
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4.5) (2018) 32-35 

 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  

 

Research paper 
 

 

 

 

An Improved Page Replacement Algorithm Using Block  

Retrieval of Pages 
 

Govind Prasad Arya
1
*, Devendra Prasad

2
, Sandeep Singh Rana

3
 

 
1Assistant Professor , Sikkim Manipal University, Gangtok 

2Assistant Professor, Poornima University, Jaipur 
3Assistant Professor , Maharishi Markandeshwar University, Ambala 

*Corresponding author E-mail: govind.arya10@gmail.com 

 

 

Abstract 
 

The computer programmer write programming codes of any length without keeping in mind the available primary memory. This is pos-

sible if we use the concept of virtual memory. As the name suggests, virtual memory is a concept of executing a programming code of 

any size even having a primary memory of smaller size than the size of program to be executed. The virtual memory can be implemented 

using the concept of paging. The operating system allocates a number of memory frames to each program while loading into the memory. 

The programming code is equally divided into pages of same size as frame size. The size of pages and memory frames are retained equal 

for the better utilization of the memory. During the execution of program, every process is allocated limited number of memory frames; 

hence there is  a need of page replacements. To overcome this limitation, a number of page replacement techniques had suggested by the 

researchers. In this paper, we have proposed an modified page replacement technique, which is based on the concept of block reading of 

pages from the secondary storage. The disc access is very slow as compared to the access from primary memory. Whenever there is a 

page fault, the required page is retrived from the secondary storage. The numerous page faults increase the execution time of process. In 

the proposed methodology, a number of pages, which is equal to the allotted memory frames, are read every time when there is a page 

fault instead of reading a single page at a time. If a block of pages has fetched from secondary storage, it will definitely increases the 

possibilities of page hit and as a result, it will improve the hit ratio for the processes. 

 
Keywords: Page replacement, Page fault, Page hit, Page miss, Hit ratio, Block reading 

 

1. Introduction 

Operating system offers a service known as memory management, 

which manages and guide primary memory. It moves processes 

between disc & main memory during the execution by back forth 

[1]. The process in which we provisionally moves process from 

primary memory to the hard disk or secondary memory so the 

memory be available for other processes, this process is known as 

swapping. 

A computer can find extra memory than the amount of manually 

equipped on the system. This extraneous memory is literally called 

virtual memory and it is indeed a section of a hard disc that is set 

up to imitate the computer's RAM. Virtual memory is generally 

attained with the demand paging. It may also be carried out in a 

segmentation system. For providing virtual memory, Demand 

segmentation is to be used. 

A memory management method paging is commonly used in 

which the memory is parted into fixed size pages[8]. Paging is 

used for accessing data rapidly. Whenever a program requires a 

page, it could be found in the primary memory as if the Operating 

System duplicates a certain no. of pages on the main memory from 

hard disk. It grants the physical address space of a process to be 

non-contiguous. A page table is the data structure, which is used 

by a virtual memory system in a computer’s operating system to 

fund the mapping within the virtual addresses & physical address-

es. The accessing process uses virtual addresses, while physical 

addresses used up by the hardware and most categorically, by the 

RAM sub-system [9]. Whenever a program attempt to reference a 

page that is not available in RAM, then the processor takes it as an 

invalid memory reference, or as a page fault and then it relocate 

control from the program to the OS [11]. 

Page replacement techniques are the methods by which an Oper-

ating System concludes which memory pages to be swapped out 

& write to disk, whenever a page of main memory is required to 

be allocated. Paging will arise when a page fault occurs and a free 

page is not to be used for allotment purpose and calculating to 

reason that pages are not available or the no. of freed pages are 

lesser than required pages [14]. 

A page replacement algorithm hits on the less knowledge about 

obtaining the pages given by the hardware, and then it tries to 

elect which pages must be replaced to minimize the total number 

of page misses, during adjusting it with the costs of primary 

memory & processor time of the algorithm self-[15]. We have 

several different page replacement algorithms. We calculate an 

algorithm by executing it on a appropriate string of memory refer-

ence and checking the number of page faults. 

