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Abstract 
 

An artificial neuron using superconducting devices, so-called double SQUID, applicable to the extended backpropagation learning algorism 

is studied. It is shown that the tunable slope of the sigmoid function required in the algorism can be achieved under the fixed temperature 

by externally applied magnetic fields threading the ring with two Josephson junctions in the double SQUID. 
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1. Introduction 

There has been considerable interest in artificial intelligence capa-

ble of dealing with intractable tasks in conventional manner under 

an uncertain environment. An artificial neural network (ANN) in-

spired by biological nervous networks is a key technology to sup-

port artificial intelligence [1].  

 
(A) 

 
 

(B) 

 
Fig. 1: Schematic Diagrams of (A) A Feed-Forward Artificial Neural Net-

work and (B) an Artificial Neuron. 

 

ANN is a model of actual neural networks and comprises many neu-

ron elements arranged in the layered structure, which are intercon-

nected to one another via synapse elements as shown in Fig. 1(a). 

Each neuron receives input signals from the neurons of the previous 

layer and outputs the signal to the neurons of the subsequent layer 

according to the activation function at Soma (see Fig. 1(b)). Thus, 

neurons do not output all received input signals. The activation 

function that produces a nonlinear response representing the thresh-

old is the center of the neuron. Among the nonlinear response func-

tions as the activation or transfer function in neurons, sigmoid func-

tions are significantly effective in making ANN implementing the 

backpropagation (BP) learning algorism [2] for simple mathemati-

cal handling, especially their differentiation. In the extended BP 

learning algorism aiming at higher learning efficiency [3], the slope 

of the sigmoid function in each neuron is also a learning target in 

addition to the weighted coefficients in ANN. Therefore, artificial 

neurons described in the sigmoid function with a tunable slope (or 

gradient) are required.  

In this paper, we analyze a superconducting quantum interference 

devices (SQUIDs) with tunable Josephson tunnel current, so-called 

double SQUID, as a candidate for an artificial neuron in ANN im-

plemented tunable slope of the sigmoid function for enhancing 

learning efficiency in the extended BP learning algorism.  

SQUID-based artificial neurons 

Superconducting devices are a promising candidate for realizing 

ANN because of their ultra-high speed operation, ultra-low power 

consumption, and scalability enabled by nanotechnology. In fact, 

ANN using superconducting circuits has already been implemented 

in various ways [4]-[10]. Here, we propose a superconducting arti-

ficial neuron applicable to the extended BP learning algorism which 

requires variable slope of the sigmoid function.  

a) Physical origin of sigmoid function generation  

In our previous paper [11], we clarified the physical origin of the 

sigmoid function generation. i.e., the sigmoid function is generated 

in the transition processes between two states in double well poten-

tial. The probability of finding a particle in one of the two wells, p, 

in thermal equilibrium is derived from the rate equation on the tran-

sition between two states in the double well potential as follows;  

 

𝑝 =
1

1+e−∆E kT⁄                                                                                 (1) 

 

Where ∆E is the energy difference between two states? k and T are 

the Boltzmann constant and temperature, respectively. It can be 
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seen that the slop of the sigmoid function can be changed by con-

trolling the temperature. However, it is technically difficult simply 

to control temperature of neurons. The individual control increases 

its difficulty. Therefore, the temperature control of a neuron is not 

realistic, and then a simpler control method is required.  

 

 
Fig. 2: Schematic Diagram of Double Well Potential. 

 

b) SQUID-based artificial neurons 

Based on the two-state transition scheme for generating the sigmoid 

function to artificial neurons, we analyzed radio frequency (rf) 

SQUID as a superconducting artificial neuron, which consists of a 

superconducting loop with the inductance L interrupted by a Jo-

sephson junction (JJ) as shown in the middle of Fig. 2 (a).  

 The Hamiltonian of rf-SQUID is given by 

 

H = EL(Φ̂ − Φ̂ex)
2

+ EJ{1 − cos(2πΦ̂)}                                   (2) 

 

where Φ̂ and Φ̂ex are magnetic flux through the superconducting 

ring and an externally applied magnetic flux normalized by the 

quantum unit of magnetic flux Φ̂0 = h/2e  with h  and e  being 

Planck’s constant and an elementary electric charge, respectively. 

The first term represents magnetic energy accumulated in the ring 

with EL = Φ̂0
2 2L⁄ . The second term represents Josephson coupling 

energy given by EJ = ℏIC0/2e with IC0 being the Josephson critical 

current. Fig. 2 (b) shows the potential profile as a function of Φ̂ 

with different applied magnetic flux values Φ̂ex. The lowest two 

minima form a double well potential required to generate the sig-

moid function.  

