

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.1) (2018) 22-27

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Code Obfuscation. Where is it Heading?

Asmaa Mahfoud
*
, Abu Bakar Sultan, Abdul Azim Abd, Norhayati Mohd Ali, Novia Admodisastro

Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
* Corresponding author E-mail:asmaa@idease.net

Abstract

Reverse Engineering is the process of revealing hidden code from class file. It converts garbage to readable English text. The main pur-
pose of Reverse Engineering is to uncover the hidden code when the documentation is poor, missing source file, and developer is no
longer available to provide the original code source file. Hacker uses Reverse Engineering to attack the class file to uncover the code.
Then, the code can be reused for other purposes without taking any permission from the original author. The class file contains all the
information and business rules that will be revealed once Reverse Engineering process attacks. Anti-Reverse Engineering techniques are

developed to stop, delay, and prevent Reverse Engineering; one of the most common techniques is Obfuscation. It has many forms of
protection such as, changing the names of classes and variables names, hide classes, and change form of code. In this paper, an appraisal
will be conducted to study the current Obfuscation techniques. This research proposes a new hybrid technique that is based on obfusca-
tion; the technique will be using mathematics, Unicode, and unknown language to convert the source file to a garbage running file that
does same task which normal source file does for java applications.

Keywords: Reverse Engineering; Anti Reverse Engineering; Code Obfuscation; Software Security.

1. Introduction

Reverse Engineering is the process of revealing hidden code and
special business rules from the class file of any program devel-
oped by java programming language. In the development industry,
there is always a fight between the code owners and the hackers,
each want to claim the ownership of the code, and only the smart
one will win the battel, it doesn’t matter if they are the owner of

the code or not. for each programming language, there are special
reversing tools, for example in java programming language, when
a program is developed, it produces class file which is compiled to
the machine language [1].
The reversing tool that can be used for class file is JAD or Cavaj,
these are the de-compilers that can extract the garbage or byte
code from the class file to a readable text. It translates java-byte
code into readable source code.

Companies nowadays have started to use the advantage of Reverse
Engineering to re-do or re-develop old applications and software
that were developed in the past, for more than thirty years ago.
Reverse Engineering offers a very good advantage where the de-
veloper does not have to develop a fresh new software where it is
possible to take the old one and just edit on it [2]. This way, the
company can save time, money, and even staff. It is obvious that
Reverse Engineering salves the problem of obsolete applications,

but it has drifted to another path, where the hackers were interest-
ed to break the commercial applications and re-use the code for
their own benefit, some companies will use the Reverse Engineer-
ing to reverse other company’s code and edit on it and resell It for
its own benefit [3].

2. Current Position of Reverse and Anti-

Reverse Engineering

Nowadays developers inherit so many applications and systems,
such as banking systems, health systems, vendors systems, switch-

ing. These systems are old yet still exist until today because of the
Reverse Engineering technology. Software maintenance has be-
come easy and adaptable because of the methods and techniques
provided by Reverse Engineering. New type of programmers ex-
isted, they are Reverse Engineers, all they do is to break a system
or a program by using any of the tools provided by the Reverse
Engineering, the purpose of doing this process is to get the code
and enhance it or copy it to another similar program, the reason

they are doing that is to save time and coast [4].
Reversers have found an easy way to break any system or applica-
tion and steal the code for their own benefit. Reverse Engineering
has opened a lot of opportunities for improvements and for steal-
ing intellectual property, until it went out of control. Due to this
illegal process of Reverse Engineering, programmers have come
out with Anti-Reverse Engineering tools only when the court is no
longer able to protect the intellectual property. Currently in the

programming industry there is so many Anti-Reverse Engineering
tools and methods available to use wisely [5].

3. Appraisal of the Current Anti Reverse En-

gineering Tools and Techniques

3.1. Reverse Engineering Tools

The main purpose of Reverse Engineering is to extract infor-
mation from the class file such as business rules, special code,

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 23

classes and methods. There are two main reverse engineering tools,
Disassembler and De-compiler.