2. Literature Survey 

The first-in, first-out (FIFO) page replacement algorithm is a less-

overhead algorithm which entails little bookkeeping on the part of 

the operating system. As we know by the name - the operating 

system set track of each page in memory in the form of a queue, 

with the one comes late placed at last & the one comes first will 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


International Journal of Engineering & Technology 33 

 
placed in front. The operating system assists a list of all pages 

presently in memory, with that page which is at the head of the list 

the oldest one and the page at the tail the most topical arrival. 

Whenever a page is to be swapped out, the page at the front of the 

queue, (the oldest page) is considered. While FIFO is cheap and 

instinctive, it results poorly in practical application. 

Least recently used (LRU) page replacement, this algorithm re-

places the page that has not been used for the longest period of 

time. We can think of this strategy as the optimal page-

replacement algorithm looking back ward in time, rather than 

forward [20]. The LRU policy is regularly used as a page re-

placement algorithm and is well thought-out to be good. The 

foremost problem is how to put into operation LRU replacement. 

An LRU page-replacement algorithm may involve significant 

hardware support. The difficulty is to decide an order for the 

frames distinct by the time of last use. 

Optimal page replacement,[21] The optimal page algorithm mere-

ly removes, the page with utmost no. of such information imply-

ing that it will be required in the most isolated future. This algo-

rithm was launch long back & is not easy to implement for the 

reason that it requires future information of the program actions. It 

is likely possible to execute optimal page replacement. 

Not Recently Used (NRU) page replacement algorithm [22],in this 

algorithm it is important that it requires that each page must con-

tain 2 extra status bits 'R' and 'M' called reference bit & change bit 

respectively. The reference bit(R) is repeatedly set to 1 at whatev-

er time the page is requested. The change bit (M) is set to 1 every 

time the page is customized. These bits are stored in the PMT and 

are reorganized on each & every memory reference. Whenever a 

page fault occurs, the memory manager inspects all the pages & 

divides them into 4 classes based on R and M bits. 

3. Existing Algorithm 

Existing algorithm is as follows, first the author determine number 

of pages. Let us say this is denoted by the value 'n'. Now we create 

'n' count variables, say c1, c2, and c3uptocn. Now we take the 

reference string, count each value, and add it to the count of that 

corresponding value [31]. For example if the reference string val-

ue is 1,1,3,2,0,5,6,2,4 then author have 6 count variables and their 

values are,c1=2,c2=2.c3=1,c4=1,c5=1,c6=1 and c0=1.Now say we 

have 4frames, so first 1 is entered to the frame and c1 is now equal 

to 1. Next 1 is already there, hence only c1 value changes and is 

equal to 0. Next c3is made 0 and 3 is added. Similarly 2 and 0 are 

added. Now when 5 is to be enter, one page fault occurs. For re-

placing it the value with minimum count is removed. If an ambig-

uous case occurs then the LRU algorithm or FIFO can be followed 

to remove a page. 

 

Consider the following reference string of pages- 

 

 

 

Assume that the frame size is four (F0, F1, F2 and F3). The alloca-

tion of frames for the pages in existing methodology is show be-

low- 

 

 

 

 

 

Fig. 1: Frame Allocation of Pages in Existing Methodology 

HM shown in the above figure denotes hit/miss counts. A one in 

HM represents a hit while a zero indicates a miss. 

The same analysis can be seen in figure 2. 

 

 

 

 

 

Fig. 2: Hit/Miss Analysis Using Existing Methodology 

4. Shortcomings of Existing Algorithm 

The existing methodology was based on count based page re-

placement technique, which was similar to the optimal page re-

placement. As its name imply an optimal page replacement tech-

nique is optimal in terms of less number of page faults, which lead 

to high hit ratio. Along with high hit ratio, it is also known that 

optimal page replacement technique is not practical because we 

are not aware of page reference string in advance.  

