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Abstract 
 

Organization, Government and Individual (OGI) have popularized the use of Digital Social Networks (DSN) that reduces the processing 

time of social-aware tasks. To accomplish a community-based communication, each social-aware task should identify its community 

group. The identified group uses a task to avail all the DSN benefits to their customers / citizens. As a result, the community-based detec-

tion algorithm has played a significant role in literature. However, the existing algorithms have had several challenging issues, such as 

performance and scalability. Thus, a distributed community detection algorithm is presented using Apache Spark‟s Resilient Distributed 

Data Set (RDD) framework based on the Scala programming language. The Apache Spark framework provides an ideal solution that 

offers ease of coding, performance, interactive mode and disk Input-Output bottlenecks in Hadoop /Map Reduce. Besides, it presents a 

platform of distributed community detection that reduces the computational computation by applying transformations, aggregations and 

joins. The experimental results show that the proposed framework achieves high accuracy for both real-world and synthetic networks.  
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1. Introduction 

E-government uses Information Communication and Technologies 

(ICTs) to satisfy the citizen goals. For public trustworthy, the gov-

ernment has provided the technology, transparency that enhances 

accountability and citizen empowerment [1]. Social media service 

is employed to provide the interactive communication, content-

sharing and opinion expression. It helps to collect the necessary 

information about the communities and the citizen backgrounds. 

As a result, the government publicizes the social media as a direct-

communicator to disseminate the public welfare schemes. Since it 

is massively considered across various e-government agencies 

namely  government-to-citizens (G2C), government-to-business 

(G2B) and government-to-government (G2G), the improvement of 

online participation and classification is highly demanded. 

A plausible indicator shows that the online government services 

have reported 39% in 2005 and 57% in 2011 [2]. The creative 

roles are proven in various countries in terms of political aspects 

such as Iran, Egypt, Tunisia and Arab spring. Among these coun-

tries, the Arab spring completely changes the shape of political 

discourse by the influence of social media. It offers a tactical 

breakthrough to manage and engage the individuals, businesses 

and public organization cautiously [3]. Moreover, the social media 

benefits the government in terms of transparency to ensure the 

citizen with more innovative services and information access to 

open an interactive communication. Complex social networks 

(Facebook and Twitter), biological networks (transcriptional regu-

latory networks and virus-host networks) and technology networks 

(electric grids) exhibit the features namely high clustering coeffi-

cient, a heavy-tail degree distribution, hierarchical structure and 

presence of communities. A high clustering coefficient is a meas-

ure of the degree to which nodes in a graph tend to be clustered (or 

community) together.  A heavy tail degree distribution is also 

known as scale-free or power-law distribution that has a distribu-

tion “heavier” than the exponential distribution. Communities or 

groups in a network hold denser connections (or relationships) 

inside the groups and have the sparser connections outside the 

groups. However, there is no formal community definition accept-

ed universally. In most of the community detection algorithms, the 

communities or groups are represented as the final products. 

 
Fig.1: A Network with 3 communities 

 

A network or graph is an abstract representation of nodes and their 

connections respectively. A basic network arrives when the simi-

lar nodes are connected. A social network is defined as a network 

that has a node connector as an actor in order to provide a rela-

tionship such as co-authorship, friend, ownership, relationship of 

beliefs, etc. From Figure 1, it is observed that the network has 
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three communities with the nodes such as , 

 and . For the 

given graph, dense and sparse connection is used to find the com-

munities. In , there are eight edges inside the community 

whereas only two edges outside the community.  While separating 

the outside edges, the network is partitioned into two sub-

networks. Similarly, while continuing the partition process, the 

network is bifurcated into three sub-networks or communities. 

Girvan-Newman algorithm [4] is used to find the sparse edges 

with high betweenness that is removed to partition a network 

whereas Louvian technique[5] uses a benefit function (modularity) 

to search the best possible partition of the network and Clique 

based methods[6] searches strongly connected edge components 

to bifurcate a network. 

As social networks such as Facebook, Twitter, LinkedIn etc. 

have had several edges have challenging issues namely conver-

gence problems and sparse matrix representations are addressed. 