3.1.1. Disassembler

This tool is used to translate the hexadecimal text into human
readable text. IDAPro is used to disassemble hexadecimal text.
The main process of this tool is to treat the executable file as a
structured object that is created from a database representing the
source code [6].

This tool contains FLIRT (Fast Library Identification and Recog-
nition Technology) is an algorithm that contains a file that looks
for the program file directory. there will be 2 files which are al-
lowed in the current process, the first one is when the IDA is load-
ed and the second permit when IDA determines the processor type
[7].

3.1.2. De-Compiler

The De-Compiler is known of converting the garbage in the class

file to readable text. For instance, if the code is written in java
programming language, the reversing tool will be JAD-java or
CAVAJ; these tools will generate the actual code from the class
file. With Reverse Engineering tools the client can reverse the
class file to get the source code and re-use it for their own benefits
without permission from the original author. They can get busi-
ness rules, secret techniques hidden in the code. Then it is difficult
from the author to claim ownership to the code [8].

3.2. Reverse Engineering Tools

The purpose of developing or creating Anti-reverse engineering

techniques is the obvious danger faced by many companies from
illegal Reverse Engineering, security issues and piracy have in-
creased, and the threat of losing the ownership of the intellectual
property. Due to the problem occurred because of illegal use of
Reverse Engineering, many tools have been developed to stop it or
at least delay it for some amount of time. Following is some of the
tools to prevent Reverse Engineering [9].

3.2.1. Code Packing

This technique is very common and well known for protection. In
code packing, a transformation of the original code to be packed
and compressed or encrypted. The packed code will be associated
with a restoration routine that is used to trigger the original code
and setting. During the process of packing, the code will pass by
several. First step, initially, the code will be stored in the memory
to get packed, second step is to be transferred into another
memory which can be called buffer, and finally get registration for

unpacking.
Code packing did not prove itself strong enough to protect intel-
lectual property. Hackers have developed a tool that is called un-
packing tool that can unpack the packed code using the registra-
tion routine. Unpacking tool can get the hidden binary code. Most
known tool for unpacking is PEID, it uses pattern matching ap-
proach to check the executable file with signature database to
define the packing method used to pack the code before creating

executable file [10].

3.2.2. Code Obfuscation

This method transforms the look of the code to make it puzzle. It
transforms the code into a complex structure that is difficult to
understand. Renaming the class file, methods, and variables is one
of the common methods used in obfuscation. Renaming may mis-
lead and confuse the reverse while trying to get some sense of the
code. This technique is applied in the source file. Reverse Engi-
neering process does not care about the name of the file, or class

or variable, the reverser can always rename the renamed classes
and files and variables to get some sense of the code, the java IDE

usually provides automatic renaming tool where the reverser can
use it to rename all the names needed to be renamed [11].

3.2.3. Binary Level Obfuscation

This technique is based on three steps of code conversion. First
step, the instruction of running code is replaced with binary level
control. Second step, during the running time, there will be resto-
ration and re-obfuscation to change the original code. Third step is
inserting additional binary level of instructions. This binary level

will be inserted before the obfuscated instruction. Due to the add-
ing of obfuscation level, when the static analysis runs on the ob-
fuscated code, run time errors will occur. However, the address of
the controlled instructions is still available which means the ob-
fuscated code can be revealed, after that the dynamic analysis with
step by step execution can reveal the original code [12].

3.2.4. Design Level Obfuscation

The purpose of Design level obfuscation is to prevent dynamic
analysis. It depends on three procedures to insure protection.
Server, Client-Start-Up, and Client. In this design, the server and
client will have to interact with each other via a location of a
shared memory, which will be created by the server. The client

will execute as a zombie to prevent the debugger from dynamic
Reverse Engineering, this process will force the attacker to do
static analysis. Since the client is executing as a zombie, it is not
possible to present itself as INIT process which is hard for the
debugger to analyse. This technique supports parallel processing
systems if and only the client code is written in parallel. Otherwise
this technique will affect the performance of the system. The per-
formance will be highly reduced. This technique does not suite

and not compatible with parallel processing where the code and
data are shared between multiple threads [13].