5. Proposed Method 

In this research, we proposed a new concept for page replacement, 

which is based on block reading of pages from the secondary stor-

age. As we know that disc, access is time consuming because of 

the complex mechanism of secondary storage, which lead to slow 

processing of data. It is always better to read a block of data 

whenever there is frequent disc access. In my research, whenever 

there will be a page fault, instead of reading a missed page only, I 

retrieve asset of pages equal to number of frames allotted for that 

process. By this way, we can definitely minimize number of page 

miss, which will improve hit ratio too. 

6. Proposed Algorithm 

Our proposed algorithm is given below- 

Assume that size of reference string is N and allotted number of 

memory frames are MF 

 

Step 1: Enter length of reference string N and allotted number of 

memory frames MF. 

Step 2: Enter reference string of pages. 

Step 3: for first to last position of reference string do steps from 4 

to 6. 

Step 4: if the marked page is not available in memory frames then 

do step 5, otherwise do step 6. 

Step 5: mark it as page miss and then read a block of next MF 

pages from the disc as a block retrieval and fill all the allotted 

frames at once. 

Step 6: just mark it as page hit.  

 

Consider the following reference string of pages- 

 

 

 

 

Let consider the frame size is four (F0, F1, F2 and F3). The alloca-

tion of frames for the pages in proposed methodology is show 

below- 



34 International Journal of Engineering & Technology 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Working of Proposed Methodology 

 

In the figure 3, we can see, first reference string is 1 which is not 

found in allotted frames. It is a page miss, thus as per the proposed 

algorithm, we have to read next four distinct pages (1, 3, 2, 0). 

After filling all four frames, there will be page hit for the next 

page references (1, 3, 2, and 0). There will be again a page fault 

for a page reference 5. Then with similar fashion, we will read 

next four pages (5, 6, 2 and 4), after that all coming pages will be 

found resulting as page hit. 

 

HM shown in above figure denotes hit/miss counts. A one in HM 

represents a hit while a zero indicates a miss. 

 

As per the output, 

The total page references =10 

Total number of hits =8 

Total Number of miss=2 

Hit Ratio= [Total Hits/(Total Hit + Miss)] x 100 

So hit ratio= [8/10] x 100 = 80 % 

7. Results and Analysis 

The results are analysed for four memory frames. The number of 

hits using existing methodology for predefined reference string is 

3, but using proposed method is decreases to 8, which is a signifi-

cant change. The hit ratio using existing method for default refer-

ence string is 30 .00 %, but using proposed it increases to 80.0 %, 

which is a big difference. The proposed methodology will depict 

better result when number of memory frames are increased. 

 

The result analysis of existing Vs proposed algorithm is shown 

using following snapshot- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Result Analysis Using Existing Vs Proposed Methodology 

The same analysis is shown using bar chart- 

 

 

 

 

 

 

Fig. 5: Result Analysis of Existing Vs Proposed Methodology Using Bar 

chart 

7. Conclusion  

In this research, we have preserved a new concept for page re-

placement, which is based on block reading from secondary stor-

age. The concept of block reading is obvious when there is fre-

quent disc access. With the help of proposed methodology, we 

can found maximum pages in memory frames, which result high 

hit ratio. If we compare the proposed methodology with existing 

one, we found that the proposed methodology provide better re-

sults. As usual, the proposed method will provide better result 

when we allot more number of memory frames. Although the 

proposed algorithm shows better, result but there is always a need 

of improvement. In future, the same methodology can be im-

proved by applying some concept, which will reduce the number 

of page replacement. The proposed algorithm can be improved by 

providing a hybrid mechanism, which uses existing algorithms 

(like first in first out, least recently used, optimal page replace-

ment, etc.) also. 

