

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Study on Pseudo Symmetric Γ-Ideals in Ternary Γ-Semigroups

M. Vasantha¹, D. Madhusudhana Rao^{2*}, T. Satish³, Srinivasa Kumar⁴

¹ Research Scholar, Department of Mathematics, K. L. University, Vaddeswaram, Guntur(Dt), A.P. India.

² Associate Professor, Department of Mathematics, V. S. R & N. V. R. College, Tenali, Guntur(Dt), A. P. India.

³ Asst. Professor, Department of Mathematics, S. R. K. R. Engineering College, Bhimavaram, A.P. India.

⁴Asst. Professor, Department of Mathematics, KL University, Vaddeswaram, Guntur(Dt), A.P. India.

*Corresponding AuthorE-mail: dmrmaths@gmail.com, dmr04080@gmail.com.

Abstract

In this paper section 1 reflects, the terms, '*PST***Γ**-ideals' of a ternary Γ-semigroup and '*PST***Γ**-semi group' are introduced can characterized *PST***Γ**-semi group. In section 2, the terms, '*SPST***Γ**-ideals, '*SPST***Γ**-semi group' are introduced and classified these *SPST***Γ**-ideals.

Keywords: PSTT-ideal, SPSTT-ideal, prime, semiprime, Archimedean.

1. Introduction

The notions of PSTT-ideals in semi groups, SPSTT-semi group and some classes of PSTT-semi group was introduced by Ramakotaiah and Anjaneyulu . In this thesis we introduce and made a study on PSTT- ideals and SPSTT-ideals SPSTT-semi groups and obtained KRULL's theorem for SPSTT-semi group in ternary semi groups.

2. Preliminaries

Note 2.1 : For preliminaries refer to the references and their references.

Note 2.2: Throughout this paper PSTF-Ideal, SPSTF-ideal, CPTF-ideal and CSTF-ideal means pseudo-symmetric ternary Γ -ideal, semi pseudo-symmetric Γ -ideal, completely prime ternary Γ -ideals and completely semi prime ternary Γ -ideal respectively unless otherwise stated.

3. PST**Γ**-Ideals

We now introduce the notion of a PST Γ -Ideal of a T Γ -semi group.

Def 3.1 : A T Γ -ideal P of a T Γ -semi group T is called PST Γ -Ideal if $x, y, z \in T, x\Gamma y\Gamma z \subseteq P \Rightarrow x\Gamma s\Gamma y\Gamma t\Gamma z \subseteq P$ for all $s, t \in T$.

Note 3.2: A TΓ-ideal P of a TΓ-semi group T is PSTΓ-Ideal iff x, y, $z \in T$, $x\Gamma y\Gamma z \subseteq P$ implies $x\Gamma T^{l}\Gamma y\Gamma T^{l}\Gamma z \subseteq P$.

Ex 3.3: Let $Z = \{u, v, w\}$ and $\Gamma = \{i, j, k\}$. Define a ternary operation '.' in T as shown in the following table:

•	и	v	W
и	и	и	и
v	и	и	и
w	и	v	w

Define a mapping $T \times \Gamma \times T \times \Gamma \times T \rightarrow T$ by uivjw = uvw. It is easy to see that T is a T Γ -semi group. The T Γ -ideals of T are { u }, { u , v }, { u, v,wr } which are PST Γ -Ideal.

Th 3.4 : Let P be a PSTT-Ideal in a TT-semi group T and p, q, $r \in T$. Then $p\Gamma q\Gamma r \subseteq P$ iff $\langle p \rangle \Gamma \langle q \rangle \Gamma \langle r \rangle \subseteq P$.

Cor 3.5 : Let P be any PSTF-Ideal in a T**F**-semi group T and p_1 , $p_2...,p_n \in T$ where *n* is an odd $n \in N$. Then $p_1 \Gamma p_2 \Gamma ..., \Gamma p_n \subseteq A$ iff $\langle p_1 \rangle \Gamma \langle p_2 \rangle \Gamma ..., \Gamma \langle p_n \rangle \subseteq A$.

Cor 3.6: Let P is a PSTF-Ideal in a T**F**-semi group T. Then for any odd $m \in \mathbb{N}$, $(p \Gamma)^{m-1} p \subseteq P$ implies $(\langle p \rangle \Gamma)^{m-1} \langle p \rangle \subseteq P$.

