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Abstract 
 
Finding oil in the fractured basement rock in South East Asia has been a goal for several decades, but remains a challenge in terms of 
exploration/production areas in the Malay Basin due to geological complexity including fracture. Thus, the purpose of this study is to 
delineate fracture network based on the geometrical attributes in order to have better fracture understanding. In this study, the top of the 

basement acts as the key surface incorporated with the combination of geometrical seismic attributes analysis. The analysis started with 
data conditioning and seismic interpretation of the key surface. The final steps were conducted by using geometrical seismic attributes, 
principal component analysis and neural network. Principal component analysis of these four seismic attributes is able to delineate the 
contribution of each attributes based on eigenvalue with the PC0: 1.3450 (33.63%), PC1:1.0556 (26.39%), PC2:0.9270 (23.17%) and 
PC3:0.6724 (16.81%). While neural network contributes four main results (i) PC0 (ii) PC0 and PC1 (iii) PC0, PC1 and PC2 (iv) PC0, 
PC1, PC 2 and PC3. Fracture networks were able to be delineated and geological features that might be overlooked were able to be cap-
tured and can be used to guide the fracture network inside the fractured basement. 
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1. Introduction 

Fractured basement reservoirs were discovered a few decades ago 
in Europe, the USA, Middle East and South East Asia, including 
Vietnam, Indonesia and Peninsular Malaysia. In Peninsular Ma-

laysia, fractured basement reservoirs with potential petroleum 
systems have been discovered in 2005 (Shahar, 2008) [1]. Frac-
tured basements are of interest due to their reservoir complexity 
and heterogeneity. Geological complexities of the fractured base-
ment reservoir were defined into rock types and tectonic regime. 
Basement rock was defined as any combination of metamorphic or 
igneous rocks without considering age, which are unconformably 
overlain by a sedimentary section (Landes, 1960) [2]. An addi-

tional meaning of “basement” in sedimentary origin considers the 
porosity value, specifically whether the rock has little and no ma-
trix porosity (North, 1990) [3]. 
 
In this paper, a seismic attributes study was conducted in the Field 
A - Malay Basin. A seismic attributes is any measure of seismic 
data that enhanced the interpretation appearance (Satinder et al. 
2007) [4]. Seismic attributes are still growing in geophysics and 
were developed with the objective of providing geological images 

for better understanding in exploration and production area. In this 
study, geometrical seismic attributes - variance, maximum curva-
ture, minimum curvature and ant tracking were used as the main  
 
geometrical analysis in finding the fracture network based on 
principal component analysis (PCA) and neural network analysis. 
Principal component analysis (PCA) is used to simplify a dataset 
by reducing multidimensional datasets to lower dimensions for 

analysis with a linear transformation that transforms the data into a 

new coordinate system. In the new coordinate system, the greatest 
variance of the data lies on the first coordinate axis (first principal 
component), the second greatest on the second coordinate axis, 

and so on. 

2. Geological Settings 

A study was conducted in the Field A, southern part of the Malay 
Basin. The first discovery of a fractured basement is located in the 
Malay Basin – an offshore part of the Peninsular Malaysia. The 

Malay Basin is known as an exploration matured basin and exten-
sional origin, pull-apart basin, contains over 12km of Tertiary 
sediment underlie with a Pre-Tertiary fractured basement (Madon 
et al., 1999) [5], with an estimation of basin dimension of 500km 
length and 200km width. Fractured basement reservoir known 
rock type ranging from metasedimentary, granite/intrusive igneous 
to volcanic rocks with radiometric ages of basement rocks - Juras-
sic to Cretaceous (Madon et al., 1999; Shahar, 2005) [5] [6].  

3. Principal Component Analysis and Neural 

Network Analysis 

Fracture analysis on the top of pre–Tertiary unconformity was 
conducted on Petrel E&P Software Platform 2013 using seismic 
3D (2004) volume, with a total area of 206 km2 was used in this 
study. The recording bin size of the acquisition was 6.25m x 
18.75m (crossline/inline interval) for the area. Data was acquired 
with a dual source, eight streamer configuration with field cover-
age - 64fold by using 4800m cable length (Unpublished report 
PETRONAS, 2004) [7]. Seismic data was determined to have high 
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quality in the sedimentary section up to -2081ms (two way time, 
twt), encountering low quality (low signal to noise ratio) as it 
reached inside the fractured basement. Data conditioning was 
performed before geometrical attributes: variance, maximum cur-
vature, minimum curvature and ant tracking. The analysis fol-
lowed by principal component analysis and neural network: su-
pervised.  

