as (F,A)  $\land$  (G,B) where  $C = A \times B$ ,  $H(a,b) = F(a) \cap G(b)$ , for all  $(a,b) \in C = A \times B$ ,  $x, y, z \in S$  and  $\gamma \in \Gamma$ .

$$\inf_{z \in x \alpha y \beta z} \{ \mu_{H(a,b)}^+(z) \} = \inf_{z \in x \gamma y} \{ \min\{ \mu_{F(a)}^+(z), \mu_{G(b)}^+(z) \} \}$$

- $= \min\{ \inf_{z \in x\gamma y} \mu^+_{F(a)}(z), \inf_{z \in x\gamma y} \mu^+_{G(b)}(z) \}$
- $\geq \min\{\min\{\mu^+_{F(a)}(x), \mu^+_{F(a)}(z)\}, \min\{\mu^+_{G(b)}(x), \mu^+_{G(b)}(z)\}\}$
- $= \min\{\{\min\{\mu_{F(a)}^{+}(x), \mu_{G(b)}^{+}(x)\}, \min\{\mu_{F(a)}^{+}(z), \mu_{G(b)}^{+}(z)\}\}\}$
- $= \min\{(\mu_{F(a)}^{+} \cap \mu_{G(b)}^{+})(x), (\mu_{F(a)}^{+} \cap \mu_{G(b)}^{+})(z)\}$
- $= \min\{\mu_{H(a,b)}^+(x), \mu_{H(a,b)}^+(z)\}.$

$$\sup_{\varepsilon \propto \alpha \gamma \beta z} \{ \mu_{H(a,b)}^{-}(z) \} = \sup_{z \in x \gamma \gamma y} \{ \max\{ \mu_{F(a)}^{-}(z), \mu_{G(b)}^{-}(z) \} \}$$

$$= \max\{\sup_{z \in x\gamma y} \mu_{F(a)}^{+}(z), \inf_{z \in x\gamma y} \mu_{G(b)}^{+}(z)\}$$

- $\leq \max\{\max\{\mu_{F(a)}^{-}(x), \mu_{F(a)}^{-}(z)\}, \min\{\mu_{G(b)}^{-}(x), \mu_{G(b)}^{-}(z)\}\}$
- $= \max\{\{\max\{\mu_{F(a)}^{-}(x), \mu_{G(b)}^{-}(x)\}, \max\{\mu_{F(a)}^{-}(z), \mu_{G(b)}^{-}(z)\}\}\}$
- $= \max\{(\mu_{F(a)} \cup \mu_{G(b)})(x), (\mu_{F(a)} \cup \mu_{G(b)})(z)\}\$
- $= \max\{\mu_{H(a,b)}^{-}(x), \mu_{H(a,b)}^{-}(z)\}.$

Hence  $(F, A) \land (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hyperbi-ideal over S.

It can be similarly proved that  $(F, A) \lor (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hyperbi-ideal over S.

#### Theorem 3.10

z

Let (F, A) and (G, B) be two bipolar fuzzy soft

 $\Gamma$ -hypersubsemigroups over S, then  $(F, A) \cap_{\varepsilon} (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroups of S.

Proof. Let (F,A) and (G,B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroups over S as defined

$$(F, A) \cap_{\varepsilon} (G, B) = (H, C)$$
 where  $C = A \cup B$   
 $H(c) = (F(c))$ 

$$H(c) = \begin{cases} F(c) & \text{if } c \in A \setminus B \\ G(c) & \text{if } c \in B \setminus A \\ F(c) \cap G(c) & \text{if } c \in A \cap B \end{cases}$$

 $\begin{array}{ll} Case(i) \ c \in A \backslash B \ and \ \gamma \in \Gamma \\ & \inf_{z \in x \gamma y} \{ \mu^+_{H(c)}(z) \} & = & \inf_{z \in x \gamma y} \mu^+_{F(c)}(z) \\ & \geq & \min\{ \mu^+_{F(c)}(x), \mu^+_{F(c)}(y) \} \\ & = & \min\{ \mu^+_{H(c)}(x), \mu^+_{H(c)}(y) \} \\ & \text{and} \\ & \sup_{z \in x \gamma y} \{ \mu^-_{H(c)}(z) \} & = & \sup_{z \in x \gamma y} \mu^-_{F(c)}(z) \\ & \leq & \max\{ \mu^-_{F(c)}(x), \mu^-_{F(c)}(y) \} \\ & = & \max\{ \mu^-_{H(c)}(x), \mu^-_{H(c)}(y) \} \\ & Case(ii) \ c \in B \backslash A \ and \ \gamma \in \Gamma. \end{array}$ 

