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Abstract 

In this paper section 1 reflects, the terms, ‘PST𝚪-ideals’ of a ternary Γ-semigroup and ‘PST𝚪-semi group’ are introduced can character-

ized PST𝚪-semi group. In section 2, the terms, ‘SPST𝚪-ideals, ‘SPST𝚪-semi group’ are introduced and classified these  SPST𝚪-ideals. 
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1. Introduction 

The notions of PSTΓ-ideals in semi groups, SPST𝚪-semi group 

and some classes of PST𝚪-semi group was introduced by Rama-

kotaiah and Anjaneyulu .  In this thesis we introduce and made a 

study on PST𝚪- ideals and SPST𝚪-ideals  SPST𝚪-semi groups and 

obtained  KRULL’s  theorem for SPST𝚪-semi group in ternary 

semi groups.  

2. Preliminaries 

Note 2.1 : For preliminaries refer to the references and their refer-

ences. 

Note 2.2: Throughout this paper PSTΓ-Ideal, SPSTΓ-ideal, CPTΓ-

ideal and CSTΓ-ideal means pseudo-symmetric ternary Γ-ideal, 

semi pseudo-symmetric Γ-ideal, completely prime ternary Γ-ideals 

and completely semi prime ternary Γ-ideal respectively unless 

otherwise stated. 

3. PST𝚪-Ideals 

We now introduce the notion of a PSTΓ-Ideal of a TΓ-semi group. 

Def 3.1 : A TΓ-ideal P of a TΓ-semi group T is called PSTΓ-Ideal 

if   x, y, z T, xΓyΓz ⊆ P ⇒ xΓsΓyΓtΓz ⊆ P for all s, tT. 

Note 3.2:  A TΓ-ideal P of a TΓ-semi group T is PSTΓ-Ideal iff x, 

y, z ∈ T,  xΓyΓz ⊆ P implies xΓT1ΓyΓT1Γz ⊆ P. 

Ex 3.3: Let Z = {u, v, w } and Γ = { i, j, k}.  Define a ternary op-

eration ‘.’ in T as shown in the following table: 

. u v w 

u u u u 

v u u u 

w u v w 

 

Define a mapping T × Γ × T × Γ × T → T by uivjw = uvw. It is 

easy to see that T is a TΓ-semi group.  The TΓ-ideals of T are 

{ u }, { u , v }, { u, v,wr } which are PSTΓ-Ideal. 

Th 3.4 :  Let P be a PSTΓ-Ideal in a T𝚪-semi group T and p, q, 

rT.  Then p𝚪q𝚪r ⊆ P iff  < p > 𝚪< q >𝚪< r >  P. 

Cor 3.5 : Let P be any PSTΓ-Ideal in a T𝚪-semi group T and p1, 

p2….,pn   T where n is an odd n ∈ N.  Then p1𝚪 p2𝚪….𝚪pn ⊆ A iff  

<p1> 𝚪< p2>𝚪….𝚪< pn>   A. 

Cor 3.6: Let P is a PSTΓ-Ideal in a T𝚪-semi group T. Then for 

any odd m ∈ N, ( p )m-1p ⊆ P implies (< p > 𝚪 )m-1 < p > ⊆ P. 

Cor 3.7 : Let P be a PSTΓ-Ideal in a T𝚪-semi group T.  If (a𝚪)n-1a 

⊆ P,  for some odd m ∈ N,  then  (< a𝚪s𝚪t𝚪 >m-1< a𝚪s𝚪t >) ⊆ P, 

(< s𝚪t𝚪a𝚪 >m-1< s𝚪t𝚪a >) ⊆ P, and (< s𝚪a𝚪t𝚪 >n-1 < s𝚪a𝚪t >) ⊆ P 

for all s, t ∈ T. 

Th 3.8: Let Qr be a PSTΓ-Ideal of M, then 

1

n

r

r

Q



   of a TΓ-

semi group M is a PSTΓ-Ideal of M. 

Th 3.9 : Every CST𝚪-ideal A in a T𝚪-semi group M is a PSTΓ-

Ideal. 

Proof : Let Q be a CSTΓ-ideal of the TΓ-semi group M.   