3.2.5. Design Level Obfuscation

This technique works on source file where the developer must
change the arrangement of the code to confuse the attacker while
reading the code. There are quite many transformation techniques
as follows;

3.2.5.1. Stealth

Highly transformed code and high level of confusion is done to
the original code, where the attacker finds it difficult understands.
However, the advanced reversing tools can easily analyze the code
and create readable text [14].

3.2.5.2. Layout Transformation
Remove comments, change overall layout of the code, and jumble
the identifiers. Still the reversing debugger can analyze and create
better arranged code. [15]

3.2.5.3. Control Flow Transformation

This concept includes aggregation and re-ordering and redundant
computation.
a. The aggregation process will change the computations, while

execution of the code, an opaque predicates and variables with
known values to the original code.

b. The reordering process will randomize the order of expres-
sions, statements, and loops while keeping the basic blocks in-
tegrated [16].

3.2.5.4. Data Abstraction

This concept does name modifications, updating inheritance rela-
tions and changing the stricter of data arrays. Creating dummy
classes and increasing the complexity of the program. It is based

on increasing the level of inheritance. This method is going
against one of the software quality factors, which is decreasing the

24 International Journal of Engineering & Technology

complexity to ease editing and updating. This concept trades read-
ability quality factor for protection [17].
Data abstraction modifies the data structure that is used in the
program. It increases the complexity of the code by changing the
operations of arrays, stacks, queues and other data structures con-
tained in program [18].

3.2.5.5. Code Shield

This technique targets the class file. It controls the flow of the

code, reduces the size of the executable file, and supports all
standard and enterprise applications developed by java. This tool
is meant to easily obfuscate names of classes and easily control
the flow of the program [19].

3.2.5.6. Lexical Obfuscation

According to (Zhang, X.et.al, 2008), there are several techniques
and methods to apply obfuscation on the source file such as Lexi-
cal obfuscation, Layout obfuscation, Data obfuscation, Control
flow obfuscation, Inter-classes obfuscation.
This type of obfuscation is used to change or remove information
of the lexical of the compiler and debugging information, com-
ments, and scramble identifiers from the byte code. If this tech-

nique is used alone, it won’t be strong enough to protect the code;
it must be used with some other techniques to guarantee protection
[20].

3.2.5.7. Layout Obfuscation

The Layout Obfuscation aims at the inheritance of the classes and
methods in the source file. The purpose of this technique is to
complicate the business rules and logic. In the layout Obfuscation,
there is adding more operators and operations along with the code
to make the reading difficult [21].

3.2.5.8. Control-flow Obfuscation

The purpose of Control-flow obfuscation is to change the logical
control structure of the statements of the code. The statements that

will be changed are loops and conditional structure. This method
modifies the actual flow of loops and shows the virtual flow which
performs the same operation as the real loop. This change will be
in the source file. One must note, reading the code after this
change will be difficult [22].

3.2.5.9. Byte Code Obfuscation

When a program is developed in java a byte code will be generat-
ed, the byte code can be called the mirror of the actual code. It
contains characters and symbols from the original source code.
Reverse engineers or crackers have exposed the secrets of the byte
code that’s why it is easy now to develop software in such a short
time, but this will be called illegal development because there is
no permission from the author granted [23].
Some companies hire reverse engineers to break up license of their

developed software for them to increase the security. The source
code and byte code obfuscation are the most effective techniques
to be used to protect the original code and prevent the threats of
reverse engineering.
SCO is most known technique to replace all the class of software
with ambiguity, such as to replace names of classes, methods, and
variables with the unclear names, to make it hard to understand, if
the reverser tries to read. BCO-Byte code obfuscation is a tech-

nique that replaces the original class files another class files that
are difficult to decompile and re-compile [24].

