

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.5) (2018) 79-86

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Distributed Community Detection based on Apache Spark using

Multi Label Propagation for Digital Social Networks

Satya Keerthi Gorripati
1
*, Valli Kumari Vatsavayi

 2

1Department of IT, GMR Institute of Technology, Rajam, Andhra Pradesh, India

2Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam,Andhra Pradesh, India

*Corresponding author E-mail satyakeerthi.gsk@gmail.com

Abstract

Organization, Government and Individual (OGI) have popularized the use of Digital Social Networks (DSN) that reduces the processing

time of social-aware tasks. To accomplish a community-based communication, each social-aware task should identify its community

group. The identified group uses a task to avail all the DSN benefits to their customers / citizens. As a result, the community-based detec-

tion algorithm has played a significant role in literature. However, the existing algorithms have had several challenging issues, such as

performance and scalability. Thus, a distributed community detection algorithm is presented using Apache Spark‟s Resilient Distributed

Data Set (RDD) framework based on the Scala programming language. The Apache Spark framework provides an ideal solution that

offers ease of coding, performance, interactive mode and disk Input-Output bottlenecks in Hadoop /Map Reduce. Besides, it presents a

platform of distributed community detection that reduces the computational computation by applying transformations, aggregations and

joins. The experimental results show that the proposed framework achieves high accuracy for both real-world and synthetic networks.

Keywords: Apache Spark ;Community detection, Distributed; RDD ; Social graphs.

1. Introduction

E-government uses Information Communication and Technologies

(ICTs) to satisfy the citizen goals. For public trustworthy, the gov-

ernment has provided the technology, transparency that enhances

accountability and citizen empowerment [1]. Social media service

is employed to provide the interactive communication, content-

sharing and opinion expression. It helps to collect the necessary

information about the communities and the citizen backgrounds.

As a result, the government publicizes the social media as a direct-

communicator to disseminate the public welfare schemes. Since it

is massively considered across various e-government agencies

namely government-to-citizens (G2C), government-to-business

(G2B) and government-to-government (G2G), the improvement of

online participation and classification is highly demanded.

A plausible indicator shows that the online government services

have reported 39% in 2005 and 57% in 2011 [2]. The creative

roles are proven in various countries in terms of political aspects

such as Iran, Egypt, Tunisia and Arab spring. Among these coun-

tries, the Arab spring completely changes the shape of political

discourse by the influence of social media. It offers a tactical

breakthrough to manage and engage the individuals, businesses

and public organization cautiously [3]. Moreover, the social media

benefits the government in terms of transparency to ensure the

citizen with more innovative services and information access to

open an interactive communication. Complex social networks

(Facebook and Twitter), biological networks (transcriptional regu-

latory networks and virus-host networks) and technology networks

(electric grids) exhibit the features namely high clustering coeffi-

cient, a heavy-tail degree distribution, hierarchical structure and

presence of communities. A high clustering coefficient is a meas-

ure of the degree to which nodes in a graph tend to be clustered (or

community) together. A heavy tail degree distribution is also

known as scale-free or power-law distribution that has a distribu-

tion “heavier” than the exponential distribution. Communities or

groups in a network hold denser connections (or relationships)

inside the groups and have the sparser connections outside the

groups. However, there is no formal community definition accept-

ed universally. In most of the community detection algorithms, the

communities or groups are represented as the final products.

Fig.1: A Network with 3 communities

A network or graph is an abstract representation of nodes and their

connections respectively. A basic network arrives when the simi-

lar nodes are connected. A social network is defined as a network

that has a node connector as an actor in order to provide a rela-

tionship such as co-authorship, friend, ownership, relationship of

beliefs, etc. From Figure 1, it is observed that the network has

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

80 International Journal of Engineering & Technology

three communities with the nodes such as ,

 and . For the

given graph, dense and sparse connection is used to find the com-

munities. In , there are eight edges inside the community

whereas only two edges outside the community. While separating

the outside edges, the network is partitioned into two sub-

networks. Similarly, while continuing the partition process, the

network is bifurcated into three sub-networks or communities.

Girvan-Newman algorithm [4] is used to find the sparse edges

with high betweenness that is removed to partition a network

whereas Louvian technique[5] uses a benefit function (modularity)

to search the best possible partition of the network and Clique

based methods[6] searches strongly connected edge components

to bifurcate a network.