Let x, y, zT and xΓyΓz ⊆ Q.  xΓyΓz ⊆ Q implies  

(yΓzΓxΓ)2yΓzΓx = (yΓzΓx)Γ(yΓzΓx)Γ(yΓzΓx) 

                          = yΓzΓ(xΓyΓz)Γ(xΓyΓz)Γx ⊆ Q.   

(yΓzΓxΓ)2yΓzΓx ⊆ Q, Q is CSTΓ-ideal   yΓzΓx ⊆ Q.  

Similarly (zΓxΓyΓ)2zΓxΓy = (zΓxΓy)Γ(zΓxΓy)Γ(zΓxΓy)  

                                          = zΓ(xΓyΓz)Γ(xΓyΓz)ΓxΓy ⊆ Q.  

(zΓxΓyΓ)2zΓxΓy ⊆ Q,  Q is CSTΓ-ideal ⇒ zΓxΓy ⊆ Q.   

If s, t T1, then  

(xΓsΓyΓtΓzΓ)2xΓsΓyΓtΓz  

      = (xΓsΓyΓtΓz)Γ(xΓsΓyΓtΓz)Γ(xΓsΓyΓtΓz) 
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    = xΓsΓyΓtΓ[zΓxΓ(sΓyΓt)Γ(zΓxΓs)Γy]ΓtΓz ⊆ Q.   

(xΓsΓyΓtΓzΓ)2xΓsΓyΓtΓz ⊆ Q, Q is CSTΓ-ideal  

         ⇒ xΓsΓyΓtΓz ⊆ Q.  Therefore Q is a PSTΓ-Ideal. 

Note 3.10 : The converse of theorem 3.9, is not true,  

Ex 3.11 : Consider the TΓ-semi group in example 3.3.  P = {p} is 

a PSTΓ-Ideal in the ternary 𝚪-semi group T, and it is not com-

pletely semi prime, since qαq𝛼q = p ∈ P, but q ∉ A. 

Th 3.12 : If A is a PSTΓ-Ideal of a T𝚪-semi group M then P2 = 

P4. 

Proof  :  Obviously, P4  P2.  Let pP2.  Then for some odd m ∈ 

N we have (pΓ)m-1x ⊆ P.   Since P is PSTΓ-Ideal, (pΓ)n-1p ⊆ P 

 (< p>Γ)n-1< p >  P p  P4.  Hence, P2  P4 and hence 

P2 = P4. 

Th 3.13 : If P is a PSTΓ-Ideal of a T𝚪-semi group M then P2 = 

{x : (xΓ)n-1x ⊆ A for some odd n ∈ N } is a minimal CST𝚪-ideal 

of T. 

Proof : Obviously, P  P2 and hence P2 (≠∅) subset of M.  Let 

x  P2 and s, tM.   

Now x  P2   (xΓ)n-1x ⊆ A for some odd n.  (xΓ)n-1x ⊆ P,   

s, t T, A is a PSTΓ-Ideal of T   (xΓsΓtΓ)n-1xΓsΓt  ⊆ P, 

(sΓxΓtΓ)n-1sΓxΓt ⊆ P,  (sΓtΓxΓ)n-1sΓtΓx ⊆ P   xΓsΓt ⊆ P2, 

sΓxΓt ⊆ P2,  sΓtΓx ⊆ P2. Therefore  P2 is a TΓ-ideal of M.  Let 

xM and(xΓ)2x ⊆ P2.  Now (xΓ)2x ⊆ P2   (xΓ)2xΓ)n-1(xΓ)2x ⊆ 

P for some odd n   (xΓ)3n-1x ⊆ P x  P2.  So P2 is a CSTΓ-

ideal of T.  Let A be any CSTΓ-ideal of  T containing P.  Let x  

P2.  Then (xΓ)n-1x ⊆ P for some odd n.  By corollary 3.6, (xΓ)n-1x 

⊆ P  (< x>Γ)n-1< x >  PA.   Since P is CSTΓ-ideal, (< 

x>Γ)n-1< x > A xA.   Therefore P2 is the minimal CSTΓ-

ideal of M contains P.   