Cor 3.7: Let P be a PSTF-Ideal in a **TF**-semi group T. If $(a\Gamma)^{n-1}a \subseteq P$, for some odd $m \in N$, then $(\langle a\Gamma s\Gamma t\Gamma \rangle^{m-1} \langle a\Gamma s\Gamma t \rangle) \subseteq P$, $(\langle s\Gamma t\Gamma a\Gamma \rangle^{m-1} \langle s\Gamma t\Gamma a \rangle) \subseteq P$, and $(\langle s\Gamma a\Gamma t\Gamma \rangle^{n-1} \langle s\Gamma a\Gamma t \rangle) \subseteq P$ for all $s, t \in T$.

Th 3.8: Let
$$Q_r$$
 be a PSTT-Ideal of M, then $\bigcap_{r=1}^n Q_r \neq \emptyset$ of a TT-

semi group M is a PSTF-Ideal of M.

Th 3.9 : Every CSTT-ideal A in a TT-semi group M is a PSTT-Ideal.

Proof: Let Q be a CSTF-ideal of the TF-semi group M. Let x, y, $z \in T$ and $x\Gamma y\Gamma z \subseteq Q$. $x\Gamma y\Gamma z \subseteq Q$ implies $(y\Gamma z\Gamma x\Gamma)^2 y\Gamma z\Gamma x = (y\Gamma z\Gamma x)\Gamma(y\Gamma z\Gamma x)\Gamma(y\Gamma z\Gamma x)$ $= y\Gamma z\Gamma(x\Gamma y\Gamma z)\Gamma(x\Gamma y\Gamma z)\Gamma x \subseteq Q$. $(y\Gamma z\Gamma x\Gamma)^2 y\Gamma z\Gamma x \subseteq Q, Q$ is CSTF-ideal $\Rightarrow y\Gamma z\Gamma x \subseteq Q$. Similarly $(z\Gamma x\Gamma y\Gamma)^2 z\Gamma x\Gamma y = (z\Gamma x\Gamma y)\Gamma(z\Gamma x\Gamma y)\Gamma(z\Gamma x\Gamma y)$ $= z\Gamma(x\Gamma y\Gamma z)\Gamma(x\Gamma y\Gamma z)\Gamma x\Gamma y \subseteq Q$. $(z\Gamma x\Gamma y\Gamma)^2 z\Gamma x\Gamma y \subseteq Q, Q$ is CSTF-ideal $\Rightarrow z\Gamma x\Gamma y \subseteq Q$. If s, $t \in T^1$, then $(x\Gamma s\Gamma y\Gamma t\Gamma z\Gamma)^2 x\Gamma s\Gamma y\Gamma t\Gamma z$ $= (x\Gamma s\Gamma y\Gamma t\Gamma z)\Gamma(x\Gamma s\Gamma y\Gamma t\Gamma z)\Gamma(x\Gamma s\Gamma y\Gamma t\Gamma z)$

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $= x\Gamma s\Gamma y\Gamma t\Gamma[z\Gamma x\Gamma(s\Gamma y\Gamma t)\Gamma(z\Gamma x\Gamma s)\Gamma y]\Gamma t\Gamma z \subseteq Q.$ (x\Gamma s\Gamma y\Gamma t\Gamma z\Gamma s\Gamma y\Gamma t\Gamma z\Gamma s\Gamma y\Gamma t\Gamma z\Gamma Q is a PST\Gamma Ideal.

Note 3.10 : The converse of theorem 3.9, is not true,

Ex 3.11 : Consider the T Γ -semi group in example 3.3. P = {*p*} is a PST Γ -Ideal in the ternary Γ -semi group T, and it is not completely semi prime, since $q\alpha q \alpha q = p \in P$, but $q \notin A$.

Th 3.12 : If A is a PSTT-Ideal of a TT-semi group M then $P_2 = P_4$.

Proof: Obviously, $P_4 \subseteq P_2$. Let $p \in P_2$. Then for some odd $m \in N$ we have $(p\Gamma)^{m-1}x \subseteq P$. Since P is PSTΓ-Ideal, $(p\Gamma)^{n-1}p \subseteq P \implies (\Gamma)^{n-1} \subseteq P \implies p \in P_4$. Hence, $P_2 \subseteq P_4$ and hence $P_2 = P_4$.

Th 3.13 : If P is a PSTF-Ideal of a **TF**-semi group M then $P_2 = \{x : (x\Gamma)^{n-1}x \subseteq A \text{ for some odd } n \in N \}$ is a minimal CSTF-ideal of **T**.

Proof: Obviously, $P \subseteq P_2$ and hence $P_2 (\neq \emptyset)$ subset of M. Let $x \in P_2$ and $s, t \in M$.