 

3.1. Data Conditioning 

 
Seismic data conditioning is a crucial step in providing optimum 
seismic data quality. Data conditioning was performed before 
conducting seismic analysis, which includes seismic interpreta-

tion: horizon interpretation and seismic attributes analysis in order 
to enhance the signal in the 3D seismic migrated data. In this 
study, two parts of data conditioning, which are graphic equalizer 
and median filtering analysis were conducted. Graphic equalizer 
uses a frequency band filtering of the input data and median filter-
ing replaces each sample in a window of a seismic trace by the 
median of the samples that fall within the analysis window. In 
graphic equalizer, negative values will filter frequency values 

while positive settings will enhance the frequencies. The purpose 
of a graphic equalizer is to stabilise the seismic data.   

 

3.2 Geometric Attributes on the Top of Basement 

 
The analysis was followed by using geometric attributes on the 
pre-Tertiary surface. In this study, four main seismic attributes - 
variance, minimum curvature, maximum curvature and also ant-
tracking were selected. Variance was conducted using reflectivity 
data based on filter length (inline and crossline length) of 5. The 
range of 15 vertical smoothing was conducted in this analysis. In 
curvature (minimum curvature and maximum curvature) constant 
parameter was selected based on 7 samples vertical radius, the 
window size is 15 (7 samples vertical radius x 2 +1) with 2 In-

line/crossline radius: reference traces and a value of 1 chooses 
comparison between neighbour traces based on reflectivity data.  
 

 

 
 

 

 
 

 
 
 
 

 
Ant Tracking was conducted based on apparent acoustic imped-
ance data. A parameter that was selected in this work (1) Initial 
ant boundary: number of voxels, 7 (2) Ant track deviation, 2 (3) 
Ant step size: number of voxels, 3 (4) Illegal steps allowed, 1 (5) 
Legal criteria, 3 (6) Stop criteria 5% and (7) Aggressive ants.  

 

3.3 Principal Component Analysis (PCA) and Neural 

Network Analysis  

 
PCA analysis was conducted based on four seismic attributes i) 
variance ii) minimum curvature iii) maximum curvature and ant 
tracking with the neural network was defined as supervised with a 

consistent maximum number of iterations was 20, error limit was 
10% and cross validation for supervised analysis was 50 (Table 1). 
Supervised analysis requires input-output pairs as training data. It 
separates the input data into distinct classes (classification), or 
computes an output value based on the input (estimation) by speci-
fying the target (desired output). Three main parameters were 
used, including training options, error limit and cross validation. 

Training options is the maximum number of iterations, the algo-
rithm will stop at this number even if an adequate result has not 
been reached. Error limit (%) is the stop trained value when the 
number of points was classified incorrectly is below this limit and 
cross validation (%) was applied only on supervised analysis with 
the percentage of the input data which is used to test the result and 
give the error.  

Table 1: Neural network parameter 

Neural 

network 

class 

Max number  of 

iteration 

Error Limit (%) Cross validation 

Supervised 20 10 50 

4. Fractured Basement – Principal Compo-

nent Analysis (PCA) and Neural Network 

(Supervised) 

These four geometrical attributes were used as input for Principal 
component analysis and the results PC 0, PC 1, PC 2, and PC 3 as 
in Fig. 1 – Fig. 4. The value of each eigenvalue can be determined 
as in Table 2 with PC 0 – Eigenvalue of 1.345 contributes about 
33.63%, PC 1 – Eigenvalue of 1.056 contributes 26.39%, PC 2 – 
Eigenvalue of 0.927 contributes 23.17% and PC 3 – Eigenvalue of 

