

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.34) (2018) 202-205

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Pattern Oriented Approach for Software Design Reusability

for Cost Efficiency

1
Chethana

,

2
Dr.Srinivasan

1 Lecturer in Computer Science NMKRV PU COLLEGE FOR WOMEN.

2 Professor RV Engineering College Bangalore, India.

Abstract

The development of software increases their complexity. It has a major influence in business and industry. Therefore it is necessary to

always need patterns which satisfy the needs of customers with an affordable cost. The main objective is to enhance the performance of

enterprise design pattern for reuse. As a solution for all these requirements a new design called MVM pattern approach is been proposed.

Keywords: Software Reuse, Design pattern, MVM, MVC.

1. Introduction

1.1 Software Engineering Definitions

Software engineering phases or stages incorporate managing,

estimation, arranging, demonstrating, dissecting, indicating,

planning, executing, testing and maintaining [Fenton97[1]].

Software associations have always been searching for effective

ways to create software faster, less expensive and better. The term

software crisis was first used in the year 1968 to portray the

increasing burden and disappointment that software development

and support put on generally glad and beneficial associations

[Griss93[2]].Computer-Aided Software Engineering (CASE) uses

various tools and formal strategies for automated testing,

software development etc.. Following quite a while of software

improvement, the software business has understood that there is

no "silver bullets"; regardless of arguments of promoters of new

innovations that there is. There are a few factors that limit the

achievement of developments among these immature procedures,

immature strategies and devices, unacceptable training,

hierarchical resistance to change, immaturity of innovations and

improper use of them, and the intrinsic trouble of creating

software, particularly for big and complex software items.

2. Literature Review

In [3] expert designers Neha Budhijahave done an

observedlearning of the software reprocessaction with the concept

of object-oriented design. The learning concentrated under

fundamentally three aspects of reclaim : (1) that is communication

between variousblueprint forms, e.g. building an problem

representation, searching for and assessing solutions, and reuse

forms, i.e. recovering as well as utilizing earlier explanation, (2)

intellectual procedures required in reclaim, instancebase recovery

otherwise against top-down extending for solutions, in addition to

(3) the intellectualportrayals developed all through the reuse

action, e.g. activeagainststill illustration.

In Feniosky Pena-Mora [4] introduces an in-advance

improvement of a framework for utilizing design rationale and

design patterns for creating reusable programming frameworks.

The proposed framework will be used as an incorporated design

environment for reusable programming configuration, to help the

collaborative advancement of programming applications by a

gathering of programming authorities from a library of building

block cases. These objectives convert into the effort of

representing the use of Artificial Intelligence in better

administration of software development and maintenance process

by giving high speed, less expensive, smarter and on-time choices.

The work describes the use of an explicit software creation

procedure to catch and disseminate specific knowledge that

augments the depiction of the cases in a library during the

development process of software applications by heterogeneous

gatherings.

B.JALENDER [5], the authors described about how the

conventionpoint reusable mechanism can be built and how the

conventionpointmethod can be designed. It also provides

somecodestrategy, principles and finestpracticewornin support of

creating reusable conventionpointmechanism and guidelines and

best practices for making configurable and easy to use. Tawfig M

[6] the authors have presented the concept of reuse at design level

in more details. Also, the work proposes an approach to improve

the reusability of software design by using the concept of directed

graph. The outcome of the proposed work is to produce a design

to be considered as reusable components which can be adapted in

many software systems.

Erich Gamma[7] proposed design patterns as a new mechanism

for expressing object-oriented design experience and they

described that the design patterns can be considered reusable

micro-architectures that contribute to an overall system

architecture. Authors described how to express and organize

design patterns and newly introduced a catalog of design patterns.

They have also discussed the experience in applying design

patterns to the design of object-oriented systems.