Besides, finding triangles, cliques and other related properties 

(clustering coefficient) are relatively expensive and time consum-

ing as well for the use of billion-scale graphs.  Zeng et al [8] in-

troduced a distributed computation that improves the performance 

of sequential approaches. Thus, this paper proposes a Parallel 

Label Propagation Algorithm (PLPA) that is based on parallel 

community detection using the Spark RDD framework. 

The paper is rationalized into four sections. Second section 

deals with the review of existing traditional and parallel communi-

ty algorithms; Next section introduces our proposed PLPA ap-

proach in detail. Last section presents output results followed by 

conclusion. 

 

2. Background 

 
The existing community detection methods suffer from the follow-

ing problems. The first one is that the algorithms work sequential-

ly on small data sets and the efficiency of the algorithm decreases 

when the size of datasets increases and has time complexity O(n), 

where n is the number of edges (or links) in the graph. The second 

one is that in many algorithms graph was modeled as an adjacency 

matrix (or edge list, sparse matrix) and during computation at 

every phase the adjacency entries may become zero and leaves 

most of the entries in the matrix as sparse. Sequential algorithm 

cannot skip these sparse entries in the matrix. Therefore, to handle 

the above mentioned problems parallel algorithms are suggested in 

this paper. 

 

2.1 Traditional Community Algorithms 
 

Community detection algorithms are classified into model-based, 

local optimized and label propagation algorithms. Numerous prob-

lems were reported related to time-efficiency  in the first two cate-

gories of algorithms and the third is the most cited one i.e., label 

propagation methods such as LPA[9], SLPA [10,11], BMLPA[12] 

MLPA[13], DMLPA[14], LabelRank[15], LabelRankT[16] pro-

vides properties like low computational complexity, ease of im-

plementation and accuracy in both disjoint and overlapping com-

munity detection. The mutual characteristic feature in the label 

propagation family is the process of exchanging community labels 

during propagation process between graph nodes in order to send 

the updated messages to neighbor nodes.  

 

The following are the stages in the label propagation method: 

 Load graph 

 Speaker Approach: draw l labels 

 Listener Approach: store the most frequent l labels 

 Post-processing  

It is worth noticing that at every stage each node has a memory 

(entry in a matrix) to keep the account information observed in the 

past iteration. For loading graph the algorithm requires O(n), for 

the speaker and listener approaches it requires O(Tm) and for the 

post-processing it requires the complexity O(n). Therefore the 

overall complexity is O(Tm) of the entire algorithm. 

 

2.2 Parallel Community Algorithms 
 

Parallel computation has become a desirable and important feature 

of community detection due to increasing size of graphs.  Known 

algorithms to increase scalability and performance include: LPA 

using Hadoop MapReduce[17] ,SLPA using OpenMP API[18,19] 

the Louvian method using Apache Giraph [20], Scalable Commu-

nity Detection[21],Graph processing using Graphx[22] EgoLP[23] 

and many others. 

 

3. Proposed PLPA Framework 
 

The Label propagation community algorithms iterates over list of 

nodes and picks one of its neighbor as a listener and each neighbor 

of the selected node sends a frequent occurred label list by follow-

ing speaking rule. Listener accepts one label from the list of labels 

from neighbors by following listening rule. This process iterates 

for all the nodes in the graph. After all iterations are completed, 

post processing is carried out to extract the communities. 

It is obvious that the computation of community labels is a se-

quence of iterations makes the algorithm sequential and updated 

labels are accountable for subsequent iterations. Therefore, the 

nodes cannot be processed independent of each other. Parallel (or 

distributed) approach supports interactive and repetitive applica-

tions with the help of uniform data abstraction called RDD and it 

is a replacement of MapReduce approaches [24]. 

Label Propagation community algorithm (SLPA) performed well 

in constant networks to find the disjoint/overlapping communities. 

In SLPA, at each phase, speaker sends a label that has a high 

probability and listener listens to all labels send by the speaker 

nodes but accepts only one label that has maximum number of 

occurrences. However, due to random selection of labels at listen-

er stage the algorithm produce different communities in different 

runs.  Many revisions were made to resolve this randomness issue. 