3.3. Java Obfuscators Tools

There are many tools that are used to prevent Reverse Engineering.
The tools usually protect the executable file. Below are some of
the common tools used in the industry;

3.3.1. Zelix Klass Master

This is an obfuscation tool that reduces size of the byte code. It
renames the actual names and changes the flow of the code. It

does stack trace translation and change the logs [25].

3.3.2 Y-Guard

This tool is used to protect the source file from possible threats

that may attack the source code. The obfuscation technique that is
used by this tool will replace the package, class, method, class,
methods, and field names with some random characters that are
difficult to understand. Also reduces the size of the class and jar
[26].

3.3.2. Pro-Guard

This tool does obfuscating and optimization. It is free to use for
java class file. However, it is like other tools to reduce the size of
the file that contains the byte code after obfuscating. This tool
looks for the unused classes, fields, methods, and attributes in the
source file. It also optimizes the Java byte code and shortens all
unused instructions. It can rename the classes, methods, and fields

to protect your source code [27].

4. Limitation of the Obfuscation Techniques

and Tools

Most of the tools and techniques are aiming to change the flow of
the code or rename the classes and methods. Or apply protection
on the class file by hiding the byte code. Reverse Engineering
tools are very strong to rename again the classes and methods to
understandable names, if they don’t do this feature; the current
IDE for java does the renaming easily, so the cracker can make
some sense of the code. The Reversing tools can also get the regis-

tration file, reveal hidden business rules and rearrange again the
flow of the code [28].
Most of the Anti-reverse engineering tools seem to focus on
source file which is good factor, but the protection that they are
using is not strong enough to stop the illegal use of Reverse Engi-
neering, whereas, they focus on changing the flow of the code or
renaming the classes and methods, or adding some unused com-
ments or compressing the size of the source file or pack the code

with some registration key to trace [29].
The reversing tools that can unpack, rename, change the flow and
create a code that makes sense for the reader to understand. There
are some other ways of protections such as limit the time of using
the program or allow few times to use the program. After obfus-
cating the code in the source file, it is still containing some debug-
ging information in the byte code; this information can be used by
the reversing tool to trigger the rest of the code. According to the

review, until today there is no obfuscating tool that has been
proved to be the best tool of protection [30-31].

Figure 1 presents the limitation of various tools and techniques;
the below figure discusses the limitation and weakness of Regis-
tration and serial numbers.

International Journal of Engineering & Technology 25

Fig 1. Anti-reverse engineering strategies

Figure 2 presents various tools and techniques of obfuscation; the
below figure discusses the limitation and weakness of the obfusca-
tion tools it terms of defense.

Fig 2. Anti-reverse engineering (obfuscation)

Figure 3 presents various timing tools and techniques; the below
figure discusses the limitation and weakness of the timing tools
and techniques terms of defense against the prohibited reverse
engineering

Fig 3. Anti-reverse engineering (Time Protection)

The previous techniques and tools to prevent Reverse Engineering.

They do don’t lock the program itself, as the Reverse Engineering
tools are able to break and read the code. The Anti-Reverse Engi-
neering tools are quite weak when it comes to protection. They are
not trying to block the process of Reverse Engineering. The aim of
this research is to implement a technique that is based on an algo-
rithm which can block the illegal Reverse Engineering process, the
algorithm will be applied in the source file.

5. Contribution

The aim of the current research is to implement a hybrid technique
or algorithm that uses obfuscation of the source file. It not pre-
vents the Reverse Engineering, but it prevents Reading, in fact an
error should occur during the reversing process. The technique
works on converting the code into three levels of conversion.

First level is to convert the English written code into Unicode to
ensure that the beginner reverser does not read the actual words.

Second level is to use mathematics to convert the messages into
garbage where the reverser and compiler won’t be able to read
them from the source file or the class file.

Third level is to convert the names of variables and classes into a
readable garbage by the compiler but not the reverser. Finally,
when compiling the code, the garbage will be converted to gar-
bage, which means, the program will go through two levels of

garbage conversion.

Following code is a sample of code before and after obfuscating.

Program takes a specific time then will be expired to
ensure that it does not get cracked. The purpose of this
protection is to limit the illegal use of the program.