 $\inf_{z \in x\gamma y} \{ \mu_{H(c)}^+(z) \} = \inf_{z \in x\gamma y} \mu_{G(c)}^+(z)$  $\geq \min\{\mu_{G(c)}^{+}(x), \mu_{G(c)}^{+}(y)\}$  $\min\{\mu_{H(c)}^+(x), \mu_{H(c)}^+(y)\}$ = and  $\sup_{z \in x\gamma y} \{ \mu_{H(c)}^{-}(z) \} = \sup_{z \in x\gamma y} \mu_{G(c)}^{-}(z)$ z∈xγy  $\max\{\mu_{G(c)}^{-}(x), \mu_{G(c)}^{-}(y)\}$  $\leq$  $\max\{\overline{\mu_{H(c)}}(x), \overline{\mu_{H(c)}}(y)\}$ Case (iii)  $C \in A \cap B$  and  $\gamma \in \Gamma$  then  $H(c) = F(c) \cap G(c)$  then by theorem 3.7,  $\inf_{z \in x\gamma y} \{\mu^+_{H(c)}(z)\} \ge \inf_{z \in x\gamma y} \{\mu^+_{H(c)}(x), \mu^+_{H(c)}(y)\}$  $= \min\{\mu_{H(c)}^+(x), \mu_{H(c)}^+(y)\},\$ and  $\sup_{z \in x\gamma y} \{\bar{\mu_{H(c)}}(z)\} \le \sup_{z \in x\gamma y} \{\bar{\mu_{H(c)}}(x), \bar{\mu_{H(c)}}(y)\}$  $= \max\{\mu_{H(c)}^{-}(x), \mu_{H(c)}^{-}(y)\}.$ Hence  $(F, A) \cap_{\varepsilon} (G, B)$  is a bipolar fuzzy soft

#### Theorem3.11

Γ-hypersubsemigroup over S.

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup over S, then (F, A)  $\cup_{\varepsilon}$  (G, B) is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of S. Proof. Straight forward.

#### Theorem 3.12

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hyperbi(interior) ideal over S, then (F, A)  $\cap_{\varepsilon}$  (G, B) is a bipolar fuzzy soft  $\Gamma$ -hyperbi(interior) ideal of S. Proof. Straight forward.

#### Theorem 3.13

Let (F, A) and (G, B) be two bipolar fuzzy soft- $\Gamma$ -hyper bi(interior) ideal over S, then  $(F, A) \cup_{\epsilon} (G, B)$  is a bipolar fuzzy soft  $\Gamma$ - hyperbi(interior) ideal of S. Proof. Straight forward.

#### Theorem 3.14

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup over S, then  $(F, A) \cap_R (G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of S.

Proof. Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup over S, then  $(F, A) \cap_R (G, B) = (H, C)$  where  $C = A \cap B$  and  $H(c) = F(c) \cap G(c)$  for all  $c \in C$ .

$$\inf_{z \in xyy} \mu_{H(c)}^+(z) = \inf_{z \in xyy} \{ \min\{\mu_{F(c)}^+(z), \mu_{G(c)}^+(z)\} \}$$

- $= \min\{\inf_{z \in xyy} \mu^+_{F(c)}(z), \inf_{z \in xyy} \mu^+_{G(c)}(z)\}$
- $\geq \min\{\min\{\mu_{F(c)}^{+}(x), \mu_{F(c)}^{+}(y)\}, \min\{\mu_{G(c)}^{+}(x), \mu_{G(c)}^{+}(y)\}\}$
- $= \min\{\min\{\mu_{F(c)}^{+}(x), \mu_{G(c)}^{+}(x)\}, \min\{\mu_{F(c)}^{+}(x), \mu_{G(c)}^{+}(x)\}\}$
- $= \min\{(\mu^+_{F(c)} \cap \mu^+_{G(c)})(x), (\mu^+_{F(c)} \cap \mu^+_{G(c)})(y)\}$
- $= \min\{\mu_{H(c)}^{+}(x), \mu_{H(c)}^{+}(y)\}.$

 $\sup_{z \in x \gamma y} \mu_{H(c)}^{-}(z) = \sup_{z \in x \gamma y} \{ \max\{\mu_{F(c)}^{-}(z), \mu_{G(c)}^{-}(z) \} \}$ 

 $= \max\{\sup_{z \in x\gamma y} \mu_{F(c)}^{-}(z), \sup_{z \in x\gamma y} \mu_{G(c)}^{-}(z)\}$ 

$$\leq \max\{\max\{\mu_{F(c)}^{-}(x), \mu_{F(c)}^{-}(y)\}, \max\{\mu_{G(c)}^{-}(x), \mu_{G(c)}^{-}(y)\}\}$$

$$= \max\{\max\{\mu_{F(c)}^{-}(x), \mu_{G(c)}^{-}(x)\}, \max\{\mu_{F(c)}^{-}(y), \mu_{G(c)}^{-}(y)\}\}$$