The energy difference ∆E in (1) is given as 

 

∆E(Φ̂ex)  = E(Φ̂L) − E(Φ̂R)  = EL[(Φ̂R + Φ̂L) −

2Φ̂ex] +2EJ sin (π(Φ̂R + Φ̂L)) sin (π(Φ̂R − Φ̂L))                    (3) 

 

where Φ̂L(R)is the magnetic flux giving the local minimum on the 

left (right) side of the double well potential and is given as a solu-

tion to the following equation 

 

sin(πΦ̂) = −
1

πα
(Φ̂ − Φ̂ex)                                                        (4) 

 

Whereα = EJ EL⁄ . By using an approximate solution for analyti-

cally unsolvedΦ̂L(R), we obtained ΔE EL⁄  in the linear form of Φ̂ex 

as 

 

ΔE EL⁄ =
4π2α

1+2π2α
[2(Φ̂R0 − Φ̂L0) − 1]Φ̂ex + const.                   (5) 

 

Where Φ̂L0(R0) is the magnetic flux at an unbiased case? It turns out 

that the slope depends only on α since the value in the braces of the 

first term is almost unity [11]. In other words, we can change the 

slope by controlling the parameter α.  
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Fig. 3: Schematic Diagram of (A) Double SQUID Comprising of Rf-

SQUID with Dc-SQUID and its Potential Profile as A Function of Magnetic 

Flux Threading Both (B) the Rf-SQUID Ring With Φ̂Ex = 0 (Solid Line) 

And Φ̂Ex = 0.5 (Dotted Line) and (C) the Dc-SQUID Ring With Φ̂C = 0 

(Solid Line) and Φ̂C = 0.4 (Dotted Line). 

 

Sigmoid function with tunable slope 

Now let us consider a superconducting artificial neuron described 

by the sigmoid function with a tunable slope. In order to introduce 

a variable slope into rf-SQUID, it is sufficient to control the param-

eter α, i.e., the Josephson coupling energy EJ under the built-in in-

ductance.  

It is well known that the variable or tunable Josephson coupling 

energy can be achieved by direct current (dc) SQUID, which is also 

a SQUID consisting of a superconducting loop with two Josephson 

junctions as shown in the right side of Fig. 2 (a). The current 

through the dc-SQUID can be described by 

 

Ic(Φ̂c) = 2 IC0 cos(πΦ̂c)                                                            (6) 

 

Where Φ̂c is a magnetic flux threading the loop in dc SQUID nor-

malized by Φ̂0. Thus, a double SQUID, which is a combined super-

conducting device replacing the Josephson junction in rf-SQUID 

with dc-SQUID, behaves as normal rf-SQUID with tunable Joseph-

son critical current, resulting in a tunable Josephson coupling en-

ergy EJ(Φ̂c) = ℏIc(Φ̂c) 2e⁄ . Fig. 3 shows sigmoid functions with 

different magnetic flux Φ̂cthreading the loop in dc SQUID. This 

clearly demonstrates that the slope of the sigmoid function is con-

trolled by changing the applied magnetic flux without changing 

temperature. Therefore, double SQUID acts as an artificial neuron 
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for the extended BP learning algorism in stochastic artificial neural 

networks.  

 

 
Fig. 4: Probability of Finding A Particle In The Left Well of the Double 

Well Potential as A Function of Magnetic Flux �̂�𝑒𝑥 in Rf SQUID With Dif-

ferent Magnetic Flux �̂�𝑐 in Dc SQUID At The Fixed Temperature 𝐸𝐿 𝑘𝑇⁄ =
10 And𝛼 = 1. The Filled and Open Circles Are �̂�𝑐 = 0 and�̂�𝑐 = 0.4, Re-

spectively.  

2. Conclusion 

We have presented an artificial neuron using double SQUID appli-

cable to the extended BP learning algorism developed to enhance 

leaning efficiency. The variable slope of the sigmoid function re-

quired for the extended BP learning algorism can be achieved by an 

externally applied magnetic flux at constant temperature in the dou-

ble SQUID. Therefore, the proposed double SQUID-based super-

conducting artificial neuron, which can individually control neu-

rons by the existing technology, has superior controllability com-

pared with conventional artificial neurons, which can be controlled 

only by temperature changes.  
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