Reverse Engineering process can take several days

as long as the program is open. It doesn’t matter if
the cracker does not have the serial key because
breaking the program is much easier and cheaper

than buying it

Time Tools protection
Amount of days used
Period
Number of times used (opened and closed)

Registration & serial numbers
Dongle protection
Commercial protection
Nag Screen

Hard-codded serial

This tool uses mainly registration and serial number,
whereas the user won’t be able to use the program unless

they register to enter the serial key as required. Some pro-
grams will allow the user to use for certain amount of
time, if the serial number is not provided during this time,

then the program will expire.

Reverse Engineering tools can break these applications
because they are considered normal programs since they
are not using any real protection technique. Time is not a

factor for any reversing tool.

Obfuscation
Complexity

Renaming
Hiding
Anti-reflection
Changing flow
Packing

Resizing

Targeting the source file, the aim to change the ordinary

look of the code and make massy, readable garbage,

complicated, and makes no sense if anyone try to read it.

These tools might hide the code somehow. Still reverse

engineering process is possible.

26 International Journal of Engineering & Technology

The above code is only the first trail sample to proof the concept
of the research. As seen, it contains a Unicode, garbage code in
the source file. Only two levels are used in this sample of code.
Figure 4 presents the outcome of running result after reversing the
obfuscated code by using JAD-Java reversing tool

Fig 4. JAD test part 1

Figure 5 presents the outcome of running result after reversing the
obfuscated code by using JAD-Java the result of part 2 test using

JAD against the same class file

Fig 5. JAD test part 2

6. Conclusion

The prohibited use of reverse engineering has created a lot of cas-
es in the court. It has happened many times that companies stand
against each other front of judge in the court and fight the owner-
ship of code, when the fight is taking so long, and none is able to
prove for sure the ownership, the judge feels confused and has
now ability to decide the ownership of the code claimed. Moreo-
ver, only programmers and IT companies understand the pro-
gramming concepts and principles, which mean a judge who has

knowledge only in law and giving the fact only the company with
good lawyer, will win the case, it is difficult to fight for ownership.
For this reason, developing a good Anti-Reverse Engineering
technique is very important to protect intellectual property and
keep the ownership.
The developed technique in this research is based on three ele-
ments, mathematics, and Unicode and garbage code. Classes, vari-
ables and methods names will be changes using the mathematics

and the garbage code. the complication of this technique is to en-
sure that reverse and machine won’t be able to the language after
reversing.

Acknowledgement

We acknowledge that this research received support from the
Fundamental Research Grant Scheme

FRGS/1/2015/ICT01/UPM/02/12 that is awarded by Malaysian
Ministry of Education to the Faculty of Computer Science and
Information Technology at Universiti Putra Malaysia.

References

[1] Acknman, L. (1992). After accolade: time for new laws? washing-

ton: Wushington Unimsiq.

[2] Briand.L.C, (2006), 13th Working Conference on Reverse Engi-

neering Proceeding, Canada, The Experimental

[3] Paradigm in Reverse Engineering: Role, Challenges, and Limita-

tions, Carleton University,Pp(1,2)

[4] Chiba, S. (2000). Load-time structural reflection in java. Japan, In-

stitute of Information Science, and Electronics, IEEE, Pp. (1, 5).

[5] George, N. et. Al (2000), Reverse engineering anti-cracking tech-

niques. http://www.astalvista.com, the hacking and security com-

munity, IEEE. P.(3)

[6] Hardik,S. (N.D), Software Security and Reverse Engineering, IEEE

Pp. (1,2, 4, 5)

[7] Hausi, A.et.al. (1994), Understanding Software Systems Using Re-

verse Engineering Technology, IEEE Pp. (1, 2).