- $= \max\{(\mu_{F(c)}^- \cap \mu_{G(c)}^-)(x), (\mu_{F(c)}^- \cap \mu_{G(c)}^-)(y)\}$
- $= \max\{\mu_{H(c)}^{-}(x), \mu_{H(c)}^{-}(y)\}.$

Hence  $(F, A) \cap_R (G, B)$  is a bipolar fuzzy soft  $\Gamma$  -hypersubsemigroup of S.

#### Theorem 3.15

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -

hypersubsemigroup over S, then  $(F, A) \cup_R (G, B)$  is a bipolar

fuzzy soft –hypersub semigroup of S. Proof. Straight forward.

#### Theorem 3.16

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ -hyperbi(interior)ideal over S, then (F, A)  $\cap_{R}$  (G, B) is a bipolar fuzzy soft  $\Gamma$ -hyper bi(interior)ideal of S. Proof. Straight forward.

#### Theorem 3.17

Let (F, A) and (G, B) be two bipolar fuzzy soft  $\Gamma$ hyperbi(interior)ideal over S, then (F, A)  $\cup_R$  (G, B) is a bipolar fuzzy soft  $\Gamma$ - hyperbi(interior)ideal of S. Proof. Straight forward.

#### Example 3.18

Every bipolar fuzzy soft  $\Gamma$ -hyper ideal is bipolar valued fuzzy soft  $\Gamma$  -hypersubsemigroups but converse is not true. Let S = {a, b, c, d, e} and  $\Gamma$  = { $\gamma$ } then S is  $\Gamma$ -semihypergroup

| γ | а          | b      | с | d       | e      |
|---|------------|--------|---|---------|--------|
| а | {a, b}     | {b, e} | с | {c, d } | e      |
| b | {b, e }    | е      | с | {c, d } | e      |
| с | с          | с      | С | с       | с      |
| d | $\{c, d\}$ | {c,d } | с | d       | {c, d} |
| e | e          | e      | с | {c, d } | e      |

Let  $E = \{u, v, w, x, y\}$  and  $A = \{u, v, y\}$ . Define the bipolar fuzzy soft set (F, A) as

 $\begin{array}{l} (F, A) = \{F(u), F(v), F(y)\}, \mbox{ where } \\ F(u) = \{(a, 0.6, -0.5), (b, 0.7, -0.6), (c, 0.4, -0.2), \\ (d, 0.3, -0.1), (e, 0.9, -0.8)\} \\ F(v) = \{(a, 0.8, -0.4), (b, 0.9, -0.7), (c, 0.6, -0.3), \\ (d, 0.2, -0.1), (e, 1, -0.9)\} \\ F(y) = \{(a, 0.7, -0.8), (b, 0.8, -0.9), (c, 0.5, -0.4), \\ (d, 0.2, -0.3), (e, 1, -0.9)\} \\ \mbox{Hence } (F, A) \mbox{ is a bipolar fuzzy soft sub } \Gamma\- \mbox{hypersemigroups but} \end{array}$ 

not bipolar valued fuzzy hyperideal. Sinc  $\inf_{a \in a\gamma c} \mu_{F(a)}^+(a) \ge \max\{\mu_{F(a)}^+(a), \mu_{F(a)}^+(c)\}$ 

#### Example 3.19

Every bipolar fuzzy soft  $\Gamma$ -hyperideal is bipolar valued fuzzy soft  $\Gamma$  hyper bi-ideals but converse is not true.

Let  $S = \{a, b, c, d, e\}$  and  $\Gamma = \{\alpha, \beta\}$  then S is  $\Gamma$ -hypersemigroup

| α | а      | b      | с | d          | e      |
|---|--------|--------|---|------------|--------|
| а | {a, b} | {b, e} | с | $\{c, d\}$ | e      |
| b | {b, e} | е      | с | {c, d }    | e      |
| с | с      | с      | С | с          | с      |
| d | {c, d} | {c,d}  | с | d          | {c, d} |
| e | e      | e      | с | {c, d }    | e      |

| β | а      | b     | с | d      | e      |
|---|--------|-------|---|--------|--------|
| а | {b, e} | е     | с | {c, d} | e      |
| b | e      | е     | с | {c, d} | e      |
| с | с      | с     | С | с      | с      |
| d | {c, d} | {c,d} | с | d      | {c, d} |
| e | e      | e     | с | {c, d} | e      |