Now $x \in P_2 \Longrightarrow (x\Gamma)^{n-1}x \subseteq A$ for some odd n. $(x\Gamma)^{n-1}x \subseteq P$, $s, t \in T$, A is a PSTF-Ideal of $T \Longrightarrow (x\Gamma s\Gamma t\Gamma)^{n-1}x\Gamma s\Gamma t \subseteq P$, $(s\Gamma x\Gamma t\Gamma)^{n-1}s\Gamma x\Gamma t \subseteq P$, $(s\Gamma t\Gamma x\Gamma)^{n-1}s\Gamma t\Gamma x \subseteq P \Longrightarrow x\Gamma s\Gamma t \subseteq P_2$, $s\Gamma x\Gamma t \subseteq P_2$, $s\Gamma t\Gamma x \subseteq P_2$. Therefore P_2 is a TF-ideal of M. Let $x \in M$ and $(x\Gamma)^2 x \subseteq P_2$. Now $(x\Gamma)^2 x \subseteq P_2 \Longrightarrow (x\Gamma)^2 x\Gamma)^{n-1} (x\Gamma)^2 x \subseteq$ P for some odd $n \Longrightarrow (x\Gamma)^{3n-1} x \subseteq P \Longrightarrow x \in P_2$. So P_2 is a CSTFideal of T. Let A be any CSTF-ideal of T containing P. Let $x \in$ P₂. Then $(x\Gamma)^{n-1} x \subseteq P$ for some odd n. By corollary 3.6, $(x\Gamma)^{n-1} x$ $\subseteq P \Longrightarrow (<x>\Gamma)^{n-1} < x > \subseteq P \subseteq A$. Since P is CSTF-ideal, $(<x>\Gamma)^{n-1} < x > \subseteq A \Longrightarrow x \in A$. Therefore P_2 is the minimal CSTFideal of M contains P.

Th 3.14 : If P is a PSTT-Ideal of a TT-semi group M then $P_4 = \{x : (< x > \Gamma)^{n \cdot l} < x > \subseteq P$ for some odd $n\}$ is the minimal semi prime TT-ideal of M contains P.

Proof: Clearly $P \subseteq P_4$ and hence P_4 is a nonempty subset of M. Let $x \in P_4$ and $s, t \in T$.

Since $x \in P_4$, $(< x > \Gamma m^{m-l} < x > \subseteq P$ for some odd *m*. Now $(< x\Gamma s\Gamma t > \Gamma)^{m-l} < x\Gamma s\Gamma t > \subseteq (< x > \Gamma)^{m-l} < x > \subseteq P$, $(< s\Gamma x\Gamma t > \Gamma)^{m-l} < s\Gamma s\Gamma t > \Gamma)^{m-l} < s\Gamma s\Gamma t > \Gamma < s\Gamma t > \Gamma)^{m-l} < s\Gamma t\Gamma x > \subseteq P$, $(< s\Gamma x\Gamma t > \Gamma)^{m-l} < s\Gamma t\Gamma x > \subseteq P$ $\Rightarrow x\Gamma s\Gamma t, s\Gamma t, s\Gamma t\Gamma x > \Gamma)^{m-l} < s\Gamma t\Gamma x > \subseteq (< x > \Gamma)^{m-l} < x > \subseteq P$ $\Rightarrow x\Gamma s\Gamma t, s\Gamma x\Gamma t, s\Gamma t\Gamma x \subseteq P_4$. Then P_4 is a TΓ-ideal of M containing P. Let $x \in T$ such that $(< x > \Gamma)^2 < x > \subseteq P_4$. Then $((< x > \Gamma)^2 < x > \Gamma)^{m-1} < x > \subseteq P$ $\Rightarrow x \in P_4$. Therefore P_4 is a semi prime TΓ-ideal of M containing P. Let P is a semi prime TΓ-ideal of T containing P. Suppose $x \in P_4$. Then $(< x > \Gamma)^{m-1} < x > \subseteq P \subseteq A$. Since A is a semi prime TΓ-ideal of T, $(< x > \Gamma)^{n-1} < x > \subseteq A$ for some odd number n $\Rightarrow x \in A$. $\therefore P_4 \subseteq A$. Hence P_4 is the minimal semi prime TΓideal of M containing P.

Th 3.15 : Each prime $T\Gamma$ -ideal A minimal relative to containing a PST Γ -Ideal P in a $T\Gamma$ -semi group M is CPT Γ -ideal.

Cor 3.16 : Each prime $T\Gamma$ -ideal A minimal relative to containing a CST Γ -ideal P in a T Γ -semi group M is CPT Γ -ideal.

Th 3.17 : Let Q be a T**T**-ideal of a T**T**-semi group M. Then Q is CPT**T**-ideal iff Q is prime and PST**T**-Ideal.