Our proposed PMLPA a parallel version of community detection 

methods (based on SLPA, MLPA) is developed using Apache 

Spark framework. It alters speaker, listener rules by passing mul-

tiple labels during propagation process and the inflation[25] opera-

tor in post processing phase in order to detect the communities 

quickly. 

 

3.1 Implementation 

 

3.1.1 Load Graph 

 

The edge list data set containing edges of a graph from a TEXT 

FILE is loaded in Spark RDD to make use of fault tolerance in 

cluster and also to provide efficient use of cluster memory.   

Efficiency is achieved through parallelization of processing a file 

on multiple nodes in the cluster. The file is broadcasted to every 

worker node to make it available to each worker. Once the data is 

loaded into an RDD we can carry out transformations and actions. 

flatMap transformation is applied on the dataset to read the edges, 

which converts each edge into (source, destination) i.e., (key, val-

ue) pairs. A function countByKey is applied to get the degree of 

every node and groupByKey function is performed to get the 

neighbors of each node. Finally mapByValues() is applied on 

RDD to get the probability distribution matrix. 
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Fig 2:. Subgraph-centric Large-Scale Graph Analytics on Spark lineage 

graph for RDD of First Phase [26] 

 

 

 

 

 

 

 

 

 

 

Algorithm  

1.  Foreach edge E in Ri  

2.      flatMap ( lineoffset , T ) 

3.          Foreach edge  e  in  E 

4.               Yield (source , destination) edge pair  

5.          End foreach 

6.      End flatMap 

7.    End foreach 

8.     groupBykey(K,V) 

9.       Foreach(K,V) pair 

10.            Yield(K,Iteratable<V> ) pairs 

11.                 End foreach 

12.        End groupBy 

13.       countByKey(K,V) 

14.    Foreach (K,V) pair 

15.      Yield(K,Count) pair 

16.             End foreach 

17.        mapValues(K,Count) 

18.            Foreach(K) 

19.                Yield(K,K=> 1.0 / V) 

20.                     End foreach 

                21.       End mapValues 

 
 

Fig 3:. An example of the spark dataflow operators needed to load a graph (pre-processing). Input is an edge list; a countByKey operation can be per-

formed to get the degree of every node. Then a groupByKey to expand the neighbors of every node finally mapValues to get the probability of every node 

in the network 

3.1.2 Speaker Approach 

Each node in the network starts off as its own community label 

(i.e., node‟s id). This means that initially each node belongs to a 

different community. The following steps repeated until the exit 

condition is satisfied.                                                                    

a. Select any node as the listener.  

b. The neighbor nodes of the listener become speakers, 

usually more than one speaker exists and their roles may 

get exchanged depend on whether a node obliges as in-
formation consumer or provider. 

c. Apply the speaker rule and get the labels list for propa-

gation. 

The major functionality of speaker is to decide which labels list 

should be forwarded to the listener for propagation. The following 

are the rules proposed for this purpose at speaker side. 

 

Rule 1: For a node i  if there are l1,l2,l3,…..ln speakers exist and if 

all labels have the same frequency, then all the labels are sent to 

the listener. 

 

Rule 2: For a node i  if there are l1,l2,l2,l3,l3…..ln speakers exist 

and the labels l2,l3 have the same frequency of occurrence, then 

the label list containing the labels l2,l3 is sent to the listener. 
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Fig 4.:  An example of the spark dataflow operators needed to apply to propagate the labels to the listener. Assuming node 1 as listener, the speaker rules 

applied on each neighbor of the first node for sending label list to listener. 

3.1.3 Listener Approach  

Label propagation always starts with a listener. The principal task 

performed by the listener is to decide which labels are to be pro-

cessed and which labels to be omitted? If a node i contains J 

speakers and if the number of labels sends by J nodes to node i  is 

stored in label list l then, to determine what labels should be con-
sidered is based on following rules: 

Rule 1:  If the label names in the list l are unique, i.e. all labels 

have equal occurrence, then, the label list l should sent for updat-

ing process. 

