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Abstract 
 
As a result of the dynamic nature of Virtual Machine allocation in cloud computing, it is not easy to manage system resources or 
choose the best configuration based solely on human experience.  In this work, we used stochastic modelling instead of comprehen-
sive experiments to evaluate the best resource management of the system. In such complex systems, choosing the best decision is a 
challenge, for this reason we have designed a heuristic algorithm, specifically, dynamic programming as a resource management and 
programming tool that finds a way that attempts to satisfy the conflicting objectives of high performance and low power consumption. 
As a scenario for using this algorithm, we addressed the problem of virtual machine allocation, a subset of physical machines is des-

ignated as "reserve", and the reserves are actives when the number of jobs in the system is sufficiently high. The question is how to 
decide when to activate the reserves. The simulation results demonstrated the benefit of using our framework to identify the policy 
for consolidation or for a low energy consumption and in order to have a good quality of service in the system. 
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1. Introduction 

Cloud computing infrastructures are becoming more complex and 
difficult to configure or evaluate their performance. Scalability 
and multilocation are widely implemented in recent cloud plat-
forms. For cloud computing management platforms, which are 

designed to manage multiple customers and a large number of 
resources, these platforms adopt a system design that takes into 
account different categories of customers with different character-
istics [8],  
In our model, we consider two customer categories (Type 1 and 
type 2), which have different priorities over their queues. Each 
client has different characteristics, such as performance and cost 
for each type of request. The system model contains a controller 

for routing allocation requests. The optimal query routing policy is 
obtained dynamically using the value iteration algorithm (VI) [9]. 
It will not be practical to perform repetitive experiments to evalu-
ate the performance of such complicated systems, and it is diffi-
cult for an expert to predict the best system configuration (consol-
idation and assignment costs of each client) without using an algo-
rithm such as the one we suggest in this work. As a use case of our 
algorithm, we studied the best controller decision in order to man-

age system performance and to optimize energy consumption.  
The main contributions of this work are summarized as fol-

lows: 

 Our algorithm focuses on evaluating cloud compu-

ting system management using a stochastic analytic 
model. 

 Our algorithm finds the optimal routing policy for 

customers using dynamic programming (algorithm 
VI). 

The rest of this paper is organized as follows. After presenting the 
system model in Sect. 2, we formulate the problem in Sect. 3 and 
we present the equivalent discrete-time time problem in Sect. 4, 
followed by the numerical results in Sect. 5, and finally, we con-

clude our paper in Sect. 6. 

2.  System Model 

A server is considered to contain M physical machines, of which 

m are designated as reserves 0 m M  . Clients 

(Jobs/Requests) arrive according to a Poisson process of 

parameter 1  and find in front of them a controller that sends 

them directly to one of the main physical machines until the sys-

tem receives n clients (Jobs). After that, the clients arrive accord-

ing to another Poisson process of parameter 2 and in this case 

the controller decides to send them either to one of the Main Phys-
ical Machines (MPM) that already contains clients, or to one of 
the physical machines that we considered as reserves, depending 
on the state of the system.  

Service times are independent and exponentially distributed with 

parameters 1 2, ,..., ,such as M i      with  

 1,..., and with 1,...,ji M m j m     . 

We notice the type 1 of clients, those that the controller sends 
them directly to one of the main physical machines, and the type 2 
of clients, those that arrive and the controller has two choices ei-
ther send them to one of the Main Physical Machines (MPM) and 
in this case the controller prefers to host several clients in a mini-
mum number of physical machines in order to minimize the total 

energy consumption of the system, otherwise he chooses to acti-
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vate a new physical machine among the reserves which leads to an 
increase in energy consumption. On the other hand, the goal of 
this choice and providing a good quality of service. 

Type 1 of clients are always placed in front of type 2 of clients, 
i.e. type 1 of clients have priority over type 2 of clients. When a 
non-priority customer enters the system and finds a priority cus-
tomer in front of him in service, he waits until he finishes. For 
each sending towards the set of reserves a cost C must be paid. 

The model considered in this problem is illustrated in the figure  

Fig. 1: Illustration of the proposed model 

3. Problem Formulation 

The state of the system at an instant , 0t t   is described by  

a stochastic process 
0( )t tx 

 with ( , )a b

t t tx x x  where  

1 2( , ),a a a

t t tx x x  With 
1 11 12 1( , ,..., ),a a a a q

t t t tx x x x   

2 21 22 2( , ,..., )a a a a q

t t t tx x x x  and   

2 21 22 2( , ,..., )b b b b b m

t t t t tx x x x x   and 
aik

tx  is the number of 

type i  clients in the PM k  among the Main Physical Machines 

(MPM) at the moment t , 1.2i   and 1.2,...,k q . 