Proof: Suppose Q is a completely prime $T\Gamma$ -ideal of T. Therefore Q is prime. Let $p, q, r \in T$ and $p\Gamma q\Gamma r \subseteq Q$. $p\Gamma q\Gamma r \subseteq Q, Q$ is completely prime $\Rightarrow p \in Q$ or $q \in Q$ or $r \in Q \Rightarrow p\Gamma s\Gamma q\Gamma t\Gamma r \subseteq Q$ for all $s, t \in T$. Hence Q is a PST Γ -Ideal.

Conversely, let Q is prime and PSTΓ-Ideal. Let $p, q, r \in T$ and $p\Gamma q\Gamma r \subseteq Q$. $p\Gamma q\Gamma r \subseteq Q$, Q is a PSTΓ-Ideal $\Rightarrow \langle p \rangle \Gamma \langle q \rangle \Gamma \langle r \rangle$

 $\subseteq Q \Rightarrow \subseteq Q \text{ or } < q > \subseteq Q \text{ or } < r > \subseteq Q \Rightarrow p \in A \text{ or } q \in Q \text{ or } r \in Q.$ Therefore Q is CPT**Γ**-ideal.

Cor 3.18: Let Q be a T Γ -ideal of a T Γ -semi group M. Then Q is CPT Γ -ideal iff Q is prime and CST Γ -ideal.

Cor 3.19 : Let Q be a T Γ -ideal of a T Γ -semi group M. Then Q is CST Γ -ideal iff Q is semi prime and PST Γ -Ideal.

Th 3.20 : Let Q be a PST**Γ**-ideal of a T**Γ**-semi group M and P_r be the CPT**Γ**-ideal of M, P_q be the minimal CPT**Γ**-ideal of M and Pt be the minimal CST**Γ**-ideal of M. Then the following are equivalent.

1)
$$Q_1 = \bigcap_{r=1}^{n} P_r$$
 containing Q.
2) $Q_1^1 = \bigcap_{q=1}^{n} P_q$ containing Q.
3) $Q_1^{11} = \bigcap_{q=1}^{n} P_t$ relative to containing Q.

4) $Q_2 = \{x \in T : (x\Gamma)^{m \cdot I} x \subseteq Q \text{ for some odd } m\}$

- 5) Q_3 = The intersection of all prime T**Γ**-ideals of T containing **Q**.
- 6) Q_3^1 = The intersection of all minimal prime T**Γ**-ideals of T containing Q.
- 7) Q_3^{11} = The minimal semi prime T**T**-ideal of T relative to containing Q.

8)
$$Q_4 = \{x \in T : (\langle x \rangle \Gamma)^{m \cdot l} \langle x \rangle \subseteq Q \text{ for some odd } m\}$$

Def 3.21 : A T Γ -semi group T is said to be a **PST\Gamma-** semi group if every T Γ -ideal in T is a PST Γ -Ideal.

Th 3.22 : Every commutative TΓ-semi group is a PSTΓ- semi group.

Proof: Suppose M is commutative TΓ-semi group. Then $p\Gamma q\Gamma r = q\Gamma r\Gamma p = r\Gamma p\Gamma q = q\Gamma p\Gamma r = r\Gamma q\Gamma p = p\Gamma r\Gamma q$ for all $p, q, r \in T$. Let Q be a TΓ-ideal of T. Suppose $p, q, r \in T, p\Gamma q\Gamma r \subseteq Q$ and $s, t \in T$. Then $p\Gamma s\Gamma q\Gamma t\Gamma r = p\Gamma q\Gamma s\Gamma t\Gamma r = p\Gamma q\Gamma s\Gamma t\Gamma t = p\Gamma q\Gamma rS t\Gamma \subseteq Q$. Hence Q is a PSTΓ-ideal and hence M is a PSTΓ-semi group.

Th 3.23 : Every pseudo commutative T Γ -semi group is a PST Γ - semi group.

Proof: Let T be a pseudo commutative TΓ-semi group and Q be any TΓ-ideal of T. Suppose $p, q, r \in T, p\Gamma q\Gamma r \subseteq Q$. If $s, t \in T$. Then $p\Gamma s\Gamma q\Gamma t\Gamma r = p\Gamma q\Gamma p\Gamma t\Gamma r = s\Gamma q\Gamma r\Gamma p\Gamma t = s\Gamma (p\Gamma q\Gamma r)\Gamma t \subseteq Q$. Therefore, $p\Gamma s\Gamma q\Gamma t\Gamma r \subseteq Q$ for all $s, t \in T$. Hence Q is a PSTΓ*ideal*. Hence, T is a PSTΓ- *semi group*.