Let  $E = \{u, v, w, x, y\}$  and  $A = \{w, x, y\}$ . Define the bipolar fuzzy soft set (F, A) as

 $(F, A) = \{F(w), F(x), F(y)\}, where$ 

 $F(w) = \{(a, 0.2, -0.1), (b, 0.4, -0.3), (c, 1, -0.9), (c$ 

(d, 0.6, -0.7), (e, 0.7, -0.8)

 $F(x) = \{(a, 0.1, -0.2), (b, 0.2, -0.3), (c, 0.7, -0.8), (c,$ 

(d, 0.4, -0.5), (e, 0.5, -0.6)

$$\begin{split} F(y) &= \{(a, 0.3, -0.1), (b, 0.4, -0.2), (c, 0.9, -0.7), \\ (d, 0.6, -0.3), (e, 0.8, -0.5)\} \\ \text{Hence } (F, A) \text{ is a bipolar fuzzy soft } \Gamma \text{-hyperbi-ideal but not bipolar valued fuzzy hyper ideal,} \\ \text{Since } \inf_{\substack{a \in d\alpha e}} \mu_{F(a)}^+(a) \geq \max\{\mu_{F(a)}^+(d), \mu_{F(a)}^+(e)\} \\ &= 0.6 \geqslant 0.7. \end{split}$$

#### Example 3.20

Every bipolar fuzzy soft  $\Gamma$ -hyperideal is bipolar valued fuzzy soft  $\Gamma$  - hyper intrior-ideal but converse is not true. For the example 3.19, define the bipolar fuzzy soft set (F, A) as  $(F, A) = \{F(w), F(x), F(y)\}$ , where  $F(w) = \{(a, 0.3, -0.2), (b, 0.6, -0.5), (c, 0.9, -0.8), (d, 0.2, -0.1), (e, 0.8, -0.7)\}$  $F(x) = \{(a, 0.4, -0.3), (b, 0.5, -0.4), (c, 0.8, -0.7), (d, 0.3, -0.1), (e, 0.6, -0.5)\}$  $F(y) = \{(a, 0.3, -0.2), (b, 0.4, -0.5), (c, 0.7, -0.9), (d, 0.2, -0.1), (e, 0.5, -0.8)\}$ Hence (F, A) is a bipolar fuzzy soft  $\Gamma$ -hyperinteriorideal but not bipolar valued fuzzy soft  $\Gamma$ -hyperideal, as  $\inf_{a \in hord} \mu^+_{F(a)}(a) \ge 0$ 

 $\max\{\mu_{F(a)}^+(b), \mu_{F(a)}^+(d)\} = 0.2 \ge 0.6.$ 

#### Theorem 3.21

Let (F, A) be a bipolar fuzzy soft set over S. (F, A) is a bipolar fuzzy soft  $\Gamma$ -hypersemigroup if and only if  $(F, A)^{(t,s)}$  is a soft  $\Gamma$ -hypersemigroup of S for each  $t \in [0,1]$  and  $s \in [-1,0]$ . Proof. Assume that  $(F, A)^{(t,s)}$  is a bipolar soft  $\Gamma$ -hypersemigroup over S for each  $t \in [0,1]$  and  $s \in [-1,0]$ . For each  $x_1, x_2 \in S$  and  $a \in A$ , let  $t = \min\{\mu_{F(a)}^+(x_1), \mu_{F(a)}^+(x_2)\}$  and  $s = \max\{\mu_{F(a)}^-(x_1), \mu_{F(a)}^-(x_2)\}$ , then  $x_1, x_2 \in \mu_{F(a)}^{(t,s)}$ . Since  $\mu_{F(a)}^{(t,s)}$  is a  $\Gamma$ -hypersubsemigroup of S, then  $x_1, x_2 \in \mu_{F(a)}^{(t,s)}$ . That is  $\mu_{F(a)}^+(x_1\gamma x_2) \ge t = \min\{\mu_{F(a)}^+(x_1), \mu_{F(a)}^-(x_2)\}$  and  $\mu_{F(a)}^-(x_1\gamma x_2) \le s = \max\{\mu_{F(a)}^-(x_1), \mu_{F(a)}^-(x_2)\}$ . This shows that  $\mu_{F(a)}$  is bipolar fuzzy  $\Gamma$ -hypersubsemigroup over S. Thus (F, A) is a bipolar fuzzy soft  $\Gamma$ -hypersemigroup over S.