Th 3.14 : If P is a PSTΓ-Ideal of a T𝚪-semi group M then P4 = 

{x : (< x>Γ)n-1< x >  P for some odd n} is the minimal semi 

prime T𝚪-ideal of M contains P. 

Proof : Clearly P  P4 and hence P4 is a nonempty subset of M.  

Let x  P4 and s, tT.   

Since x  P4, (< x>Γmm-1< x >  P for some odd m.  Now (< 

xΓsΓt>Γ)m-1< xΓsΓt >  (< x>Γ)m-1 < x > P, (< sΓxΓt >Γ)m -1< 

sΓxΓt > and  (< sΓtΓx>Γ)m -1 < sΓtΓx >  (< x>Γ)m-1 < x > P  

  xΓsΓt, sΓxΓt, sΓtΓx ⊆ P4.  Then P4 is a TΓ-ideal of M con-

taining P.  Let xT such that (< x>Γ)2< x >   P4.  Then ((< 

x>Γ)2< x >Γ)m-1(< x>Γ)2< x >  P  (< x >Γ)3m-1 < x >  P 

  x  P4.  Therefore P4 is a semi prime TΓ-ideal of M contain-

ing P.  Let P is a semi prime TΓ-ideal of T containing P.   Suppose  

x  P4.  Then (< x >Γ)m-1< x >  PA.  Since A is a semi prime 

TΓ-ideal of T, (< x >Γ)n-1< x >  A for some odd  number n 

 x  A.  ∴ P4A.  Hence P4 is the minimal semi prime TΓ-

ideal of M containing P. 

Th 3.15 : Each prime T𝚪-ideal A minimal relative to contain-

ing a PSTΓ-Ideal P in a T𝚪-semi group M is CPT𝚪-ideal. 

Cor 3.16 :  Each prime T𝚪-ideal  A minimal relative to con-

taining a CST𝚪-ideal P in a T𝚪-semi group M is CPT𝚪-ideal. 

Th 3.17 : Let Q be a T𝚪-ideal of a T𝚪-semi group M.  Then Q 

is CPT𝚪-ideal iff Q is prime and PSTΓ-Ideal. 

Proof : Suppose Q is a completely prime TΓ-ideal of T.  Therefore 

Q is prime.  Let p, q, r ∈ T and pΓqΓr ⊆ Q.  pΓqΓr ⊆ Q, Q is 

completely prime ⇒ p ∈ Q or  q ∈ Q or r ∈ Q ⇒ pΓsΓqΓtΓr ⊆ Q 

for all s, t ∈ T.  Hence Q is a PSTΓ-Ideal.   

Conversely, let Q is prime and PSTΓ-Ideal.  Let p, q, r ∈ T and 

pΓqΓr ⊆ Q.   pΓqΓr ⊆ Q, Q is a PSTΓ-Ideal ⇒ < p >Γ< q >Γ< r > 

⊆ Q ⇒ < p > ⊆ Q or < q > ⊆ Q or < r > ⊆ Q ⇒ p ∈ A or q ∈ Q or 

r ∈ Q.  Therefore Q is CPT𝚪-ideal. 

Cor 3.18: Let Q be a T𝚪-ideal of a T𝚪-semi group M.  Then Q 

is CPT𝚪-ideal iff Q is  prime and CST𝚪-ideal. 

Cor 3.19 : Let Q be a T𝚪-ideal of a T𝚪-semi group M.  Then Q 

is CST𝚪-ideal iff Q is  semi prime and PSTΓ-Ideal. 

Th 3.20 :  Let Q be a PST𝚪-ideal of a T𝚪-semi group M and Pr 

be the CPT𝚪-ideal of M, Pq be the minimal CPT𝚪-ideal of M and 
Pt be the minimal CST𝚪-ideal of M.  Then the following are 

equivalent. 

  1) Q1 = 

1

n

r

r

P



containing Q. 

  2)
1

1Q
 
= 

1

n

q

q

P



containing Q. 

  3)
11

1Q = 

1

n

t

t

P



 relative to containing Q. 