Th 3.24 : If M is a TΓ-semi group in which every element is a mid-unit, then M is a PSTΓ- *semi group*.

Proof: Let M be a T Γ -semi group in which every element is a mid-unit and Q be any T Γ -ideal of M. Let p, q, $r \in T$ and $p\Gamma q\Gamma r \subseteq Q$. If $s \in T$, then s is a mid-unit and hence, $p\Gamma s\Gamma q\Gamma s\Gamma r = p\Gamma q\Gamma r \subseteq Q$. Hence Q is a PST Γ -ideal. Hence M is a PST Γ -semi group.

4. SPSTT-ideals:

We now introduce the notion of $\ensuremath{\mathsf{SPST\Gamma}}\xspace$ -ideals of a $\ensuremath{\mathsf{T\Gamma}}\xspace$ -semi group

Def 4.1 : A T Γ -ideal Q in a T Γ -semi group M is said to be *SPSTF-ideal* if for any odd $m, x \in T, (x\Gamma)^{m-1}x \subseteq Q \Rightarrow (\langle x \rangle \Gamma)^{m-1} \langle x \rangle \subseteq Q$.

Th 4.2 : Every PST Γ -ideal of a T Γ -semi group is a SPST Γ -ideals.

Note 4.3 : The converse of the above theorem, is not true.

Example 4.4 : Let T be a free TΓ-semi group over the alphabet {*p*, *q*, *r*, *s*, *t*}. Let $Q = \langle p\Gamma q\Gamma r \rangle \cup \langle q\Gamma r\Gamma p \rangle \cup \langle r\Gamma p\Gamma q \rangle$. Since $p\Gamma q\Gamma r \subseteq Q$ and $p\Gamma s\Gamma q\Gamma t\Gamma r \not\subseteq Q$, Q is not PSTΓ-*ideal*. Suppose $(x\Gamma)^{n-1}x \subseteq Q$ for some odd *n*. Now the word *x* contains $paq\beta r$ or $q\beta rap$ or $r\gamma paq$ for some *a*, β , $\gamma \in \Gamma$ and hence $(\langle x \rangle \Gamma)^{n-1} \langle x \rangle \subseteq Q$. Therefore $(x\Gamma)^{n-1}x \subseteq Q$ for some odd number $n \Rightarrow (\langle x \rangle \Gamma)^{n-1} \langle x \rangle \leq x \rangle \subseteq Q$. Therefore Q is a SPST**Γ**-ideals.

Th 4.5 : Each semi prime $T\Gamma$ -ideal P minimal relative to containing a SPST Γ -ideal A in a $T\Gamma$ -semi group T is CST Γ -ideal.

Cor 4.6 : Each prime $T\Gamma$ -ideal P in a $T\Gamma$ -semi group T minimal relative to containing a SPST Γ -ideal A is CPT Γ -ideal.

Cor 4.7 : Each prime $T\Gamma$ -ideal minimal relative to containing a PST Γ -ideal A in a T Γ -semi group T is CPT Γ -ideal.

Th 4.8 : If Q is a TΓ-ideal in a TΓ-semi group T, then

1) Q is CST**Γ**-ideal.

2) Q is semi-prime as well as PST**T**-ideal.

3) Q is semi-prime as well as SPST**T**-ideal are equivalent.

Proof: (1) \Rightarrow (2): Let Q is a CSTT-ideal of T \Rightarrow Q is a semi prime TT-ideal of T and by th 3.19, Q is a PSTT-ideal of T.

 $(2) \Rightarrow (3)$: Let Q is semi prime and PST Γ -ideal. By th 4.2, Q is a SPST Γ -ideal. Therefore, Q is semi prime and SPST Γ -ideal.

 $(3) \Rightarrow (1)$: Let Q is semi prime and SPST**Γ**-ideal.

Let $p \in T$, $(p\Gamma)^2 p \subseteq Q$. Since Q is SPST**Γ**-ideal, $p \in T$, $(p\Gamma)^2 p \subseteq Q \Rightarrow (\Gamma)^2 \subseteq Q$. Since Q is semi prime, by th 2.10, $(\Gamma)^2 \subseteq Q \Rightarrow \subseteq Q$. \therefore Q is completely semi prime.

Th 4.9 : If Q is a $T\Gamma$ -ideal of a semi simple $T\Gamma$ -semi group M, then the conditions

1) Q is CST**F**-ideal.

2) Q is PSTT-ideal.

3) Q is SPST**Γ**-ideal are equivalent.

Proof: (1) \Rightarrow (2) : Let Q is CST**Γ**-idea. By cor 3.19, Q is PST**Γ**-ideal.