References  

[1] Sanjay Kumar Panda and Saurav Kumar Bhoi, “An Effective 
Round Robin Algorithm using Min-Max Dispersion Measure”, 

International Journal on Computer Science and Engineering, 4(1), 

pp. 45-53, January 2012. 
[2] Theodore Johnson and Dennis Shasha. 2q: a lowover head high 

performance buffer management replacement algorithm In Pro-
ceedings of the Twentieth International Conference on. very 

Large Databases, pp.439-450, Santiago, Chile, 1994. 

[3] G. Glass and P. Cao, Adaptive Page Replacement Basedon 
Memory Reference Behavior, Proceedings of 1997ACM SIG- 

METRICS Conference, May 1997, pp. 115-126. 

[4] J. E. O’neil, P. E. O’neil and G. Weikum, “An optimality Proof of 
the LRU-K Page Replacement Algorithm”, Journal of the ACM, 

pp. 92-112, 1999. 

[5] Nimrod Megiddo and Dharmendra S. Modha ARC: ASelf-tuning, 
Low Overhead Replacement Cache USENIX File and Storage 

Technologies Conference(FAST), San Francisco, CA, 2003. 

[6] N. Meigiddo, and D. S. Modha, “ARC: A Self-Tuning, Low 
overhead Replacement Cache”, IEEE Transactions on Computers, 

pp. 58-65, 2004. 

[7] S.  Bansal,  and  D.  Modha,  “CAR:  Clock  with  Adaptive  Re-
placement”,  FAST-’04 Proceedings of the 3rd USENIX Confer-

ence on File and Storage Technologies, pp. 187-200,2004. 

[8] Sorav Bansal and Dharmendra S. Modha CAR: Clockwith Adap-
tive Replacement FAST’04 - 3rd USENIX Conference on File 

and Storage Technologies, 2004. 

[9] S. Jiang, and X. Zhang, “LIRS: An Efficient Policy to improve 
Buffer Cache Performance”, IEEE Transactions on Computers, 

pp. 939-952, 2005. 

[10] Song Jiang, Feng Chen and Xiaodong Zhang, CLOCK Pro: An 
Effective Improvement of the CLOCK Replacement, USENIX 

Annual Technical Conference, 2005. 



International Journal of Engineering & Technology 35 

 
[11] Song Jiang and Xiaodong Zhang, Token-ordered LRU: an effec-

tive page replacement policy and its implementation in Linux sys-

tems, Performance Evaluation 60 5–29, 2005. 

[12] S. Jiang, X. Zhang, and F. Chen, “CLOCK-Pro: An Effective Im-

provement of the CLOCK Replacement”, ATEC ’05 Proceedings 

of the annual conference on USENIX Anuual Technical Confer-
ence, pp. 35, 2005. 

[13] Kaveh Samiee, ”WRP: Weighting Replacement Policy to Im-

prove Cache Performance”, International Journal of Hybrid In-
formation Technology,Vol.2,No.2, April, 2009. 

[14] A. Janapsatya, A. Ignjatovic, J. Peddersen and S. Parameswaran, 
“Dueling CLOCK: Adaptive cache replacement policy based on 

the CLOCK algorithm”, Design, Automation and Test in Europe 

Conference and Exhibition, pp. 920-925, 2010. 
[15] Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operat-

ing System Concepts (UK: Wiley, 2010). 

[16] Performance analysis of LRU page replacement algorithm. Inter-
national Journal of Engineering Research and Applications (IJE-

RA) Vol. 3. Issue 1. pp.2070-2076 Klues K. Rhoden B. Zhu Y. 

Waterman A. Brewer E. (2010). 
[17] A. S. Sumant, and P. M. Chawan, “Virtual Memory Management 

Techniques in 2.6 Linux kernel and challenges”, IASCIT Interna-

tional Journal of Engineering and Technology, pp. 157-160, 2010. 
[18] A.  Janapsatya,  A.  Ignjatovic,  J.  Peddersen  and  

S.Parameswaran,  “Dueling  CLOCK: daptive cache replacement 

policy based on the CLOCK algorithm”, Design, Automation and 
Test in Europe Conference and Exhibition,pp. 920-925, 2010. 