As social networks such as Facebook, Twitter, LinkedIn etc.

have had several edges have challenging issues namely conver-

gence problems and sparse matrix representations are addressed.

Besides, finding triangles, cliques and other related properties

(clustering coefficient) are relatively expensive and time consum-

ing as well for the use of billion-scale graphs. Zeng et al [8] in-

troduced a distributed computation that improves the performance

of sequential approaches. Thus, this paper proposes a Parallel

Label Propagation Algorithm (PLPA) that is based on parallel

community detection using the Spark RDD framework.

The paper is rationalized into four sections. Second section

deals with the review of existing traditional and parallel communi-

ty algorithms; Next section introduces our proposed PLPA ap-

proach in detail. Last section presents output results followed by

conclusion.

2. Background

The existing community detection methods suffer from the follow-

ing problems. The first one is that the algorithms work sequential-

ly on small data sets and the efficiency of the algorithm decreases

when the size of datasets increases and has time complexity O(n),

where n is the number of edges (or links) in the graph. The second

one is that in many algorithms graph was modeled as an adjacency

matrix (or edge list, sparse matrix) and during computation at

every phase the adjacency entries may become zero and leaves

most of the entries in the matrix as sparse. Sequential algorithm

cannot skip these sparse entries in the matrix. Therefore, to handle

the above mentioned problems parallel algorithms are suggested in

this paper.

2.1 Traditional Community Algorithms

Community detection algorithms are classified into model-based,

local optimized and label propagation algorithms. Numerous prob-

lems were reported related to time-efficiency in the first two cate-

gories of algorithms and the third is the most cited one i.e., label

propagation methods such as LPA[9], SLPA [10,11], BMLPA[12]

MLPA[13], DMLPA[14], LabelRank[15], LabelRankT[16] pro-

vides properties like low computational complexity, ease of im-

plementation and accuracy in both disjoint and overlapping com-

munity detection. The mutual characteristic feature in the label

propagation family is the process of exchanging community labels

during propagation process between graph nodes in order to send

the updated messages to neighbor nodes.

The following are the stages in the label propagation method:

 Load graph

 Speaker Approach: draw l labels

 Listener Approach: store the most frequent l labels

 Post-processing

It is worth noticing that at every stage each node has a memory

(entry in a matrix) to keep the account information observed in the

past iteration. For loading graph the algorithm requires O(n), for

the speaker and listener approaches it requires O(Tm) and for the

post-processing it requires the complexity O(n). Therefore the

overall complexity is O(Tm) of the entire algorithm.

2.2 Parallel Community Algorithms

Parallel computation has become a desirable and important feature

of community detection due to increasing size of graphs. Known

algorithms to increase scalability and performance include: LPA

using Hadoop MapReduce[17] ,SLPA using OpenMP API[18,19]

the Louvian method using Apache Giraph [20], Scalable Commu-

nity Detection[21],Graph processing using Graphx[22] EgoLP[23]

and many others.

3. Proposed PLPA Framework

The Label propagation community algorithms iterates over list of

nodes and picks one of its neighbor as a listener and each neighbor

of the selected node sends a frequent occurred label list by follow-

ing speaking rule. Listener accepts one label from the list of labels

from neighbors by following listening rule. This process iterates

for all the nodes in the graph. After all iterations are completed,

post processing is carried out to extract the communities.

It is obvious that the computation of community labels is a se-

quence of iterations makes the algorithm sequential and updated

labels are accountable for subsequent iterations. Therefore, the

nodes cannot be processed independent of each other. Parallel (or

distributed) approach supports interactive and repetitive applica-

tions with the help of uniform data abstraction called RDD and it

is a replacement of MapReduce approaches [24].

Label Propagation community algorithm (SLPA) performed well

in constant networks to find the disjoint/overlapping communities.

In SLPA, at each phase, speaker sends a label that has a high

probability and listener listens to all labels send by the speaker

nodes but accepts only one label that has maximum number of

occurrences. However, due to random selection of labels at listen-

er stage the algorithm produce different communities in different

runs. Many revisions were made to resolve this randomness issue.

Our proposed PMLPA a parallel version of community detection

methods (based on SLPA, MLPA) is developed using Apache

Spark framework. It alters speaker, listener rules by passing mul-

tiple labels during propagation process and the inflation[25] opera-

tor in post processing phase in order to detect the communities

quickly.