(2) \Rightarrow (3) :Let Q is PST**T**-ideal. By theorem 4.2, Q is SPST**T**-ideal.

(3) \Rightarrow (1) : Suppose that Q is SPST**F**-ideal. Let $q \in T$, $(q\Gamma)^2 q \subseteq Q$. Q. Since Q is SPST**F**-ideal, $(q\Gamma)^2 q \subseteq Q \Rightarrow (\langle q \rangle \Gamma)^2 \langle q \rangle \subseteq Q$. Since T is semi simple, q is a semi simple element. Therefore $q \in (\langle q \rangle \Gamma)^2 \langle q \rangle \subseteq Q \subseteq Q$. Thus Q is completely semi prime.

Th 4.10 : If Q is a $T\Gamma\text{-}ideal$ of a $T\Gamma\text{-}semi$ group M, then the conditions.

1) Q is CPT**T**-ideal.

2) Q is prime as well as PST**T**-ideal.

3) Q is prime as well as SPST**T**-ideal are equivalent.

Proof: (1) \Rightarrow (2) : Let Q is completely prime. By theorem 3.17, A is prime as well as PST**Γ**-ideal.

 $(2) \Rightarrow (3)$: Let Q is prime as well as PST**T**-ideal. Since Q is PST**T**-ideal by th 4.2, Q is SPST**T**-ideal.

 $(3) \Rightarrow (1)$: Let Q is prime as well as SPST**Γ**-ideal. Since Q is prime then we have, Q is semi prime. Since Q is semi prime and SPST**Γ**-ideal, by theorem 3.8, A is CPT**Γ**-idea. Since Q is prime and CST**Γ**-idea then we have, Q is CPT**Γ**-idea.

The following theorem is an analogue of KRULL's Theorem.

Th 4.11 : Let Q be a SPSTT-ideal of a TT-semi group M and Let Q be a PSTT-ideal of a TT-semi group M and P_r be the CPTT-ideal of M, P_q be the minimal CPTT-ideal of M and Ptbe the minimal CSTT-ideal of M. Then the following are equivalent.

1)
$$\mathbf{Q}_1 = \bigcap_{r=1}^n P_r$$
 containing \mathbf{Q} .
2) $Q_1^1 = \bigcap_{q=1}^n P_q$ containing \mathbf{Q} .
3) $Q_1^{11} = \bigcap_{q=1}^n P_t$ relative to containing \mathbf{Q} .

4) $\mathbf{Q}_2 = \{ x \in \mathbf{T} : (x\mathbf{\Gamma})^{m \cdot I} x \subseteq \mathbf{Q} \text{ for some odd } \mathbf{m} \}$

- 5) Q_3 = The intersection of all prime T**Γ**-ideals of T containing Q.
- 6) Q_3^1 = The intersection of all minimal prime T**F**ideals of T containing Q.
- 7) Q_3^{11} = The minimal semi prime T**Γ**-ideal of **T** relative to containing **O**.

8)
$$Q_4 = \{x \in T : (\langle x \rangle \widetilde{\Gamma})^{m-1} \langle x \rangle \subseteq A \text{ for some odd } n\}$$

We now present some of the consequences of the above theorem.

Th 4.12 : If P is a maximal T**T**-ideal of a T**T**-semi group M with $P_4 \neq M$, then

1) P is CPT**T**-ideal.

- 2) P is CST**Γ**-ideal.
- 3) P is PSTT-ideal.
- 4) P is SPST**Γ**-ideal are equivalent.

Proof: $(1) \Rightarrow (2)$: Let P is CPT**Γ**-ideal. Then we have, P is CST**Γ**-ideal.

 $(2) \Rightarrow (3)$: Let P is is CST**Γ**-ideal. By th 3.9, P is PST**Γ**-ideal.

(3) ⇒ (4) : Let P is PST**Γ**-ideal. By th 4.2, P is SPST**Γ**-ideal. (4) ⇒ (1) : Let P is SPST**Γ**-ideal. By the th 3.11, $P \subseteq P_4 \subseteq M$.