Conversely, assume that (F,A) is a bipolar fuzzy soft  $\Gamma$ -hypersemigroup. For each  $a \in A, t \in [0,1]$  and  $s \in [-1,0]$  and  $x_1, x_2 \in \mu_{F(a)}^{(t,s)}$ .

we have  $\mu_{F(a)}^+(x_1) \geq t, \mu_{F(a)}^+(x_2) \geq t$  and  $\mu_{F(a)}^-(x_1) \leq s$ ,  $\mu_{F(a)}^-(x_2) \leq s$ . Therefore  $\mu_{F(a)}$  is a bipolar fuzzy  $\Gamma$ -hypersubsemigroup of S. Thus  $\gamma \in \Gamma$  there exists  $z \in x_1 \gamma x_2$  such that

$$\begin{split} &\inf_{z\in x_1\gamma x_2}(z)\geq \min\{\mu_{F(a)}^+(x_1),\mu_{F(a)}^+(x_2)\}\geq t \quad \text{and} \quad \sup_{z\in x_1\gamma x_2}(z)\leq \\ &\max\{\mu_{F(a)}^-(x_1),\mu_{F(a)}^-(x_2)\}\leq s \text{. Therefore for all } z\in x_1\gamma x_2 \text{ we} \\ &\text{have } z\in \mu_{F(a)}^{(t,s)}, \text{ this implies that } x_1\gamma x_2\in \mu_{F(a)}^{(t,s)}, \text{ that is } \mu_{F(a)}^{(t,s)} \text{ is} \\ &\text{hyper } \Gamma \text{-subsemigroup of } S \text{ . Therefore } (F,A)^{(t,s)} \text{ is a soft } \\ &\Gamma \text{-hypersemigroup of } S \text{ for each } t\in [0,1] \text{ and } s\in [-1,0]. \end{split}$$

#### Theorem 3.22

Let (F, A) be a bipolar fuzzy soft set over S. (F, A) is a bipolar fuzzy soft  $\Gamma$ -hyperleft(right)ideal if and only if (F, A)<sup>(t,s)</sup> is a soft  $\Gamma$ -hyper left(right) ideal of S for each  $t \in [0,1]$  and  $s \in [-1,0]$ . Proof. Suppose that (F, A)<sup>(t,s)</sup> is a bipolar soft  $\Gamma$ -hyperleftideal of S for each  $t \in [0,1]$ ,  $s \in [-1,0]$  and  $a \in A, \gamma \in \Gamma$ . For each  $x_1 \in S$ , let  $t = \mu_{F(a)}^+(x_1)$ , then  $x_1 \in \mu_{F(a)}^{(t,s)}$ . Since  $\mu_{F(a)}^{(t,s)}$  is a  $\Gamma$ -hyper left ideal of S, then  $x\gamma x_1 \in \mu_{F(a)}^{(t,s)}$ , for each  $x \in S$ . Hence  $\mu_{F(a)}^+(x\gamma x_1) \ge t = \mu_{F(a)}^+(x_1)$  and  $\mu_{F(a)}^-(x\gamma x_1) \le s = \mu_{F(a)}^-(x_1)$ . This shows that  $\mu_{F(a)}$  is bipolar fuzzy  $\Gamma$ -hyperleftideal of S. Conversely, assume that (F, A) is a bipolar fuzzy soft  $\Gamma$ -hyper left ideal of S. For each  $a \in A, t \in [0,1]$  and  $s \in [-1,0]$  and  $x_1 \in \mu_{F(a)}^{(t,s)}$  we have  $\mu_{F(a)}^+(x_1) \ge t$ , and  $\mu_{F(a)}^-(x_1) \le s$  and by definition 3.2,  $\mu_{F(a)}^{+}$  and  $\mu_{F(a)}^{-}$  is a bipolar fuzzy  $\Gamma$ -hyper left ideal of S. Thus for  $\gamma \in \Gamma$  there exists  $z \in x\gamma x_1$  such that  $\inf_{z \in x\gamma x_1}(z) \geq \mu_{F(a)}^{+}(x_1) \geq t$  and  $\sup_{z \in x\gamma x_1}(z) \leq \mu_{F(a)}^{-}(x_1) \leq s$ . Therefore for all  $z \in x\gamma x_1$  we have  $z \in \mu_{F(a)}^{(t,s)}$ , that is  $\mu_{F(a)}^{(t,s)}$  is hyper  $\Gamma$ -left ideal of S. Therefore  $(F, A)^{(t,s)}$  is a soft  $\Gamma$ -hyper left ideal of S for each  $t \in [0,1]$  and  $s \in [-1,0]$ . Similar proof holds for right ideal also.