[8] Al-Hakimy, A.M., Sultan, A.B.,” Hybrid Algorithm to Protect Ja-

va’s Code from Reverse Engineering” International conference on

software and computer applications (ICSCA), 2015

\u0063\u0068\u0061\u0072\u0029\u0028 e09011c / 2 \u002B
17 - 2 \u0029\u0029; \u007D \u0074\u0072\u0079 \u007B
 a001001a= input.nextLine\u0028\u0029;
\u0069\u0066\u0028 a001001a.equals\u0028""\u0029\u0029
\u007B \u0066\u006F\u0072(\u0069\u006E\u0074 u767d:
"‚º¬¤É¬܍¾ËÆ®´ÆÉË¾Ì¼ˬÆ˷Á¾Ëº¬¤Î¬´Ë

ˬº¤¾¸".\u0074\u006F\u0043\u0068\u0061\u0072\u0041\u0072
\u0072\u0061\u0079\u0028\u0029\u0029 \u007B
\u0053\u0079\u0073\u0074\u0065\u006D.\u006F\u0075\u007
4.\u0070\u0072\u0069\u006E\u0074\u0028\u0028

\u0063\u0068\u0061\u0072\u0029\u0028 u767d /2 \u002B 17
n101010r1=Integer.parseInt\u0028 a001001a\u0029; \u007D
\u007D \u0063\u0061\u0074\u0063\u0068(Exception e)
\u007B \u0066\u006F\u0072\u0028\u0069\u006E\u0074
i878g:"‚ º¬¤É¬ ܍¾ËÆ ¾Ì¼ˬÆ ®ÁÆ¼¤Ë Á¾ºÕ ¾ÁË ¤º

 \u0076\u006F\u0069\u0064
 \u0069\u006E\u0074 g1111g:"܍¾ËÆ É¬ࠥÁ¾ȅ ¾Ì¼ˬÆ

¾Ì¼ˬÆ".\u0074\u006F\u0043\u0068\u0061\u0072\u0041\u0
072\u0072\u0061\u0079\u0028\u0029\u0029
input.nextLine\u0028\u0029;
d10010d:"‚ º¬¤É¬ ܍¾ËÆ É¬ࠥÁ¾ȅ ¾Ì¼ˬÆ ˷Á¾Ë º¬¤Î¬

´Ëˬº¤¾¸".\u0074\u006F\u0043\u0068\u0061\u0072\u0041\u00
72\u0072\u0061\u0079\u0028\u0029\u0029
\u0069\u006E\u0074 c101c:"‚ º¬¤É¬܍¾ËÆ ¾Ì¼ˬÆ

®ÁÆ¼¤ËÁ¾ºÕ¾ÁË¤º‚ ²¤ˬ¬Ë´ࠥ¤º".\u0074\u006F\u0043\u00

68\u0061\u0072\u0041\u0072\u0072\u0061\u0079\u0028\u00
29\u0029
s110110d:"Ë² ÉÌ¼ ´É
a001001s:"Ë² ˷´Î´« ´É
d110d:"Ë² ¼ÌºË´ ´É \u007B

International Journal of Engineering & Technology 27

[9] Himangi,G.(2010), code protection and obfuscation of .Net soft-

ware using obfuscator, Accessed on January 13, 2018, Available at

http://www.dotnetcurry.com/ShowArticle.aspx?ID=542&AspxAuto

DetectCookieSupport=1

[10] Iman, M, & Ishaq, A. (2010). Anti-reversing as a tool to protect in-

tellectual property. UAE, IEEE, Vol (5) (1) Pp. (1, 2).

[11] Jared, N. (2008). Rate of software Piracy vs. Malware infection.

Debunking bsa’s piracy-malware. Accessed on January 13, 2018,

Available at http://www.myce.com/news/debunking-bsas-piracy-

malware-link-21041/

[12] Linn.C, Debray.S, 2003, Obfuscation of Executable Code to Im-

prove Resistance to Static Disassembly, Washington, University of

Arizona Tucson, PP.(2,4,5).

[13] L. Shan and S. Emmanuel, “Mobile agent protection with self-

modifying code,” Journal of Signal Processing Systems, vol. 65, no.

1, pp. 105–116,2011.