  4) Q2 =  {x ∈ T : (x𝚪)m-1x ⊆ Q for some odd  m} 

  5) Q3 = The intersection of all prime T𝚪-ideals of T   

       containing Q. 

  6) 
1

3Q
 
= The intersection of all minimal prime T𝚪-ideals of T    

                   containing Q.  

  7) 
11

3Q
 
= The minimal semi prime T𝚪-ideal of T relative to    

                    containing Q. 

  8)   Q4 = {x ∈ T : (< x >𝚪)m-1< x > ⊆Q for some odd m}. 

Def 3.21 : A TΓ-semi group T  is said to be a PSTΓ- semi group  

if every TΓ-ideal in T is a PSTΓ-Ideal. 

Th 3.22 : Every commutative T𝚪-semi group is a PSTΓ- semi 

group. 

Proof : Suppose M is commutative TΓ-semi group.  Then pΓqΓr = 

qΓrΓp = rΓpΓq = qΓpΓr = rΓqΓp = pΓrΓq for all p, q, r ∈ T.  Let 

Q be a TΓ-ideal of T.  Suppose p, q, r ∈ T, pΓqΓr ⊆ Q and s, t ∈ T.  

Then pΓsΓqΓtΓr = pΓqΓsΓtΓr = pΓqΓsΓrΓt = pΓqΓrΓsΓt ⊆ Q.  

Hence Q is a PSTΓ-ideal and hence M is a PSTΓ-semi group. 

Th 3.23 : Every pseudo commutative T𝚪-semi group is a 

PSTΓ- semi group.  

Proof : Let T be a pseudo commutative TΓ-semi group and Q be 

any TΓ-ideal of T.  Suppose p, q, r ∈ T, pΓqΓr ⊆ Q.   If s, t ∈ T.  

Then  pΓsΓqΓtΓr = pΓqΓpΓtΓr = sΓqΓrΓpΓt = sΓ(pΓqΓr)Γt ⊆ Q. 

Therefore, pΓsΓqΓtΓr ⊆ Q for all s, t ∈ T.  Hence Q is a  PSTΓ- 

ideal. Hence, T is a PSTΓ- semi group. 

Th 3.24 : If M is a T𝚪-semi group in which every element is a 

mid-unit, then M is a PSTΓ- semi group. 

Proof : Let M be a TΓ-semi group in which every element is a 

mid-unit and Q be any TΓ-ideal of M.  Let  p, q, r ∈ T and pΓqΓr 

⊆ Q.  If s ∈ T, then s is a mid-unit and hence, pΓsΓqΓsΓr = pΓqΓr 

⊆ Q. Hence Q is a  PSTΓ-ideal. Hence M is a PSTΓ- semi group. 

4. SPST𝚪-ideals: 

We  now introduce the notion of SPST𝚪-ideals of a TΓ-semi 

group 

Def 4.1 : A TΓ-ideal Q in a TΓ-semi group M is said to be 

SPST𝚪-ideal if for any odd  m, x ∈ T, (xΓ)m-1x  ⊆ Q ⇒ (< x >Γ)m-1 

< x> ⊆ Q.  

Th 4.2 : Every PSTΓ-ideal of a T𝚪-semi group is a SPST𝚪-

ideals. 
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Note 4.3 : The converse of the above theorem, is not true.  

Example 4.4 : Let T be a free TΓ-semi group over the alphabet {p, 

q, r, s, t}.  Let Q = < pΓqΓr > ∪ < qΓrΓp > ∪ < rΓpΓq >.  Since 

pΓqΓr ⊆ Q and pΓsΓqΓtΓr ⊈ Q, Q is not PSTΓ-ideal. Suppose 

(xΓ)n-1x ⊆ Q for some odd n. Now the word x contains p𝛼q𝛽r or 

q𝛽r𝛼p or r𝛾p𝛼q for some 𝛼, 𝛽, 𝛾 ∈ Γ and hence (< x >Γ)n-1< x > ⊆ 

Q.  Therefore (xΓ)n-1x ⊆ Q for some odd number n ⇒ (< x >Γ)n-1< 

x > ⊆ Q.  Therefore Q is a SPST𝚪-ideals. 