Rule 2: If the label names in the list l are not unique, i.e. all labels 

have differences of occurrences, then, the following rules are ap-
plied 

i. If one label has maximum frequency than the other la-

bels, then only the label which has maximum frequency 

should be considered for updating process and all others 

should be ignored. 

ii. Assuming l2,l3 are the labels in the label set l, and if both 

has equal number of   occurrences than the other labels, 
both labels are considered 

After identifying the labels that have maximum number of occur-

rences, listener calculates the probabilities of accepted labels and 

passes the labels for the next phase and updates the label distribu-

tion matrix accordingly 

 

Fig 5:. An example of the spark dataflow operators needed to get the frequent observed label/s of every listener in the current step 
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3.1.4 Inflation 

The inflation operator is used to increase the importance of 

labels that has maximum probability and to decrease the im-

portance of labels that has least probability at the end of every 

iteration.  

 

 

                                                        (1) 

 

            

 

                     (a)                                                                                        (b)  2in                                                         (c) 4in                                                               

Fig 6: (a) sample network with the probability values as edge labels.  (b) Network when applied inflation of 2.     (c) Network when applied inflation of 4. 

 

Traditional algorithms represent network structure P in the form 

of matrix, but when the network grows the matrix size rapidly 

increases and most of the entries become sparse as shown in Fig-

ure 7. Apache Spark RDD is a solution to overcome for the above 

said problem, in the proposed framework the label distribution 

matrix is represented as a RDD shown in Figure 8. Every node is a 

key and its speakers‟ probabilities are values (i.e., key with multi-

ple values) inflation is applied to label distribution P , which ini-

tially holds the probabilities of all nodes and it continually updates 

the probabilities of accepted labels at listener phase. RDD shown 

in Figure 8 has a same resemblance as of a matrix as in Figure 7, 

which avoids the sparse entries.                                     

 

 

 

 

 

 

                   

                          

                                                    

Fig7: The label distribution matrix of network size 15 
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Fig8: The Lineage graph for RDDs of neighbors and label distribution of network size 15

3.1.5 Post Processing  

Finally post processing is applied to all the labels in the memories 

of nodes to output the communities. A node may contain varying 

probabilities for one/more labels, each label‟s probability are veri-

fied with threshold value in order to omit the labels that have less 

probability. If a node i contains k  labels, the probability of each 

label verified using the following eqn.(2). 

1
,

0

k

ij
j

ij

P r then

P


 


                                               

 

After post processing, the labels with low probability becomes 

zero at the end of iteration every node left with a single label, the 

nodes with similar label are grouped into one community as 

shown in Figure 9. 

 

                      

                           

 

                                                                     

 

 

Fig 9:  The Lineage graph for RDDs of post processing phase of network size 15 

4. Tests in Synthetic Networks 

We tested our framework on large social networks available at 

UCI Network Data Repository for which we know the exact 

groups and compared its performance with traditional algo-

rithm SLPA in terms of speedup and efficiency.  We performed 

speedup and efficiency using the following equations. 

    Speedup=                                Efficiency= 

                                                              
Where P  is the number of partitions. 

 

 

 

 

 

 

 

Fig 10: Execution time for different number of partitions 

(2)

1 

(1) 

(2) 

(2) 
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                      (a)  Karate Network                                              (b) Dolphins Networks                                  (c) Lesmis Network 

                                        

                                                         (d) Football Network                                                          (e) PolBooks Networks 

                                                              Fig 11:: Community results of 5 networks of PLPA, where colours represent communities. 

 

5. Conclusion 

 
In this paper, a distributed community detection algorithm has 

been implemented for large datasets that supports to find the 

communities in various digital social networking applications, 

such as personalized e-government services, citizen-centered 

smart cities. The proposed algorithm overcomes the weaknesses of 

processing time and space in comparison with traditional commu-

nity detection algorithms. Besides, this algorithm reduces the 

computational time of speaker and listener phases through the 

addition of  inflation operator. In order to improve the perfor-

mance of PLPA several times with respect to large dataset, PLPA 

is implemented on Spark, which provides an extremely distributed 

computational environment in relation with other platforms. The 

theoretical and empirical comparison of PLPA shows the outper-

formance of community detection algorithms as compare to other 

existing approaches. 
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