William B [8] In their paper authors have briefly summarized

about software reclaimexplores most important research assistance

and uncertaintribulations in the proposed area, they provided

pointers to key publications.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 203

A component-based software designing is proposed in through

Software knowledge reuse. Software analysis patterns can be used

as a way to provide or facilitate Autonomous mobile robots

(AMR).The software analysis patterns for AMR were obtained

through a pattern mining process, and reported utilizing a standard

index layout. These analysis patterns are classified based on the

hybrid layered architecture of robot software: responsive layer,

administrator layer, and deliberative layer. The analysis patterns in

the reactive layer are featured and presented. The deployment of

the analysis patterns are discussed by using an AMR software

contextual analysis. The reuse capability of these patterns is

assessed by measuring the reusability of components in the

analysis pattern.Architectural patterns give structural

documentations to any software framework. In authors

characterized every segment with proper responsibilities and also

provided a few principles, axioms, and relationship between them.

Main information and functionality are encompassed in the

framework. Model-View Controller structural pattern partitions

the software framework into three subsystems, viz., model, view,

and controller.

The proposed work in aims to fill the gap by contrasting MVC

with other generally used Web development strategies in case of

development time, viability, and the capacity to help

correspondence among designers and software developers by

differentiating a non-MVC Web application with a MVC-based

Web application, and featuring the favorable circumstances and

hindrances of each approach.

Model View Controller (MVC) is a standard design pattern used

as a part of web composition or in web application improvement.

It is significant because of its different capacities like

extensibility, maintainability, and reusability. The authors in [53]

generally isolated an online application into three level

architectures. Other than web area MVC Architecture also uses as

a part of embedded domain. MVC accomplishes this by isolating

the application into three intelligent parts: Model: The model layer

is in charge of the business rationale of an application. It will

exemplify access to information stores and will give a reusable

class library. View: The view layer is normally considered as

website composition, or template. It controls the look and feel of

information and gives facilities to gather information from the

client. Advancements only found in the view are HTML, CSS, and

JavaScript. Controller: The controller layer consolidates

everything together and combines the styling of the view with the

functionalities of the model.

The proposed work distinguishes the qualities of systematic

software reuse methodologies and assesses how they add to an

effective reuse program using survey data gathered from seventy-

one software advancement gatherings. The outcomes

demonstrated that these attributes group into five particular reuse

methodologies and that every technique has an alternate potential

for progress.

In the authors examines the reusability ideas for Component based

Systems and explores a few existing measurements for both white-

box and black box to quantify reusability specifically or in an

indirect way and presents the exceptional prerequisites on

software in this domain and Reusability is tied in with building a

library of often used segments, along these lines enabling new

projects to be assembled rapidly from existing segments.

Component Based Systems (CBS) have now turned out to be more

generalized approach for application advancement.

Work in software reuse concentrates on reusing artifacts. In this

unique situation, finding a reusable artifact is driven by a desired

functionality. A change to the basic view is proposed in..Authors

argued that it is possible and important to also take a look at reuse

from a non-functional (quality) point of view. Grouping thoughts

from reuse, from objective situated prerequisites, from aspect

oriented programming and quality administration; they have

acquired an objective driven procedure to empower the quality-

based reusability.

Griffin in a review of studies on new product development, found

that various researches supported the suggestion that a formal,

organized development process profited extend results,

particularly when projects were unpredictable. A formalized reuse

process should also guarantee the repeatability of the reuse

accomplishment by upholding component standards. A required

affirmation process can ensure that all aspects of the repository

meets the desired execution principles.

2. 1 Algorithm 1: Code Classifier & Code Analyzer

This is a much used tool of automation usedasmetrics for the

process of software development among various source treeand is

taken asa single "Code Set". The tool uses Singular record that

allows the rejection of bits of a source tree.A list ofdefault file

extensions explored in the process of filtering the source tree.

The computation of the Metrics is done by using the file extension

type as well as the same process applies for all of extensions

.Simple text report files are created to archive the results. The

Analyzer firstly traverses through the Code Set tree and does the

parsing of each file and perform the validation checking and

parsed file is used for the computation of the. Code Line contains

code and comments.

begin

for each jpi to n do

begin // class counter

ccnt=1;

while(readline!=null) do

begin

ifreadline contains “class” then

cf.add(ccnt);

ccnt++;

end

end

begin // method counter

mcnt=1;

while(readline!=null) do

begin

ifreadlineendswith “)” then

mf.add(mcnt);

mcnt++;

end

end

begin // abstractclass counter

accnt=1;

while(readline!=null) do

begin

ifreadline contains “class” and readline contains “abstract” then

acf.add(accnt);

accnt++;

end

end

begin // method counter

amcnt=1;

while(readline!=null) do

begin

ifreadlineendswith “)” and readline contains

“abstract”then

amf.add(amcnt);

amcnt++;

end

end

begin // interface counter

icnt=1;

while(readline!=null) do

begin

ifreadline contains “interface”then

interf.add(icnt);

icnt++;