Th  4.5 : Each semi prime T𝚪-ideal P minimal relative to con-

taining a SPST𝚪-ideal A in a T𝚪-semi group T is CST𝚪-ideal. 

Cor 4.6 : Each prime T𝚪-ideal P in a T𝚪-semi group T mini-

mal relative to containing a SPST𝚪-ideal A is CPT𝚪-ideal. 

Cor 4.7 : Each prime T𝚪-ideal minimal relative to containing a 

PST𝚪-ideal A in a T𝚪-semi group T is CPT𝚪-ideal. 

Th 4.8 : If Q is a T𝚪-ideal in a T𝚪-semi group T, then  

  1) Q is CST𝚪-ideal. 

  2) Q is semi-prime as well as PST𝚪-ideal. 

  3) Q is semi-prime as well as SPST𝚪-ideal are equivalent. 

Proof : (1) ⇒(2) : Let Q is a CSTΓ-ideal of T ⟹ Q is a semi 

prime TΓ-ideal of T and by th 3.19, Q is a PST𝚪-ideal of T. 

(2) ⇒(3) : Let Q is semi prime and PST𝚪-ideal. By th 4.2, Q is a 

SPST𝚪-ideal.  Therefore, Q is semi prime and SPST𝚪-ideal. 

(3) ⇒ (1) : Let Q is semi prime and SPST𝚪-ideal.  

Let p ∈ T, (pΓ)2p ⊆ Q.   Since Q is SPST𝚪-ideal, p ∈ T, (pΓ)2p ⊆ 

Q ⇒ (< p >Γ)2< p > ⊆ Q.  Since Q is semi prime, by th 2.10, (< p 

>Γ)2< p > ⊆ Q ⇒ < p > ⊆ Q.  ∴ Q is completely semi prime. 

Th 4.9 : If Q is a T𝚪-ideal of a semi simple T𝚪-semi group M, 

then the conditions  

  1) Q is CST𝚪-ideal. 

  2) Q is PST𝚪-ideal. 

  3) Q is SPST𝚪-ideal are equivalent. 

Proof : (1)  (2) : Let Q is CST𝚪-idea.  By cor 3.19, Q is PST𝚪-

ideal. 

(2)   (3) :Let Q is PST𝚪-ideal.  By theorem 4.2, Q is SPST𝚪-

ideal. 

(3)   (1) : Suppose that Q is SPST𝚪-ideal. Let q ∈ T, (qΓ)2q ⊆ 

Q.  Since Q is SPST𝚪-ideal, (qΓ)2q ⊆ Q   (< q >Γ)2< q > ⊆ Q.  

Since T is semi simple, q  is a semi simple element.  Therefore q  

∈  (< q >Γ)2< q > ⊆ Q Q.  Thus Q is completely semi prime. 

Th 4.10 : If Q is a T𝚪-ideal of a T𝚪-semi group M, then the  

conditions. 

  1) Q is CPT𝚪-ideal. 

  2) Q is prime as well as PST𝚪-ideal. 

  3) Q is  prime as well as SPST𝚪-ideal are equivalent. 

Proof : (1) ⇒ (2) : Let Q  is completely prime. By theorem 3.17, 

A is prime as well as PST𝚪-ideal. 

(2) ⇒ (3) : Let Q is prime as well as PST𝚪-ideal.  Since Q is 

PST𝚪-ideal by th 4.2, Q is SPST𝚪-ideal. 

(3) ⇒ (1) : Let Q is prime as well as SPST𝚪-ideal. Since Q is 

prime  then we have, Q is semi prime.  Since Q is semi prime and 

SPST𝚪-ideal, by theorem 3.8, A is CPT𝚪-idea.  Since Q is prime 

and CST𝚪-idea then we have, Q is CPT𝚪-idea.  

The following theorem is an analogue of KRULL’s 

Theorem. 

Th 4.11 : Let Q be a SPST𝚪-ideal of a T𝚪-semi group M and 

Let Q be a PST𝚪-ideal of a T𝚪-semi group M and Pr be the 

CPT𝚪-ideal of M, Pq be the minimal CPT𝚪-ideal of M and Pt be 
the minimal CST𝚪-ideal of M.  Then the following are equiva-

lent. 