2b j

tx  is the number of clients type 2 in the PM j  among the 

Main Physical Machines (MPM) at the moment 

, 1,2,...,t j m . 

If at the moment t  "after all MPM contains a certain number of 

clients", a client arrives in the system, then an action  
1

ta  (respec-

tively 
2

ta ) is taken and it is defined by 
1 1ta   if the controller 

sends the arriving client to a MPM (respectively by 
2 2ta  ) if 

the controller decides to activate a new PM. 

Let nt be the moment of the
thn transition, nx   the state of the 

system after this transition 1n n nt t    the 
thn  residence time 

and na the decision taken at the moment nt .  

For a given policy , we note tx and ta the state and the action 

during the last transition before the moment .t   

1( , ) ( , )t t n n n nx a x a si t t t      

At each moment t , an instant cost ( , )t tc x a is incurred and it is 

given by: 

 1 2( , ) a b

t t t tc x a c x c x    

With 2 1c c , where all these coefficients are positive real num-

bers. ( , )a b

t t tx x x  is a Markovian process of space decision 

2q mE    and  action {1,2}A  . 

Our objective is to find the optimal policy  that minimizes the 

following discounted total cost function. 
 

0
0

( , ) ( , ) /t

t tV x E e c x a dt x x 




  
           (1) 

 

Where E is the mathematical expectation under the policy, 

0  and x is an initial system state. Since in the problem we 

have the instant cost function (.,.)c positive and the action 

space A is finite, then the optimal policy exists. 

4. Discretization of the problem 

We will turn the original problem (1) into an equivalent PMD 
problem formulated in discrete time by the uniformization proce-
dure [2, 3, 7]. 

We write 
1 2 1 .q m          

As already defined 
0 10 ... ...nt t t     are the system 

state transition moments, by suitably introducing dummy depar-
tures as in [4, 7]. The time intervals are seen to be i.i.d random 
variables with distribution: 

   

1( ) 0,1,2, ....t

l lP t t t e l

       

 
Proposition For any policy and any initial state x , the cost 

( , )V x   is:  

 

   
0

0

1
( , ) ( , )

n

t

t t n n

n

E e c x a dt E c x a

 



   






 
  

  


               (2) 

with 
nn tx x and = .

nn ta a   

 
According to this proposition, we can write: 

 

0

0

1
( , ) ( , ) /

n

n n

n

V x E c x a x x






   





  
       



             (3) 
 

Which is the expression of the discounted cost of a PMD in dis-

crete time under the policy, with discount factor



 




  

, (0 1)  and instant cost function
( , )n nc x a

 
. 

we put: 1   , to simplify the calculations. 

 

The cost - discounted in N steps is defined by: 

 

1

0

0

( , ) ( , ) /
N

n

N n n

n

V x E c x a x x

 




 
  

 
         (4) 

 

And the cost  - discounted for infinite horizon is defined 

[3, 5] as: 

0

0

( , ) ( , ) /n

n n

n

V x E c x a x x

 




 
  

 
         (5) 
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We notice:  
 

( ) min ( , )N NV x V x 

                                (6) 

  
And  
 

( ) min ( , )V x V x 

            (7) 

By posing 
 

( ) lim ( )N
N

V x V x 




            (8) 

 
we have 
 

( ) ( )V x V x 

             (9) 

 
for any initial state x . 

4.1 Existence of optimal policy 

We have the following proposition 

Proposition 

i. for all x E  , we have: 

 

( ) 1

0

( ) min { ( , ) ( / , ) ( ), 1

  (.) 0.

N a A x N

x E

V x c x a p x x a V x N

avec V

  



     


 


 

          (10) 

 

Where ( )A x is the set of actions available to the controller when 

the system is in the state x , and ( / , )p x x a is the conditional 

probability that the system will displaces to the state x at the time  

1nt   When the action a  has been applied at the instant nt  to the 

state nt . 

ii. If (.,.) 0c  and A is finite, then: 

lim ( ) ( )N
N

V x V x 


   (11) 

 

and V 
is the only bounded solution to the following dynamic 

programming equation: 
 

( )( ) min { ( , ) ( / , ) ( )}a A x

x E

V x c x a P x x a V x 



  
           (12) 

 

Since the (.,.)c instant cost function is positive and the A action 

space is finite, then the optimal policy exists based on the asser-

tion ( )ii of the above proposition. 