(4) \Rightarrow (1) : Let P is SPSTI-ideal. By the in 5.11, $P \subseteq P_4 \subseteq M$. Since P is maximal TΓ-ideal and $P_4 \neq T$, it implies that $P = P_4$. Let $x \in M$, $(x\Gamma)^2 x \subseteq P$. Since P is SPST**Γ**-ideal, $(\langle x \rangle \Gamma)^2 \langle x \rangle \subseteq P$. Since P is CST**Γ**-ideal, by cor 2.8, $x\Gamma y\Gamma z \subseteq P \Rightarrow \langle x \rangle \Gamma \langle y \rangle \Gamma \langle z \rangle \geq \subseteq P$. If possible $x \notin P$, $y \notin P$, $z \notin P$. Then $P \cup \langle x \rangle$, $P \cup \langle y \rangle$, $P \cup \langle z \rangle$ are TΓ-ideals of T and $P \cup \langle x \rangle = P \cup \langle y \rangle = P \cup \langle z \rangle = M$, Since P is maximal, $y, z \in P \cup \langle x \rangle$, $x, z \in P \cup \langle y \rangle$ and $x, y \in P \cup \langle z \rangle \Rightarrow y, z \in \langle x \rangle$, $x, z \in \langle y \rangle$, $x, y \in \langle z \rangle \Rightarrow \langle x \rangle = \langle x \rangle = \langle x \rangle \Gamma \langle y \rangle \Gamma \langle z \rangle = (\langle x \rangle \Gamma)^2 \langle x \rangle \subseteq P \Rightarrow \langle x \Gamma \rangle^2 x \subseteq P \Rightarrow x \in P$. It is a contradiction. \therefore either $x \in P$ or $y \in P$ or $z \in P$. \therefore P is CPT**Γ**-ideal.

We now introduce the notion of a SPST**Γ**-semi group.

Defi 4.13 : A T Γ -semi group M is said to be a *SPSTF*-semi group if every T Γ -ideal of T is SPST Γ -semi group.

Th 4.14 : A T**Γ**-semi group M is *SPSTΓ-semi group* iff every principal T**Γ**-ideal is *SPSTΓ-ideal*.

Th 4.15 : In a SPST*F*-semi group M, an element a is semi simple iff a is lateral regular.

Th 4.16 : If M is a SPST**F**-semi group, then

1) S = { $p \in T : \sqrt{\langle p \rangle} \neq M$ } is empty or a CPT**F**-ideal.

2) M\S is empty or an Archimedean $T\Gamma\mbox{-}sub\mbox{-}semi$ group of M are true.

Proof: (1) suppose $S = \emptyset$, then nothing to prove. If $S \neq \emptyset$, then clearly S is a TΓ-ideal of M. Let $p, q, r \in M$ and $p\Gamma q\Gamma r \subseteq S$. If possible $p \notin S, q \notin S, r \in S$, then $\sqrt{\langle p \rangle} = M$, $\sqrt{\langle q \rangle} = M$ and $\sqrt{\langle r \rangle} = M$. $\therefore p\Gamma q\Gamma r \subseteq S$, then $\sqrt{\langle p \Gamma q\Gamma r \rangle} \neq M$. Now $M = \sqrt{\langle p \rangle} \cap \sqrt{\langle q \rangle} \cap \sqrt{\langle r \rangle} = \sqrt{\langle p\Gamma q\Gamma r \rangle} \neq M$. It is a contradiction. Hence $p \in S$ or $q \in S$ or $r \in S$. $\therefore S$ is a CPTΓ-ideal.

(2) : S is a CPTF-ideal, M\S is either empty or a TF-sub-semi group of M. Let *p*, *q*, *r* \in T\S. Then $\sqrt{ = \sqrt{< q > = \sqrt{< r > =}}}$ M. Now *q*, *r* $\in \sqrt{}$, *r*, *p* $\in \sqrt{< q >}$, *r*, *p* $\in \sqrt{< r >}$ therefore we have, $(q\Gamma)^{n-1}q \subseteq$ for some odd *n*. So $(q\Gamma)^{n+1}q \subseteq M\Gamma p\Gamma M \Rightarrow$

 $(q\Gamma)^{n+1}q = s\Gamma p\Gamma t$ for some $s, t \in M$. If either s or $t \in S$, then $(q\Gamma)^{n+1}q \subseteq S$ and hence $q \in S$. It is a contradiction. Hence $s, t \in M \setminus S$. Now $(q\Gamma)^{n+1}q = s\Gamma p\Gamma t \subseteq (M \setminus S)\Gamma p\Gamma(M \setminus S)$. Hence $M \setminus S$ is an Archimedean $T\Gamma$ -sub semi group of M.

Th 4.17 : If M is a SPST*I*-semi group, then

- 1) M is a strongly Archimedean TΓ-semi group.
- 2) M is an Archimedean TΓ-semi group.
- 3) M has no proper CPT Γ -ideals.
- 4) M has no proper CST**F**-ideals.
- 5) M has no proper prime TΓ-ideals.
- 6) M has no proper semi prime T**T**-ideals are equivalent.