  1) Q1 = 

1

n

r

r

P



containing Q. 

  2)
1

1Q
 
= 

1

n

q

q

P



containing Q. 

  3)
11

1Q = 

1

n

t

t

P



 relative to containing Q. 

  4) Q2= {x ∈ T : (x𝚪)m-1x ⊆Q for some odd m} 

  5) Q3= The intersection of all prime T𝚪-ideals of T  

     containing Q. 

  6) 
1

3Q = The intersection of all minimal prime T𝚪- 

   ideals of T containing Q.  

  7) 
11

3Q = The minimal semi prime T𝚪-ideal of T relative   

    to containing Q. 

  8) Q4 = {x ∈ T : (<x>𝚪)m-1< x > ⊆ A for some odd n} 

We now present some of the consequences of the above theorem. 

Th 4.12 : If P is a maximal T𝚪-ideal of a T𝚪-semi group M 

with P4≠M, then 

  1) P is CPT𝚪-ideal. 

  2) P is CST𝚪-ideal. 

  3) P is PST𝚪-ideal. 

  4) P is SPST𝚪-ideal are equivalent. 

Proof : (1) ⇒ (2) : Let P is CPT𝚪-ideal. Then we have, P is CST𝚪-

ideal.   

(2) ⇒ (3) : Let P is is CST𝚪-ideal.  By th 3.9, P is PST𝚪-ideal. 

(3) ⇒ (4) :  Let P is PST𝚪-ideal.  By th 4.2, P is SPST𝚪-ideal.  

(4) ⇒ (1) : Let P is SPST𝚪-ideal.  By the th 3.11, P ⊆ P4 ⊆ M.  

Since P is  maximal TΓ-ideal and  P4 ≠ T, it implies that P = P4.  

Let x ∈ M, (xΓ)2x  ⊆ P.  Since P is SPST𝚪-ideal, (< x >Γ)2< x > ⊆ 

P. Then x ∈ P4 = P.  ∴ P is CST𝚪-ideal.   Let x, y ∈ M, xΓy ⊆ P.  

Since P is CST𝚪-ideal, by cor 2.8, xΓyΓz ⊆ P ⇒ < x > Γ< y >Γ < z 

> ⊆ P.  If possible x ∉ P, y ∉ P, z ∉ P.  Then P ∪ < x >, P ∪ < y >, 

P ∪ < z > are TΓ-ideals of T and P ∪ < x > = P ∪ < y > = P ∪ < z 

> = M, Since P is maximal, y, z ∈ P ∪ < x >, x, z ∈ P ∪ < y > and x, 

y ∈ P ∪ < z > ⇒ y, z ∈ < x >, x, z ∈ < y >, x, y ∈ < z >  ⇒ < x > = < 

y > = < z >.  Now < x > Γ< y >Γ < z > ⊆ P ⇒ < x >Γ < y >Γ< z > = 

(< x >Γ)2< x > ⊆ P ⇒ (xΓ)2x  ⊆ P ⇒ x ∈ P.  It is a contradiction. ∴ 

either x ∈ P or y  ∈ P or z ∈ P.  ∴ P is CPT𝚪-ideal.  

 We now introduce the notion of a SPST𝚪-semi group.  

Defi 4.13 : A TΓ-semi group M is said to be a SPST𝚪-semi group  

if  every TΓ-ideal of T is SPST𝚪-semi group. 

Th 4.14 : A T𝚪-semi group M is SPST𝚪-semi group iff every 

principal T𝚪-ideal is SPST𝚪-ideal. 

Th 4.15 : In a SPST𝚪-semi group M, an element a is semi sim-

ple iff a is lateral regular. 

Th 4.16 : If M is a SPST𝚪-semi group, then  

  1) S = {p ∈ T : √<p> ≠ M} is empty or a CPT𝚪-ideal. 

  2) M\S is empty or an Archimedean T𝚪-sub-semi group of M 

are true. 