#### Theorem3.23

Let (F, A) be a bipolar fuzzy soft set over S, (F, A) is a bipolar fuzzy soft  $\Gamma$ -hyperideal if and only if  $(F, A)^{(t,s)}$  is a soft  $\Gamma$ -hyperideal of S for each  $t \in [0,1]$  and  $s \in [-1,0]$ . Proof. The proof follows from theroem 3.22

# **4.Bipolar Fuzzy Soft Image and Inverse Image of Hyper Γ-Semigroups**

#### **Definition 4.1**

[9] Let  $\eta: H_1 \to H_2$  and  $\psi: A \to B$  be two functions, A and B be two parametric sets from the crisp sets  $H_1$  and

 $H_2$ ,respectively.Then the pair  $(\eta, \psi)$  is called a bipolar fuzzy soft function from  $H_1$  to  $H_1$ .

#### **Definition 4.2**

Let (F, A) and (G, B) be two bipolar fuzzy soft sets over the sets  $H_1$  and  $H_2$ , respectively, and  $(\eta, \psi)$  be a bipolar fuzzy soft map from  $H_1$  to  $H_2$ .

(i) The image of (F, A) under  $(\eta, \psi)$  denoted by  $(\eta, \psi)(F, A)$ , is a bipolar fuzzy soft set over H<sub>2</sub> defined by  $(\eta, \psi)(F, A) = (\eta(F), \psi(A))$ , where for all  $b \in \psi(A)$  and for all  $y \in H_2$ ,

$$\begin{split} \mu^+_{\eta_{F(b)}}(y) &= \left\{ \begin{array}{cc} \sup_{\eta(x)=y\psi(a)=b} \mu^+_{F(a)}(x), & \mbox{if}\eta^{-1}(y) \neq \varphi \\ 0 & \mbox{otherwise} \end{array} \right. \\ \mu^-_{\eta_{F(b)}}(y) &= \left\{ \begin{array}{cc} \inf_{\eta(x)=y\psi(a)=b} \mu^-_{F(a)}(x), & \mbox{if}\eta^{-1}(y) \neq \varphi \\ 0 & \mbox{otherwise} \end{array} \right. \end{split}$$

(ii) The inverse image of (G, B) under  $(\eta, \psi)$  denoted by  $(\eta, \psi)^{-1}(G, B)$ , is a bipolar fuzzy soft set over H<sub>1</sub> defined by  $(\eta, \psi)^{-1}(G, B) = (\eta^{-1}(G), \psi^{-1}(B))$ , where for all  $a \in \psi^{-1}(B)$ and for all  $x \in H_1, \mu_{\eta_{G(a)}}^{+-1}(y) = \mu_{G\psi(a)}^{+}(\eta(x))$  and  $\mu_{\eta_{G(a)}}^{--1}(y) =$ 

$$\mu_{G_{uh(2)}}^{-}(\eta(x)$$

#### Theorem 4.3

Let  $\eta: H_1 \to H_2$  be a homomorphism of S. If (G, B) is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of  $H_2$ , then  $(\eta, \psi)^{-1}(G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of  $H_1$ .

Proof. Let (G, B) is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of H<sub>2</sub>. Let x, y, z  $\in$  H<sub>1</sub>,  $\gamma \in \Gamma_1$  then we have

$$\begin{split} \inf_{z \in xyy} \left\{ \mu_{\eta_{G(a)}^{-1}}^{+}(z) \right\} &= \inf_{z \in xyy} \left\{ \mu_{g_{\psi(a)}}^{+}(\eta(z)) \right\} \\ &= \inf_{\eta(z) \in \eta(xyy)} \left\{ \mu_{g_{\psi(a)}}^{+}(\eta(z)) \right\} \\ &= \inf_{\eta(z) \in \eta(x)h(\gamma)\eta(y)} \left\{ \mu_{g_{\psi(a)}}^{+}(\eta(z)) \right\} \\ &\geq \min \left\{ \mu_{g_{\psi(a)}}^{+}(\eta(x), \mu_{g_{\psi(a)}}^{+}\eta(y) \right\} \\ &= \min \left\{ \mu_{\eta_{G(a)}}^{+}(x), \mu_{\eta_{G(a)}}^{+}(y) \right\} \end{split}$$

and

$$\begin{split} \sup_{z \in xyy} \left\{ \mu_{\eta_{G(a)}^{-1}}^{-1}(z) \right\} &= \sup_{z \in xyy} \left\{ \mu_{\bar{g}_{\psi(a)}}^{-}(\eta(z)) \right\} \\ &= \sup_{\eta(z) \in \eta(xyy)} \left\{ \mu_{\bar{g}_{\psi(a)}}^{-}(\eta(z)) \right\} \\ &= \sup_{\eta(z) \in \eta(x)h(\gamma)\eta(y)} \left\{ \mu_{\bar{g}_{\psi(a)}}^{-}(\eta(z)) \right\} \\ &\leq \max \left\{ \mu_{\bar{g}_{\psi(a)}}^{-}\eta(x), \mu_{\bar{g}_{\psi(a)}}^{-}\eta(y) \right\} \\ &= \max \left\{ \mu_{\eta_{G(a)}^{-1}}^{-1}(x), \mu_{\eta_{G(a)}^{-1}}^{-1}(y) \right\} \end{split}$$

Therefore  $(\eta, \psi)^{-1}(G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of  $H_1$ .