204 International Journal of Engineering & Technology

end

end

begin // main method counter

mmcnt=1;

while(readline!=null) do

begin

ifreadline contains “String args[]) or String [] args)” then

mmf.add(mmcnt);

mmcnt++;

end

end

end

where:

-jp is java program.

-cf is class found.

-ccnt is class count.

-mf is method found.

-mcnt is method count.

-acf is abstract class found.

-accnt is abstract class count.

-amf is abstract method found.

-amcnt is abstract method count.

-interf is interface found.

-icnt is interface count.

-mmf is main method found.

-mmcnt is main method count.

Code Analyzer:

Figure 1.1: Code Analyzer status for version2

Figure 1.2: Analyzer page with count of classes for Software v2

2.2 Naïve Bayes Classifier Model:

Naive Bayes classifier is a classification algorithm that is derived

from the principles of Bayes theory.This algorithm is widely

used both in the domains of data mining and machine-learning

.In assumption that the n attributes of a random variable are

conditionally independent, this model is used to predict the best

class in case of a random variable . Bayesian learning is a

machine-learning algorithm again derives some of its principle

from the Naive Bayes classifier. The discovery of assumption is

a very challenging issue in case of learning problems which

consists of the most happening probability value in scenarios

when there is value vector for arbitrary variable's properties

vector exists. Such an assumption is calledMaximum a Posterior

(MAP) [10.]

Algorithm 2: Hybrid ABC-CMArtificial Bee Colony +

Naïve Bayes Classifier Model

So

1: Initialize the population of solutions Bee i, j, i = 1 ...EL, j = 1

...P

2: Calculate the populations

3: iteration=1

4: repeat

5: Create novel solutions Val i, j for employed bees by using (2)

and compute them

6: Employ the greedy selection method in Bees

7: Calculate the most probably values Pop i, j for the solution

Bee i, j by (1)

8: Generate the novel solutions Val i, j for the bystanders from the

solutions Bee i, j selected liable on Pop i, j and evaluate them

9: Apply the greedy selection method

10: Fix the uncontrolled solution for the scout, if exists, and

substitute it with a novelarbitrarilyformed solution Bee i, j by (3)

11: Learn the best solution attained so far

12. Let best solution be a training set of samples, each with their

class tags. There are n classes, Cls1, Cls2, . . . ,Clsn. Each sample

is symbolised by an n-dimensional vector, X = {x1, x2, . . . ,xn},

depicting n measured values of the n attributes, Attb1, Attb2, . . . ,

Attbn, respectively.

13. Assumed a model X, the classifier will forecast that X goes to

the training set taking the extreme a posteriori probability,

conditioned on X. That is X is predicted to belong to the class Clsi

if and only if

P(Clsi |X) > P(Clsj |X) for 1 ≤ j ≤ m, j != i.

Thus we find the class that maximizes P(Clsi |X). The class Clsi

for which P(Clsi |X) is maximized is called the maximum

posteriori hypothesis. By Bayes’ theorem

P(Clsi |X) = P(X|Clsi) P(Clsi) P(X).

14. As P(X) is the identical for every classes, only

P(X|Clsi)P(Clsi) need be maximized. If the class a priori

probabilities, P(Clsi), are not identified, then it is usually assumed

that the classes are equally likely, that is, P(Cls1) = P(Cls2) = . . .

= P(Clsk), and we would therefore maximize P(X|Clsi). Otherwise

we maximize P(X|Clsi)P(Clsi). Notice that the class a priori

probabilities may be valued by P(Clsi) = freq(Clsi , T)/|T|.

15. Known data sets with numerous attributes, it would be

computationally costly to calculate P(X|Clsi). To

decreasecalculation in evaluating P(X|Clsi) P(Clsi), the simple

assumption of class restrictedfreedom is made. This assumes that

the value of the attributes are temporarily free of one another,

given the class value of the trial. Arithmetically this mean that

P(X|Clsi) ≈ n PI k=1 P(xk|Clsi).