3.1 Implementation

3.1.1 Load Graph

The edge list data set containing edges of a graph from a TEXT

FILE is loaded in Spark RDD to make use of fault tolerance in

cluster and also to provide efficient use of cluster memory.

Efficiency is achieved through parallelization of processing a file

on multiple nodes in the cluster. The file is broadcasted to every

worker node to make it available to each worker. Once the data is

loaded into an RDD we can carry out transformations and actions.

flatMap transformation is applied on the dataset to read the edges,

which converts each edge into (source, destination) i.e., (key, val-

ue) pairs. A function countByKey is applied to get the degree of

every node and groupByKey function is performed to get the

neighbors of each node. Finally mapByValues() is applied on

RDD to get the probability distribution matrix.

International Journal of Engineering & Technology 81

Fig 2:. Subgraph-centric Large-Scale Graph Analytics on Spark lineage

graph for RDD of First Phase [26]

Algorithm

1. Foreach edge E in Ri

2. flatMap (lineoffset , T)

3. Foreach edge e in E

4. Yield (source , destination) edge pair

5. End foreach

6. End flatMap

7. End foreach

8. groupBykey(K,V)

9. Foreach(K,V) pair

10. Yield(K,Iteratable<V>) pairs

11. End foreach

12. End groupBy

13. countByKey(K,V)

14. Foreach (K,V) pair

15. Yield(K,Count) pair

16. End foreach

17. mapValues(K,Count)

18. Foreach(K)

19. Yield(K,K=> 1.0 / V)

20. End foreach

 21. End mapValues

Fig 3:. An example of the spark dataflow operators needed to load a graph (pre-processing). Input is an edge list; a countByKey operation can be per-

formed to get the degree of every node. Then a groupByKey to expand the neighbors of every node finally mapValues to get the probability of every node

in the network

3.1.2 Speaker Approach

Each node in the network starts off as its own community label

(i.e., node‟s id). This means that initially each node belongs to a

different community. The following steps repeated until the exit

condition is satisfied.

a. Select any node as the listener.

b. The neighbor nodes of the listener become speakers,

usually more than one speaker exists and their roles may

get exchanged depend on whether a node obliges as in-
formation consumer or provider.

c. Apply the speaker rule and get the labels list for propa-

gation.

The major functionality of speaker is to decide which labels list

should be forwarded to the listener for propagation. The following

are the rules proposed for this purpose at speaker side.

Rule 1: For a node i if there are l1,l2,l3,…..ln speakers exist and if

all labels have the same frequency, then all the labels are sent to

the listener.

Rule 2: For a node i if there are l1,l2,l2,l3,l3…..ln speakers exist

and the labels l2,l3 have the same frequency of occurrence, then

the label list containing the labels l2,l3 is sent to the listener.

82 International Journal of Engineering & Technology

Fig 4.: An example of the spark dataflow operators needed to apply to propagate the labels to the listener. Assuming node 1 as listener, the speaker rules

applied on each neighbor of the first node for sending label list to listener.

3.1.3 Listener Approach

Label propagation always starts with a listener. The principal task

performed by the listener is to decide which labels are to be pro-

cessed and which labels to be omitted? If a node i contains J

speakers and if the number of labels sends by J nodes to node i is

stored in label list l then, to determine what labels should be con-
sidered is based on following rules:

Rule 1: If the label names in the list l are unique, i.e. all labels

have equal occurrence, then, the label list l should sent for updat-

ing process.

Rule 2: If the label names in the list l are not unique, i.e. all labels

have differences of occurrences, then, the following rules are ap-
plied

i. If one label has maximum frequency than the other la-

bels, then only the label which has maximum frequency

should be considered for updating process and all others

should be ignored.

ii. Assuming l2,l3 are the labels in the label set l, and if both

has equal number of occurrences than the other labels,
both labels are considered

After identifying the labels that have maximum number of occur-

rences, listener calculates the probabilities of accepted labels and

passes the labels for the next phase and updates the label distribu-

tion matrix accordingly

Fig 5:. An example of the spark dataflow operators needed to get the frequent observed label/s of every listener in the current step

International Journal of Engineering & Technology 83

3.1.4 Inflation

The inflation operator is used to increase the importance of

labels that has maximum probability and to decrease the im-

portance of labels that has least probability at the end of every

iteration.