[19] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish 

D.Purohit and Pramila M. Chawan, " A Comparison of PageRe-
placement Algorithms", IACSIT International Journal ofEngi-

neering and Technology, Vol.3, No.2, April 2011 pp.171-174. 

[20] Ali   Khosrozadeh,   SanazPashmforoush,   Abolfazl   Akbari,   
Maryam   Bagheri, NedaBeikmahdavi. , "Presenting a Novel Page 

Replacement Algorithm Based on LRU”, Journal of Basic and 

Applied Scientific Research, 2(10)10377-10383, 2012. 
[21] Implementation of a page replacement algorithm with temporal 

filtering for Linux, vashundra rathod, pramia chavan, journal of 

engineering & applied sciences volume 2, no. 6, june 2013. 
[22] Mr.C.C.Kavar,  Mr.  S.S.Parmar  “Performance  Analysis  of  

LRU  Page  Replacement Algorithm with Reference to different 

Data Structure" International Journal of Engineering Research 

and Applications (IJERA) Vol. 3, Issue 1, January –

February2013, pp.2070-2076. 

[23] A comparison of page replacement algorithm. IACSIT Interna-
tional Journal of Engineering and Technology. Vol. 3. No. 2 

Kavar C. C. Parmar S. S. (2013). 

[24] Pooja khulbe, Shruti pant, “HYBRID LRU Page Replacement 
Algorithm” , International Journal of Computer Applications 

(0975 – 8887) Volume 91 – No.16, April 2014. 

[25] Page Replacement, S. Jananee, ISSN 2348-1196 (print) Interna-
tional Journal of Computer Science and Information Technology 

Research ISSN 2348-120X (online) Vol. 2, Issue 3, pp: (90-99), 

Month: July - September 2014. 
[26] Jisha.P. Abraham, Sheena Mathew " A novel approach to im-

prove processor performance with page replacement techniques" 

Proceedings of the International Conference on Information and 
Communication Technologies, ICICT 2014,3-5 December 2014. 

[27] Hasan M H Owda ,Munam Ali Shah, AbuelgasimIbrahimMusa, 

ManzoorIlahiTamimy " A Comparison of Page Replacement Al-
gorithms in Linux Memory Management" International Journal of 

Computer and Information Technology (ISSN: 2279 – 0764) 

Volume 03 – Issue 03, May2014 pp. 565-569,2015. 
[28] Anvita Saxena, A Study of Page Replacement Algorithms, Inter-

national Journal of Engineering Research and General Science, 
2(4), 2014, 385-388,2015. 

[29] Manisha Koranga and Nisha Koranga, Analysis on Page Re-

placement Algorithms with Variable Number of Frames, Interna-
tional Journal Of Advanced Research in Computer Science and 

Software Engineering, 4(7), 2014, 403-411,2015. 

[30] Genta Rexha, Erand Elmazi and Igli Tafa, A Comparison of 
Three Page Replacement Algorithms: FIFO, LRU and Optimal, 

Academic Journal of Interdisciplinary Studies, 4(2), 2015, 56-62, 

2016. 
[31] Mahesh Kumar M R and Renuka Rajendra B, AN INPUT EN-

HANCEMENT TECHNIQUE TO MAXIMIZE THE PERFOR-

MANCE OF PAGE REPLACEMENT ALGORITHMS, Interna-
tional Journal of Research in Engineering and Technology, 4(6), 

2015, 302-307,2016. 

[32] Shreyank Gowda, “Count based page replacement technique” 

Proceedings of The IIER International Conference, Los Angeles, 

USA, 7th April 2016, ISBN: 978-93-85973-57-4, 2016 