[14] A. Viticchie et al., "Assessment of Source Code Obfuscation Tech-

niques," 2016 IEEE 16th International Working Conference on

Source Code Analysis and Manipulation (SCAM), Raleigh, NC,

2016, pp. 11-20.

[15] A. K. Dalai, S. S. Das and S. K. Jena, "A code obfuscation tech-

nique to prevent reverse engineering," 2017 International Confer-

ence on Wireless Communications, Signal Processing and Net-

working (WiSPNET), Chennai, 2017, pp. 828-832.

[16] S. A. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor and T. Pa-

rekhji, "A study & review on code obfuscation," 2016 World Con-

ference on Futuristic Trends in Research and Innovation for Social

Welfare (Startup Conclave), Coimbatore, 2016, pp. 1-6.

[17] Min.G.K, et.al, (2007), Renovo: A Hidden Code Extractor for

packed Executables, Carnegie Mellon University, IEEE, Pp. (4)

[18] Memon, Jan.et.al, (2006) Emerging Technologies, 2nd international

online conference, Preventing Reverse Engineering Threat in Java

Using Byte Code Obfuscation Techniques13-14 November 2006,

Peshawar, Pakistan, IEEE, P. (690).

[19] Madou, M.et.al, 2006, On the Effectiveness of Source Code Trans-

formations for Binary Obfuscation,P.(4,3)

[20] Zhang, X.et.al, 2008, An Inter-Classes Obfuscation Method For

Java Program, International Conference on Information Security

and Assurance, Changchun, 130012, P.R.China, IEEE, Pp (2, 4, 6).

[21] Patel, V. (2009). Protect Java code from decompilation using Java

Obfuscator. January 13, 2018, Available at

http://viralpatel.net/blogs/2009/07/protect-java-code-

decompilation-using-java-obfuscator.html

[22] Peikari.C .et.al, (N.D),O’REILLY Media, Know Your Enemy,

IEEE, Pp. (10,11,19)

[23] Raymond. J.et.al, (2008), A Survey of Reverse Engineering Tools

for the 32Bit Microsoft Windows Environment, Vol.(V,NO.N),

Pp.(1,2,3).

[24] NationMaster,(2010). Software piracy rate (most recent) by country.

Crime statistics. Accessed on January 13, 2018, Available At

http://www.nationmaster.com/graph/cri_sof_pir_rat-crime-

software-piracy-rate.

[25] LogicNP, Software. (2010) Crypto Obfuscator For.Net. The power

of components. January 13, 2018, Available at

http://www.ssware.com/cryptoobfuscator/features.htm

[26] Configure Proguard and DexGuard (Access on 20 September 2016)

https://docs.fabric.io/android/crashlytics/dex-and-proguard.html

[27] ProGuard Manual. (Access on 25 September 2016)

http://proguard.sourceforge.net/manual/

[28] P. Kanani, K. Srivastava, J. Gandhi, D. Parekh and M. Gala, "Ob-

fuscation: Maze of code," 2017 2nd International Conference on

Communication Systems, Computing and IT Applications (CSCI-

TA), Mumbai, 2017, pp. 11-16.

[29] Al-Hakimy, A.M., Rajadurai, K.P., Ravi, M.I., "Formulating a De-

fensive Technique to Prevent the Threat of Prohibited Reverse en-

gineering", International Conference and Workshop on Current

Trends in Information Technology (CTIT), 2011, pp. 82-85.

[30] M. Kim et al., "Design and Performance Evaluation of Binary Code

Packing for Protecting Embedded Software against Reverse Engi-

neering," 2010 13th IEEE International Symposium on Ob-

ject/Component/Service-Oriented Real-Time Distributed Compu-

ting, Carmona, Seville, 2010, pp. 80-86.

[31] M. Kim et al., "Design and Performance Evaluation of Binary Code

Packing for Protecting Embedded Software against Reverse Engi-

neering," 2010 13th IEEE International Symposium on Ob-

ject/Component/Service-Oriented Real-Time Distributed Compu-

ting, Carmona, Seville, 2010, pp. 80-86.