4.2 Function of transition probabilities 

For each control value from (1,2)A  , we define the transition 

probability function (. / ., )p a on E E  by: 

1

2 2

1
1 2

2

1 { }

1

2 { } { 1} { } { 2}

1 1

{ } { , 0}
1 1

{ }

1

( , ) 11

11 11 11 11

11 11

11

a i

a l b i

a l
a i a l

b j

q

y A

i

q m

y A a y A a

l j

q q

y D y D x
l l

m

y D

j

P y x a 











   

 

  
 







 
  

 

 
  

 

 
  
 



 

 



           (13) 
 

with 
1 2 2( , ) ( , , ),a b a a bx x x x x x  where  

 

11 12 1 21 22

2 21 22 2

( , ) ( , ,..., , , ,

..., , , ,..., )

a b a a a q a a

a q b b b m

x x x x x x x x

x x x x

 
  

 

 

11 1 1 21 22

1

2 21 22 2

11 12 1 21 2

2

2 21 22 2

( ,..., ( 1),..., , ,

,..., , , ,..., )

( , ,..., , ,..., ( 1)

,..., , , ,..., )

a a i a q a a

a i

a q b b b m

a a a q a a i

a i

a q b b b m

A x x x x x x

x x x x

A x x x x x x

x x x x

 

 
  

11 12 1 21 22

2

2 21 2 2

11 1 1 21 22

1

2 21 22 2

12 1 21 2

2

2 21

( , ,..., , ,

,..., , ,..., ( 1),..., )

( ,..., ( 1) ,..., , ,

,..., , , ,..., )

(0, ,..., , ,..., ( 1)

,..., ,

a a a q a a

b j

a q b b j b m

a a i a q a a

a i

a q b b b m

a a q a a i

a i

a q b

A x x x x x x

x x x x

D x x x x x x

x x x x

D x x x x x

x x









 

 

22 2

11 12 1 21 22

2

2 21 2 2

, ,..., )

( , ,..., , ,

,..., , ,..., ( 1) ,..., )

b b m

a a a q a a

b j

a q b b j b m

x x

D x x x x x x

x x x x





 

 

We define the function value in N step by 1N NV TV 

  with T   

is the operator defined on ( , )EF  by: 

 

1

1 2 2

1 1 2

1 1 1 2 { 1}
1

1 2 1 1 1

1 1

2 1 2 { 1} 1 2 { 2}

1 1

( )

( ) ( )11

( ) ( )

min ( )11 , ( )11

a i

a a b

N N

q

N a i N a i x
i

qm

N b j N a i

j i

q m

a N a i a N b j a

i j

V TV c x x c x

V D x V D x

V D x V A x

V A x V A x

 

 

 

 



 





  


 

 

   

 

   

 
  

 

 

 
  

 



 

 

 

4.3 Structural properties 

We will show that the optimal cost function ( )NV x
 defined by 6, 

satisfies the following properties: 
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 1 2 2( ) is increasing in , ,a i a i b j

NV x x x x with 

1,2,...,i q and 1,2,..., .j m   

 

1

2 2

2 2

( ) ( ) is increasing in  ,

 and  is decreasing in .

a i

N a i N b j

a i b j

V A x V A x x

x x



  

 ( ) ( ) is increasing in  , .a b

N NV x y V x x x    

 

Let H  be the set of functions ( )NV x
defined by 6, and which 

verify the three properties P1), P2) and P3) above, containing the 
function identically zero, such that: 

 
1 :N N NV H V TV H  

      

Where T is the operator defines in the Function value in N steps. 

Assuming that H is closed for point limits (i.e., the point limit of 

any 
nf function sequence of H is a H function), then 

.V H    

The property P2 characterizes the sending regions of clients of 

type 2 arriving at   .a and b   

If the optimality is achieved when a client of type 2 is sent to the 
MPM (respectively, to the RPM) then any decision to add after 
that, one or more clients of type 2 in the RPM (respectively, in the 
MPM) is optimal. If it is optimal to do consolidation when the 

system state is x (i.e., 2 2( ) ( ))a i b jV A x V A x  then the same 

decision remains optimal when there is moreover a customer in 

PM reserves (i.e., to the states 2b jA ). 