#### Theorem 4.4

Let  $\eta: H_1 \to H_2$  be a homomorphism of S. If (G, B) is a bipolar fuzzy soft  $\Gamma$ -hyperleft(right, bi-ideal, interior) of  $H_2$ , then  $(\eta, \psi)^{-1}(G, B)$  is a bipolar fuzzy soft  $\Gamma$ -hyperleft(right, bi-ideal, interior)ideal of  $H_1$ . Proof. Straightforward.

#### Theorem4.5

Let  $\eta: H_1 \to H_2$  be a homomorphism of S. If (F, A) is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of  $H_1$ , then  $(\eta, \psi)(F, A)$  is a bipolar fuzzy soft  $\Gamma$ -hypersubsemigroup of  $H_2$ .

Proof. Let (F, A) is a bipolar fuzzy soft

 $\Gamma$ -hypersubsemigroup of H<sub>1</sub>. Let x<sub>1</sub>, y<sub>1</sub>z<sub>1</sub>  $\in$  H<sub>2</sub>,  $\gamma \in \Gamma_2$  then we have

$$\begin{split} \inf_{z_{1}\in x_{1}\gamma y_{1}} \{\mu_{\eta_{F(b)}}^{+}(z_{1})\} &= \inf_{z_{1}\in x_{1}\gamma y_{1}} \left\{ \sup_{t\in \eta^{-}(z_{1})\psi(a)=b} \sup_{\mu^{+}(a)}^{+}(t) \right\} \\ &\geq \inf_{z\in x_{1}\gamma y_{1}} \left\{ \sup_{\psi(a)=b} \mu_{F(b)}^{+}(z_{1}) \right\} \\ &= \inf_{\eta(z)\in \eta(x)h(\gamma)\eta(y)} \left\{ \sup_{\psi(a)=b} \mu_{F(b)}^{+}(z) \right\} \\ &= \inf_{\eta(z)\in \eta(x)y)} \left\{ \sup_{\psi(a)=b} \mu_{F(b)}^{+}(z) \right\} \\ &= \inf_{z\in x\gamma y} \left\{ \sup_{\psi(a)=b} \mu_{F(b)}^{+}(z) \right\} \\ &\geq \sup_{\psi(a)=b} \min\{\mu_{F(b)}^{+}(x), \mu_{F(b)}^{+}(y)\} \\ &\geq \sup_{x\gamma y \subseteq \eta^{-1}(x_{1})h^{-1}(\gamma)\eta^{-1}(y_{1})} \left\{ \sup_{\psi(a)=b} \min\{\mu_{F(b)}^{+}(x), \mu_{F(b)}^{+}(y)\} \right\} \\ &= \min_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(x), \sup_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(y) \\ &\geq \min_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(x), \sup_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(y) \\ &\geq \min_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(x), \sup_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(y) \\ &\geq \min_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(x), \lim_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(y) \\ &\geq \min_{\eta(x)=y\psi(a)=b} \mu_{F(a)}^{+}(y) \\ &\leq \min_{\eta(x)=y\psi(a)=b} \mu_$$

$$\begin{split} \sup_{z_1 \in x_1 \gamma y_1} \{ \mu_{\eta_{F(b)}}^{-}(z_1) \} &= \sup_{z_1 \in x_1 \gamma y_1} \left\{ \inf_{t \in \eta^{-1}(z_1) \psi(a) = b} \mu_{F(a)}^{-}(t) \right\} \\ &\leq \sup_{z \in x_1 \gamma y_1} \left\{ \inf_{\psi(a) = b} \mu_{F(b)}^{-}(z_1) \right\} \\ &= \sup_{\eta(z) \in \eta(x) \beta(\gamma) \eta(y)} \left\{ \psi(a) = b} \mu_{F(b)}^{-}(z) \right\} \\ &= \sup_{\eta(z) \in \eta(x) \gamma \gamma} \left\{ \inf_{\psi(a) = b} \mu_{F(b)}^{-}(z) \right\} \\ &= \sup_{z \in x \gamma \gamma} \left\{ \inf_{\psi(a) = b} \mu_{F(b)}^{-}(z) \right\} \\ &\leq \inf_{\psi(a) = b} \max\{ \mu_{F(b)}^{-}(x), \mu_{F(b)}^{-}(y) \} \\ &\leq \sup_{\chi \gamma y \subseteq \eta^{-1}(x_1) h^{-1}(\gamma) \eta^{-1}(y_1)} \left\{ \inf_{\psi(a) = b} \max\{ \mu_{F(b)}^{-}(x), \mu_{F(b)}^{-}(y) \} \right\} \\ &= \max \left\{ \inf_{\eta(x) = y \psi(a) = b} \mu_{F(a)}^{-}(x), \inf_{\eta(x) = y \psi(a) = b} \mu_{F(a)}^{-}(y) \right\} \\ &\leq \max \left\{ \mu_{\eta_{F(b)}}^{-}(x_1), \mu_{\eta_{F(b)}}^{-}(y_1) \right\} \end{split}$$

