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Abstract 

 

Training a large set of data takes GPU days using Deep convolution neural networks which are a time taking process. Self-driving cars 

require very low latency for pedestrian detection. Image recognition constrained by limited processing resources for mobile phones. The 

computation speed of the training set determines that in these situations convolution neural networks was a success. For large filters, 

Conventional Faster Fourier Transform based convolution is preferably fast, yet in case of small, 3 × 3 filters state of the art convolution-

al neural networks is used. By using Winograd's minimal filtering algorithms the new class of fast algorithms for convolutional neural 

networks was introduced by us. Instead of small tiles, minimal complexity convolution was computed by the algorithms, this increases 

the computing speed with small batch sizes and small filters.  With the VGG network, we benchmark a GPU implementation of our algo-
rithm and at batch sizes from 1 to 64 state of the art throughput was shown. 

Keywords: Deep convolution neural networks, fast convolution neural network Algorithm, CGEM Methodology   

 

1. Introduction  

 Image recognition in state of the art results [1,2] is acquired by 

using deep convolution neural networks (convnets). Several days 

of GPU time is taken for training in these networks and it requires 

significant compute resources during classification too. Better 

accuracy can obtain from bigger data sets and models but it leads 

to increase in computation time. In deep neural networks, the 
speed of computation of the networks will determine the progress. 

Likewise, when convnets are applied on low latency inference 

problems, such as to determine the how fast is tiny set of image 

data that can be determined and classified will limits the detection 

of people detection in autonomous cars in a video imagery. 

By partitioning each group of samples across the nodes of a clus-

ter. Distributed training of convnets(convolution neural networks) 

can be acquired  and accumulating weight updates across the 

nodes. Convergence of the network can be affected by large batch 

sizes adversely, so the upper limit on the cluster size was placed 

with the minimum group size can be computed efficiently. 

3 × 3 convolutional layers in deep networks are used for image 

recognition in state of the art convent(convolution neural net-

works) architectures, as fewer weights give better accuracy than 
larger filtered shallow networks.[1,2] 

Therefore tiny group sizes and tiny filters need fast convent algo-

rithms. However large batch sizes and large filtered are required 
for conventional convent libraries for fast operation. 

Minimal filtering algorithms pioneered by Winograd is the base on 

the convolution neural networks (convnets) [3] which is the new 

class of fast algorithm was introduced in this paper. The arithmetic 

complexity of a convent layer can be reduced to a factor of 4 by 

the algorithms than that of direct convolution. Generally, dense 

matrix multiplies of sufficient dimensions will perform the almost 

all the arithmetic efficiently, even though the size of the batch is 

very small. Compared to the conventional Faster Fourier Trans-

form convolution algorithm the memory need will be low. By 

using at most 16mb of workspace memory, and for all batch sizes 

the throughput is measured by Sate of art  , from 1 to 64, was 

achieved by NVIDIA Maxwell GPUs 

2. Related Work 

Convnet layers arithmetic complexity was reduced by the FFT and 

convolution theorem, first by Mathieu et al,[4] visalache et al [5] 

refined it and in NVIDIA cuDNN library[6] it was implemented. 

To reduce the convolutions in a convent layer cong and xiao [7] 

used the Strassen algorithm for fast matrix multiplication and 

arithmetic complexity was reduced. For reducing the complexity 

of convents by quantizing several approaches were attempted. 

These approaches can be considered as complementary and or-

thogonal to those that exploit algebraic structure, and therefore 

those are not included in the span of this paper. 

3. CNN (Convolutional Neural Network) 

Convolution neural network is a deep learning network architec-

ture. It learns from images directly. The CNN is made of several 

layers that processing transform an output to produce from an 

input. In CNN is trained to image analysis tasks including object 

detection, segmentation, scene classification and image processing. 

In Fig A where we can see the  different types of stack layers each 

layers can presides and transforms the input volume into the out-

put volume through distinguishable function using of convolution 

layer. 

http://www.sciencepubco.com/index.php/IJET
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FigA: CNN processing the input images in different channels 

 

A bank of K filters with size P × R and C channels can be 

correlated with a minigroup of N no.of images with size H ×W 

and C channels using the convolution layer. Filter elements are 

denoted by Gk,c,u,v and Di,c,x,y  gives image elements. 

  Th formula for computation of an single convolution layer ouput 

Yi,k,x,y is given as: 

                                      (1) 

The entire image/filter pair output can be written as  

                                                          (2) 

where 2D correlation is  denoted by ∗. 

4. High computing algorithoms 

last few decades the outputs were computed using minimal filter-

ing(MF) algorithm by including a p-tap FIR filter, which we de-

scribe  (S, P), claims duplications . 