Indeed, property P2) implies that:  

2 2 2 2 2 2( ) ( ) ( ) ( ) 0a i b j b j b j a i b jV A A x V A A x V A x lV A x      

 2 2 2 2( ) ( )a i b j b j b jV A A x V A A x    

Similarly, using the same property P2), we show that if it is opti-
mal to use a new PM for a client of type 2 when the system state 

is x  (i.e., 2 2( ) ( ))b j a iV A x V A x ), then the same decision 

remains optimal when there is more than one client in all MPM 

(i.e., in the states 1 2, ).a i a iA x A x   

5. Numerical Results 

We will execute the value-iteration algorithm on MATLAB for 
different cases. Since the set of states E is of dimension 3, and the 
optimal policy for the control of type 2 arrivals depends on all 3 

variables of the state of the system, then to properly observe the 
difference between the illustrations of the optimal policies for 
different cases, we limit ourselves to the presentation of these 
illustrations at the intervals [0, 10] on the axis (OX) (10 RMP) and 
[0, 25] on the axis (OY) (25 MPM) for the optimal policy for the 
control of type 2 arrivals. 
   For the illustration of the optimal policy for routing control of 
type 2 arrivals, the sending region to the MPM is characterized by 

1a  , and the sending region to the RPM by   2.a    

In all the examples below we take,  

1 220, 10, 55, 45, 0.99.           

5.1. Transition probabilities 

We define the transition probabilities for each action (1,2)a    

We notice  

 

1 1 2

2

1 2 { 1} { 0, 1}

{ 1}

11

11

a i a i a i

b j

a x x x

x

   



   



  


  

for action 1a  at the moment ( , )a bx x x   

  

1 1 2

2

1
1

2
2

1
1 2{ 1} { 0, 1}

1
2 { 1}

 si 

 si 

( / ,1)

 si 11 11

 si 11

a i a i a i

b j

a i

a

a i

a

a i a ix x x
a

b j x
a

y A x

y A x

P y x

y D x D x

y D x

















  












 
  


 


  

 for action 2a   at the moment ( , )a bx x x   

  

1 1 2

2

1
1

2
2

1
1 2{ 1} { 0, 1}

1
2 { 1}

 si 

 si 

( / , 2)

 si 11 11

 si 11

a i a i a i

b j

a i

a

b j

a

a i a ix x x
a

b j x
a

y A x

y A x

P y x

y D x D x

y D x

















  












 
  


 


  

Example 1: 

We take 1 250, 60,:c c    

Number of iterations done is: 3261n    

 
Fig. 2: Illustration of the optimal policy for routing control 

 
of type 2 arrivals Ex.1 

 

Example 2 

1 250, 80,:c c    

Number of iterations done is: 3293n    
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Fig. 3: Illustration of the optimal policy for routing control 

 
of type 2 arrivals Ex.2 

 

Example 3:  

1 2 150, 2* ,:c c c 
  

Number of iterations done is: 3274n  .  

 
Fig. 4: Illustration of the optimal policy for routing control of type 

2arrivals Ex.3 

 
Figures (2), (3) and (4) clearly illustrate that there is a switching 
curve between the sending regions of the type 2 arriving custom-
ers towards the MPM and RPM, and that this curve is monotonic. 
Comparing the 3 figures, we see that the sending region of type 2 

arrivals to the RPM increases when the cost 
2c increases. 

6. Conclusion 

Using dynamic programming theory, the existence of the optimal 
policy for the control of type 2 arrivals has been well demonstrat-
ed. Structural properties have also been obtained for this optimal 
policy, and it has been shown that this optimal policy is monoto-
nous, i.e: 

 There is a monotonic switching curve between the send-

ing regions of Type 2 arrivals to MPM and RPM. 

 When the cost of sending a client of type 2 increase, 

then the sending region of the type 2 clients decreases. 
In addition, we made a numerical study of our problem under 

MATLAB by programming the value-iteration algorithm for our 
model. The execution of this code gave us illustrations of the op-

timal policy. 
As a perspective for this work, we propose the same model in 

which we add the breakdown to the servers, and we can add the 
rejection option either for type 2 arrivals, or type 1 arrivals, or for 
both. Also as a perspective of this work we will study the perfor-
mance and energy consumption for the system using the machine 
allocation policy presented in [1, 6]. 
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