Therefore  $(\eta, \psi)(F, A)$  is a bipolar fuzzy soft  $\Gamma$  -hyper subsemigroup of H<sub>2</sub>.

#### Theorem 4.6

Let  $\eta: H_1 \to H_2$  be a homomorphism of S. If (F, A) is a bipolar fuzzy soft  $\Gamma$ -hyperleft(right, bi-ideal, interior)ideal of  $H_1$ , then  $(\eta, \psi)(F, A)$  is a bipolar fuzzy soft  $\Gamma$ -hyperleft(right, bi-ideal, interior)ideal of  $H_2$ . Proof. Straighforward.

#### References

- S. M. Anvariyeh, S. Miravakili and B. Davvaz, On Γ-hyperideals in Γ - hypersemigroups, Carpathian Journal of Mathematics 26(1) (2010), 11-23.
- [2] M. Aslam, S. Abdullah and K.Ullah, Biploar fuzzy sets and its application in decision making problem, arXiv, 1303.6932v1[cs.AI], 2013.
- [3] Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Comput.Math. Appl.58(2009) 1279-1286.

- [4] K. M. Lee, Bi-polar-valued fuzzy sets and their operations, Proc Int Conf Intelligent Technologies Bangkok, Thailand, (2000) 307-12.
- [5] K. M. Lee. Comparasion of interval valued fuzzy sets, intuitionistiv fuzzy sets, and bi-polar-valued fuzzy sets. J. Fuzzy Logic Intel Syst. 2004 14 125-9
- [6] P. K. Maji, R. Biswas and R. Roy, Fuzzy soft sets, J Fuzzy Math. Appl,9(3) (2001)589-602.
- [7] F. Marty, Sur une generalization de la notion de group, in. proc 8th Congress Mathematics Scandenaves, Stockholm, 1994, 45-49.
- [8] D. Molodtsov, Soft set theory first results, Comput. Math. Appl, 37 (1999)19-31.
- [9] Muhammad Akram, Bipolar fuzzy soft Lie algebras, Quasigroups and related systems 21 (2013) 1-10.
- [10] Muhammad Akram, J. Kavikumar and Azme Bin Khamis, Fuzzy soft Γ-semigroups, Appl.Math. Inf. Sci 8(2)(2014) 929-934.
- [11] Muhammad Akram, J. Kavikumar and Azme Bin Khamis, Characterization pf bipolar fuzzy soft Γ-semigroups, Indian Journal of Science and Technology 7(8)(2014) 1211-1221.
- [12] Munazza Naz, Muhammad Shabir and Muhammad Irfan Ali, On Fuzzy Soft Semigroups, World Appl. Sci 22 (2013)62-83.
- [13] Naveed Yaqoob and Moin A. Ansari, Bipolar (λ, δ)-Fuzzy ideals in Ternary semigroups, Int. Journal of Math. Analysis 7 (36)(2013)1775-1782.
- [14] Ghareeb, Structures of bipolar fuzzy  $\Gamma$  -hyperideals in  $\Gamma$ -semihypergroups, Journal of intelligent and fuzzy systems 27 (2014) 3015-3032.
- [15] S. Onar, B.A.Ersoy and U. Tekir, Fuzzy soft Γ-ring, Iranian Journal of Science and technology, A4 (2012) 469-476.
- [16] M. K. Sen and N. K Saha, On Γ-semigroup, I, Bull.Calcutta Math. Soc., 78 180-186 (1986).
- [17] Violeta Leoreanu-Fotea, Feng Feng and Jianming Zhan, Fuzzy soft hypergroups, International Journal of Computer Mathematics. 89(8) (2012)963-974.
- [18] L. A Zadeh, Fuzzy sets. Information and control. 8 (1965) 338-353.
- [19] Zhang WR. Bipolar fuzzy sets, Proceedings of FUZZ-IEEE, (1998) 835-840.