Th 4.18 : If P is a nontrivial maximal $T\Gamma$ -ideal of a SPST Γ -semi group M then P is prime.

Proof: Let P is not prime. Then $\exists p, q, r \in M \setminus P \exists \Gamma < q > \Gamma < r > \subseteq P$. Now any $u \in M \setminus P$, we have $M = P \cup < b > = P \cup < c > = P \cup < u >$. Since $q, r, u \in T \setminus P$, we have $q, r \in < u >$ and $u \in < q >$, $u \in < r >$. So < q > = < r > = < u >. Therefore $(<q>\Gamma)^2 < q > \subseteq P$, $(<r > \Gamma)^2 < r > \subseteq P$. If $p \neq q$, then $p = saq\beta t$ for some $s, t \in M^1$ and $a; \beta \in \Gamma$. So $p \in <s > \Gamma < q > \Gamma < t >$. If either $s \in P$ or $t \in P$ then $p \in P$. It is a contradiction. If $s \notin P$ and $t \notin P$, then $< s > \Gamma < q > \Gamma < t > \subseteq P$. It is a contradiction. Hence p = q and hence P is trivial, which is not true. Therefore P is prime.

Th 4.19 : If M is a *SPSTF-semi group* and contains a nontrivial maximal $T\Gamma$ -ideal then M contains semi simple elements.

Th 4.20 : Let M be a SPS-Archimedean T Γ -semi group. Then a T Γ -ideal P is maximal iff it is trivial, as well as M has no maximal T Γ -ideals if M = (M Γ)²M.

Th 4.21 : Let M be a *SPSTF-semi group* containing maximal T**Γ**-ideals. If either M has no semi simple elements or M is an Archimedean T**Γ**-semi group, then $M \neq (M\mathbf{\Gamma})^2 M$ as well as $(M\mathbf{\Gamma})^2 M = P^*$ where P^* denotes the intersection of all maximal T**Γ**-ideals.

4. Conclusion

D. M. Rao studied about PS Γ - ideals in Γ -semigroups. Further D. M. Rao and A .A. extended the same results to T-semi groups. Here mainly we study PST Γ -ideals and extended the results to T Γ -semi groups.

Acknowledgement

Thank to all who supported to prepare this research paper.

References

- [1] Anjaneyulu, *Stucture and ideals theory of Semigroups*-Thesis, ANU (1980).
- [2] D. Madhusudhana Rao, A. Anjaneyulu. and A. Gangadhara Rao, *Pseudo Symmetric Γ-Ideals in Γ-semigroups*-Internatioanl eJournal of Mathematics and Engineering 116(2011) 1074-1081.
- [3] Madhusudhana Rao, A. Anjaneyulu. and A. Gangadhara Rao *Prime* Γ*-radicals in* Γ*-semigroups*-International eJournal of Mathe matics and Engineering116(2011)1074-1081.
- [4] D. Madhusudhana rao, Primary Ideals in Quasi-Commutative Ter nary Semigroups-International Journal of Pure Algebra-3(7), 2013, 254-258.
- [5] D. Madhusudhana Rao and G. Srinivasa Rao, A Study on Ternary Semirings-International Journal of Mathematical Archive-5(12),

2014, 24-30.

[6] D. Madhusudhana Rao and G. Srinivasa Rao, Special Elements of a

Ternary Semirings-International Journal of Engineering Re-

searchand Applications, Vol. 4, Issue 11(Volume 5), November 2014, pp123-130.

- [7] D. Madhusudhana Rao and G. Srinivasa Rao, G, Concepts on Ter nary semirings-International Journal of Modern Science and Engi neering Technology(IJMSET), Volume 1, Issue 7, 2014, pp. 105-110.
- [8] D. Madhusudhana Rao, M. Vasantha and M. Venkateswara Rao *Structure and Study of Elements in Ternary* Γ-semigroups-International Journal of Engineering Research, Volume No.4, Issue No. 4, pp: 197-202.
- [9] Subramanyeswarao V.B., A. Anjaneyulu. A. and Madhusudhana Rao D. *Partially Ordered* Γ-Semigroups- International Journal of Engineering Research & Technology (IJERT), Volume 1, Issue 6, August-2012, pp 1-11.
- [10] Sarala. Y, Anjaneyulu. A. and Madhusudhana Rao. D. Ternary Se MI groups-International Journal of Mathematical Science, Technolo gy and Humanities 76(2013) 848-859.
- [11] T. Rami Reddy and G. Shobhalaths. On Fuzzy Weakly completelyPrime Γ-Ideals of Ternary Γ-semigroups-International Journal of Mathematical Archive 5(5), 2014, 254-258.