Proof : (1) suppose S = ∅, then nothing to prove.  If S ≠ ∅, then 

clearly S is a TΓ-ideal of M.  Let p, q, r ∈ M and  pΓqΓr ⊆ S.   If 

possible p ∉ S, q ∉ S, r ∈ S, then √<p> = M, √<q> = M and √ < r 

> = M.  ∵ pΓqΓr ⊆ S, then √<pΓqΓr> ≠ M.  Now M = √<p> ∩ 

√<q> ∩ √<r> = √<pΓqΓr> ≠ M.  It is a contradiction.  Hence p ∈ 
S or q ∈ S or r ∈ S.  ∴ S is a CPTΓ-ideal. 

(2) ∵ S is a CPTΓ-ideal, M\S is either empty or a TΓ-sub-semi 

group of M.  Let p, q, r ∈ T\S. Then √< p > = √< q > = √< r > = 

M.  Now q, r ∈√<p>,  r, p ∈ √< q >, r, p ∈ √ < r >  therefore we 

have,  (qΓ)n-1q⊆ < p >  for some odd n.  So (qΓ)n+1q ⊆ MΓpΓM ⇒ 
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(qΓ)n+1q = sΓpΓt for some s, t ∈ M.  If either s or t ∈ S, then 

(qΓ)n+1q ⊆ S and hence q ∈ S.  It is a contradiction.  Hence s, t ∈ 
M\S.  Now (qΓ)n+1q = sΓpΓt ⊆ (M\S)ΓpΓ(M\S).  Hence M\S is an 

Archimedean TΓ-sub semi group of M. 

Th 4.17 :If M is a SPST𝚪-semi group, then 

  1) M is a strongly Archimedean T𝚪-semi group. 

  2) M is an Archimedean T𝚪-semi group. 

  3) M has no proper CPT𝚪-ideals. 

  4) M has no proper CST𝚪-ideals. 

  5) M has no proper prime T𝚪-ideals. 

  6) M has no proper semi prime T𝚪-ideals are equivalent. 

Th 4.18 : If P is a nontrivial maximal T𝚪-ideal of a SPST𝚪-

semi group M then P is prime.  

Proof  : Let P is not prime.   Then ∃ p, q, r ∈ M\P ∋ < p >Γ< q 

>Γ< r > ⊆ P.   Now any u ∈ M\P, we have M = P ∪ < b > = P ∪ < 

c > = P ∪ < u >.   Since q, r, u ∈ T\P, we have q, r ∈ < u > and u ∈ 
< q >, u ∈ < r >.  So < q > = < r > = < u>.  Therefore (<q>Γ)2< q > 

⊆ P, (<r >Γ)2< r > ⊆ P.  If p ≠ q, then p = s𝛼q𝛽t for some s, t ∈ 
M1 and 𝛼, 𝛽 ∈ Γ.   So p ∈ < s >Γ< q >Γ< t >. If either s ∈ P or t ∈ P 

then p ∈ P.  It is a contradiction.   If s ∉ P and t ∉ P, then < s >Γ< 

q >Γ< t > ⊆ (< q >Γ)2< q > ⊆ P.   ∴ p ∈ < s >Γ< q >Γ < t > ⊆ P.  ∴ 

a ∈ P.  It is a contradiction.   Hence p = q and hence P is trivial, 

which is not true.  Therefore P is prime. 

Th 4.19 : If M is a SPST𝚪-semi group and contains a nontrivial 

maximal T𝚪-ideal then M contains semi simple elements. 

Th 4.20 : Let M be a SPS-Archimedean T𝚪-semi group. Then 

a T𝚪-ideal P is maximal iff it is trivial, as well as M has no 

maximal T𝚪-ideals if M = (M𝚪)2M. 

Th 4.21 : Let M be a SPST𝚪-semi group containing maximal 

T𝚪-ideals.  If either M has no semi simple elements or M is an 

Archimedean T𝚪-semi group, then  M ≠ (M𝚪)2M as well as 

(M𝚪)2M =P* where P* denotes the intersection of all maximal 

T𝚪-ideals. 

4. Conclusion  

D. M. Rao studied about PSΓ- ideals in Γ-semigroups. Further D. 

M. Rao and A .A. extended the same results to T-semi groups. 

Here mainly we study PSTΓ-ideals and extended the results to TΓ-

semi groups. 
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