0.672 contributes 16.81%. The value of the correlation – linear 
and nonlinear in between four seismic attributes can be deter-
mined as in Table 3. PCA results were used as input for neural 
network (supervised) with each of the contribution PCA was de-
termined as PC 0, PC 0 and PC 1, PC 0 PC 1 and PC 2 and also 
PC 0 PC 1 PC 2 and PC 3 Table 3 (Fig. 5 – Fig. 8). The results 
were determined in two way time (twt) with display as 1 for high 
value and 0 for low value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Eigenvalue and contribution of each of Principal Component (PC) 
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Two highest linear correlations were calculated as 0.2037 in be-

tween minimum curvature and variance as well as maximum cur-
vature and variance.  Two highest non-linear correlations (0.3040) 
were calculated in between minimum curvature and variance as 
well as maximum curvature and variance. Second highest non-
linear correlations (0.2395) were calculated in between minimum 
curvature and maximum curvature. 

Two main geological patterns were observed in principal compo-
nent analysis. The high value of principal component analysis 1 
able to delineate geological features. First geological patterns 

(zone 1) were observed in principal component 1, 2, 3 and 4 as in 
orange circle (Fig.1 – Fig.4). Second geological patterns (zone 2) 
were observed in in principal component 1, 2, 3 and 4 as in yellow 
circle (Fig.1 – Fig.4). First geological patterns (zone 1) were de-
termined as a system while second geological patterns were de-
termined oriented in east–west. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: Principal Component 1 (PC 1) 

 
Fig. 2: Principal Component 2 (PC 2) 

 

Table 3: Correlation – linear and nonlinear value in between four seismic attributes 
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Fig. 3: Principal Component 3 (PC 3) 

 

 
Fig. 4: Principal Component 4 (PC 4) 

 

Four results were able to be produced by using neural network 
based on supervised analysis. They represent different geological 
complexities of the fractured basement reservoir. The geological 
complexities were observed to be increased as the input of 
principal component analysis increase from PC 0 to PC 0, PC 1, 

PC 2, PC 3 and PC 4. Geological features in zone 1 (purple circle) 
were observed in different ranges of two way time as in Fig.6, Fig. 
7 and Fig. 8. In zone 2 (red circle), neural network based on 
supervised analysis is able to delineate separated geological 
features in different ranges of two way time as in the Fig.6, Fig. 7 
and Fig. 8. Neural network based on supervised by using PC 0 
was observed to have less information in zone 1 and zone 2 
compared to the other analysis. 

 
Fig. 5: Neural network (unsupervised) by using PC 0 

 

 
Fig. 6: Neural network (unsupervised) by using PC 0 and PC 1 

 

 
Fig. 7: Neural network (unsupervised) by using PC 0, PC 1and PC 2 

 

 
Fig. 8: Neural network (unsupervised) by using PC 0, PC1, PC2 and PC3 

5. Discussion 

The similarity of the geological patterns can be seen at the top of 
pre–Tertiary in two main zones. High value in the principal com-
ponent analysis were able to delineate geological features. The 
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geological features that were delineated are suggested as fracture 
network. The delineation of fracture network is supported by using 
neural network based on unsupervised analysis. Principal compo-
nent analysis, zone 1 was observed as a fracture network in the 
system and zone 2 was observed as fracture network with the ori-
entation of east–west. Neural network analysis based on super-
vised is able to determine four different of fractured basement 
reservoir complexities. Principal component analysis is able to 

delineate fracture network incorporated by detailed fractured net-
work that were observed in neural network based on supervised 
analysis. Fracture networks were able to be delineated and geolog-
ical features that might be overlooked were able to be captured by 
using principal component analysis and neural network (super-
vised). It can be used to guide the fracture network inside the frac-
tured basement 

6. Conclusion  

Geometrical attributes were able to be simplified by using princi-
pal component analysis and neural network supervised. Fracture 
networks on the top of pre–Tertiary were able to be delineated. 
Correct input in PCA / Neural Network was emphasised in this 
study align with the suggestion by Tao Zhao et al., 2015 [8] in 

order to have geological meaning, especially in detecting structur-
al. The appearance of geological features that might be overlooked 
was able to be captured by the PCA and Neural Network with 
supervised analysis. These analysis were able to capture the possi-
bilities of fracture network in detail on the top of the basement.  
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