 (1)

 (a) (b) 2in (c) 4in

Fig 6: (a) sample network with the probability values as edge labels. (b) Network when applied inflation of 2. (c) Network when applied inflation of 4.

Traditional algorithms represent network structure P in the form

of matrix, but when the network grows the matrix size rapidly

increases and most of the entries become sparse as shown in Fig-

ure 7. Apache Spark RDD is a solution to overcome for the above

said problem, in the proposed framework the label distribution

matrix is represented as a RDD shown in Figure 8. Every node is a

key and its speakers‟ probabilities are values (i.e., key with multi-

ple values) inflation is applied to label distribution P , which ini-

tially holds the probabilities of all nodes and it continually updates

the probabilities of accepted labels at listener phase. RDD shown

in Figure 8 has a same resemblance as of a matrix as in Figure 7,

which avoids the sparse entries.

Fig7: The label distribution matrix of network size 15

84 International Journal of Engineering & Technology

Fig8: The Lineage graph for RDDs of neighbors and label distribution of network size 15

3.1.5 Post Processing

Finally post processing is applied to all the labels in the memories

of nodes to output the communities. A node may contain varying

probabilities for one/more labels, each label‟s probability are veri-

fied with threshold value in order to omit the labels that have less

probability. If a node i contains k labels, the probability of each

label verified using the following eqn.(2).

1
,

0

k

ij
j

ij

P r then

P

After post processing, the labels with low probability becomes

zero at the end of iteration every node left with a single label, the

nodes with similar label are grouped into one community as

shown in Figure 9.

Fig 9: The Lineage graph for RDDs of post processing phase of network size 15

4. Tests in Synthetic Networks

We tested our framework on large social networks available at

UCI Network Data Repository for which we know the exact

groups and compared its performance with traditional algo-

rithm SLPA in terms of speedup and efficiency. We performed

speedup and efficiency using the following equations.

 Speedup= Efficiency=

Where P is the number of partitions.

Fig 10: Execution time for different number of partitions

(2)

1

(1)

(2)

(2)

International Journal of Engineering & Technology 85

 (a) Karate Network (b) Dolphins Networks (c) Lesmis Network

 (d) Football Network (e) PolBooks Networks

 Fig 11:: Community results of 5 networks of PLPA, where colours represent communities.

5. Conclusion

In this paper, a distributed community detection algorithm has

been implemented for large datasets that supports to find the

communities in various digital social networking applications,

such as personalized e-government services, citizen-centered

smart cities. The proposed algorithm overcomes the weaknesses of

processing time and space in comparison with traditional commu-

nity detection algorithms. Besides, this algorithm reduces the

computational time of speaker and listener phases through the

addition of inflation operator. In order to improve the perfor-

mance of PLPA several times with respect to large dataset, PLPA

is implemented on Spark, which provides an extremely distributed

computational environment in relation with other platforms. The

theoretical and empirical comparison of PLPA shows the outper-

formance of community detection algorithms as compare to other

existing approaches.

References

[1] Friis, C. S., Demchak, C., & LaPorte, T. (2000). Webbing

goernance: National differences in constructing the face of public

organizations. In Handbook of public information susytems. Marcel
Dekker Incorporated.

[2] Dutton, W. H., & Blank, G. (2011). Next generation users: the in-

ternet in Britain.
[3] Hofmann, S., Beverungen, D., Räckers, M., & Becker, J. (2013).

What makes local governments' online communications successful?

Insights from a multi-method analysis of Facebook. Government
Information Quarterly, 30(4), 387-396.

[4] Girvan, M., and Newman, M. E. (2002), Community structure in
social and biological networks. Proceedings of the National Acad-

emy of Sciences, Vol. 99, No. 12, pp. 7821-7826.

[5] Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E.
(2008). Fast unfolding of communities in large networks. Journal of

statistical mechanics: theory and experiment, 2008(10), P10008

[6] Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I., & Vicsek, T.
(2006). CFinder: locating cliques and overlapping modules in bio-

logical networks. Bioinformatics, 22(8), 1021-1023.