The probabilities P(x1|Clsi), P(x2|Clsi), . . . , P(xn|Clsi) can

effortlessly be predictable from the training set. Recall that here

xk denotes to the value of attribute Attbk for sample X.

(a) If Attbk is categorical, then P(xk|Clsi) is the number of

samples of class Clsi in T having the value xk for attribute Attbk,

divided by freq(Clsi , T), the quantity of sample of class Clsi in T.

(b) If Attbk is continuous-valued, then we naturallyaccept that the

training values have a Gaussian distribution with a mean µ and

standard deviation σ defined by

g(x, µ, σ) = 1 √ 2πσ exp − (x − µ) 2 / 2σ 2 ,

so that

p(xk|Clsi) = g(xk, µClsi , σClsi).

We required to compute σClsi and µClsi, which are the standard

deviationand mean of values of attribute Attbk for training

samples of class Clsi .

16. To forecast the class value of X, P(X|Clsi)P(Clsi) is evaluated

for every class Clsi. The classifier predicts that the class value of

X is Clsi if and only if it is the class that maximizes

P(X|Clsi)P(Clsi).

International Journal of Engineering & Technology 205

17: Iteration=Iteration+1

18: until Iteration=MITR

Where,

-Bee is each solution.

-EL is Employee bee or onlooker bee or scouts

-P is parameters up to n

-Val is new solution found in optimization

-Pop is probability of bee solutions

-MTR is Maximum Iteration Limit

3. Conclusion

Software reclaim is the method of developing new software by

using the present software components. The major advantages of

reusability are it increases the software productivity, save time,

reduce maintenance cost and require less number of manpower

and so on. In order for programmers to be able to reuse those

design whose existence is not known to them, a design approach

which help them in locating a pattern for reusing and converting

them into components is proposed .A new design reuse pattern has

been developed and have done comparison on all the existing

design patterns and proved that proposed MVM pattern is better

compared to MVC architecture since MVM pattern can be used

for small, medium and large scale industries. The outcome of this

research is a design for software pattern reusability at the code

level .Methods by which the framework may be used to develop

reusability will be proposed in the future research work.

References

[1] Fenton, N., Pfleeger, S.L.: Software metrics: A Rigorous and

Practical Approach. International Thomson Computer Press, 2nd
edition, 1997.

[2] Griss93, M.L.: Software Reuse: From Library to Factory. IBM

Systems Journal, November-December 1993, 32(4), pp. 548-566.
[3] W. Frakes and P. Gandel, “Representing Reusable Software,

Information and Software Technology”, vol. 32, no. 10, (1990), pp.

654-664.
[4] W. B. Frakes and B. A. Nejmeh, “An Information System for

Software Reuse. In: Software,Reuse: Emerging Technology”,

IEEECS Press,(1990), pp. 142-151.
[5] D. Embley, et. al., “OO System Analysis: Is it or isn’t It”, IEEE

Software, vol. 12, no. 7, (1995), pp.19-33.

[6] D. A. M. Lessandro, et al., “The Generic Reusable Component: An
Approach to Reuse Hierarchical OO Designs. In: Proc Advance in

Software Reuse”, Los A lam itos,California: IEEE Computer

Soeiety Press, (1993), pp. 39-46.
[7] William B. Frakes and Christopher J. Fox, “Quality Improvements

Using A Software Reuse Failure Modes Model”, IEEE

Transactions on Software Engineering, vol.22, no.4, Apr. 1996.
[8] Basili, V., Briand, L. &Melo, W. (1996): “How Reuse Influences

Productivity in Object-Oriented Systems”. Communications of the

ACM, Vol. 39, No. 10, pp. 105-116.
[9] Boehm, B. (1999), Managing Software Productivity and Reuse,

IEEE Computer 16(9), 111–113.

[10] Maqbool O., and Babri H.A, “Bayesian Learning for Software
Architecture Recovery”, International Conference on Electrical

Enginnering(ICEE 07), 2007 ,1-6.

206 International Journal of Engineering & Technology