[7] Cao, X., Wang, X., Jin, D., Cao, Y. and He, D., (2013) „ Identifying
overlapping communities as well as hubs and outliers via nonnega-

tive matrix factorization‟, Scientific reports, 3, p.2993

[8] Zeng, J. and Yu, H., (2015), “Parallel Modularity-based Communi-
ty Detection on Large-scale Graphs”, In Cluster Compu-

ting(CLUSTER) IEEE International Conference

[9] Raghavan, U.N., Albert, R. and Kumara, S., (2007), “Near linear
time algorithm to detect community structures in large-scale net-

works”, Physical review E, 76(3), p.036106

[10] Xie,J., Szymanski, B.K. and Liu, X., (2011), “Slpa: Uncovering
overlapping communities in social networks via a speaker-listener

interaction dynamic process”, In Data Mining Work-

shops (ICDMW) IEEE 11th International Conference, pp. 344-349
[11] Dickinson, B. and Hu, W., (2015), “The Effects of Centrality Or-

dering in Label Propagation for CommunityDetec-

tion”, SocialNetworking, 4(04), p.103.
[12] Wu, Z.H., Lin, Y.F., Gregory, S., Wan, H.Y. and Tian, S.F., (2012),

“ Balanced multi-label propagation for overlapping community de-

tection in social networks”, Journal of Computer Science and Tech-
nology, Vol.27, No.3, pp.468-479

[13] Prabavathi, G. T., and V. Thiagarasu., (2014), “Design and devel-

opment of overlapping community detection algorithm using Multi-
Label Propagation”, International Journal of Advance Research in

Computer Science and Management Studies, Vol.2 No.2, pp. 195-

199.

86 International Journal of Engineering & Technology

[14] Angadi, A. and Varma, P.S., (2015), “Overlapping community de-

tection in temporal networks”, Indian Journal of Science and Tech-

nology, 8(31).

[15] Xie,J., Szymanski B K. ,(2013), “Labelrank: A stabilized label

propagation algorithm for community detection in networks”, In

Network Science Workshop (NSW), pp. 138–143.IEEE
[16] Xie,J., Chen, M. and Szymanski, B.K., (2013), “LabelrankT: In-

cremental community detection in dynamic networks via label

propagation”, In Proceedings of the Workshop on Dynamic Net-
works Management and Mining, pp. 25-32, ACM

[17] Bhat, A.U., (2012), Scalable community detection using label prop-
agation & map-reduce

[18] Kuzmin, K., Shah, S.Y. and Szymanski, B.K., (2013), “Parallel

overlapping community detection with SLPA”, In Social Compu-
ting (SocialCom), International Conference, pp. 204-212, IEEE

[19] Kuzmin, K., Chen, M. and Szymanski, B.K., (2015), “Parallelizing

SLPA for scalable overlapping community detection” , Scientific
Programming, 2015, pp.4

[20] Sotera (2014) [online] https://sotera.github.io/ distributed-graph-

analytics/louvain/
[21] Prat-Pérez, A., Dominguez-Sal, D. and Larriba-Pey, J.L.,(2014),

“ High quality, scalable and parallel community detection for large

real graphs”, In Proceedings of the 23rd international conference on
World wide web pp. 225-236. ACM.

[22] Xin, R.S., Gonzalez, J.E., Franklin, M.J. and Stoica, I., (2013),

“Graphx: A resilient distributed graph system on spark”, In First In-
ternational Workshop on Graph Data Management Experiences and

Systems, p. 2, ACM.

[23] Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I.,
Turdakov, D. and Kim, H., (2014), “Egolp: Fast and distributed

community detection in billion-node social networks.”, In Data

Mining Workshop (ICDMW), IEEE International Conference
on (pp. 533-540).

[24] Rathee, S., Kaul, M. and Kashyap, A.,(2015), “R-Apriori: an effi-

cient apriori based algorithm on spark” , In Proceedings of the 8th
Workshop on Ph. D. Workshop in Information and Knowledge

Management , pp. 27-34, ACM.

[25] Dongen, S.M., (2000), Graph clustering by flow simulation.
[26] Koy, Albert.(2015), "Subgraph-centric Large-Scale Graph Analyt-

ics on Spark."

https://sotera.github.io/%20distributed-graph-analytics/louvain/
https://sotera.github.io/%20distributed-graph-analytics/louvain/