 

 µ(F (s,p)) = s+ p − 1                                                                      (3) 

 

Further, 1D algorithms can nest least F (s, p) and F (e, r) to devel-

op least 2D algorithms for computing s× p outputs with an p × r 

filter, which we describe as  

F (s × p, e × r). This claim 

 

µ(F (s × p, e × r)) = µ(F (s, p))µ(F (e, r))                                       (4) 

 

                             =(s − 1) (e + r − 1) 

 

Duplications. Multi-dimensional (MD) FIR filters can be devel-

oped by nest 1D algorithm. It is fascinating to see that in multi-

dimensional, 2D and 1D the least algorithm requires number of 

inputs must be equal to the numbers of the multiplications, i.e., to 

compute F (s, p) we must obtain an period of s + p − 1 input val-

ues, and to compute F (s × p, e × r) we need a path tile of (s + p − 

1) × (e + r− 1) values of data. Hence the algorithm of minimal 

filtering, per input it needs one repetition. 

The usual algorithm for F(2,3) does 3×2 = 6 multiplications. 

Winograd [3, p. 43] documented the resulting least algorithm 

(minimal algorithm): 

                           (5)  

Where  

 

       
 

       
 

This algorithm does simply four matrix multiplications. Hence 

least (minimal) by the equation µ(F(2,3)) = 2 + 3 − 1 = 4. Further 

does four additions including the data, two multiplications and 

three additions by a constant meaning filter (at once the amount g0 

+ g2 can be estimated), and the outputs can be diminished by four 

additions at the final result. Matrix form of Fast Filtering Algo-

rithms can be formulated as: 

 

                                                                      (6) 

 

Multiplication (element-wise) was indicated by ⊙. For F (2, 3), 

the matrices are 

 

 
  

                                                                             (7) 

 

 
 

 
 

 
 

A least 1D algorithm F(s, p) is itself nested among to achieve a 

least 2D algorithm (minimal), F(s× s, p × p) similar to: 

 

                                                               (8) 

 

Now g is an p × p filter and x is an (s + p − 1) × (s+p−1) image tile. 

This nesting method can be generalized for non-square filters and 

results, F(s× e, p × r), algorithm is nested for F(s, p) by an algo-

rithm for F (e, r). F (3×3, 2×2) uses 16= (4×4) multiplications, 

whereas the conventional algorithm uses 36= (3×3×2×2).  

 

Here is a computation complexity loss of 36/16 = 2.25. The data 

transform does thirty-two additions, the filter transform uses twen-

ty-eight floating point guidance, and that inverse transform does 

twenty-four additions. Algorithms toward F(s×s, p×p) can be ap-

plied to estimate convent layers with s × s kernels. Every picture 

channel is split into tiles size of (s+p−1) × (s+p−1), with s− 1 por-

tions overlay between neighbouring tiles, allowing 

Q = ⌈H/s⌉⌈W/s⌉ tiles per carrier(channel), C. F(s×s, p×p) is then 

estimated for each filter and tile sequence in every carrier (chan-

nel), and outputs are calculated over all carriers (channels). Inter-

changing U = GgGT and V = BT xB, we have: 

                                                                                                             

                                                                         (9) 

 

Marking coordinates of tile as (~w,~x), we edit the convnet layer 

equation (2) during every particular image i,and  filter k, and co-

ordinate of tile (~x,~ y) as therefore we can decrease over C carri-

ers (channels) that measured and calculated send into tranformed  

time, and simply then implement the inverse modify in the A 

channels to the sum. The cost of the inverse transform above the 

number of carriers (channels) is amortized.           
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                                                          (11) 

 

We consider the sum and analyse the system by dropping the im-

age/tile coordinates (i,~w,~x).into a one dimension, we also 

marked every component of the (element-wise) multiplication 

divider ,as (∑,v) Placed :    

                                                           (12) 

 

This formula is just matrix arithmetic, so that determined as a: 

         

 
 

Matrix multiply has accuracy development on Central Processing 

Unit (CPU), Graphical Processing unit (GPU), and Field Pro-

grammable Gate Arrays (FPGA)platforms, owing to its powerful 

computational intensity. Therefore we have reached at the effec-

tive implementation of the fast algorithm placed in below men-

tioned Algoritham 1 .  

A method for producing the least filtering algorithm F(s,p) for 

every variety of s and p was documented by Winograd [3]. The 

chinese remainder theorem was used by the form to provide a least 

(minimal) algorithm for linear convolution, i.e. similar to polyno-

mial arithmetic, then transfers the linear convolution algorithm to 

produce a least (minimal) filtering algorithm. We present sources 

of the specific algorithms applied in the additional material of this 

paper. 

 

Algorithm 1 Compute Convnet Layer with WMF (Winograd 

Minimal Filtering) Algorithm F (s × s, p × p) 

 

P = N [H/s][W/s] is the count of image tiles. α =( s + p – 1) 

is the size of input tile. 

 

Surrounding tiles overlap by p − 1. 

dc,b ∈ rα×α  is input data image piping b in carrier (channel) c. 

gk,c ∈ rp×p is filter that was applied k in carrier (channel) c. 

 

 

G, BT , and AT are filter image input data, inverse transforms, and 

data input for channels . 

Yk,b ∈  r
s×s  is resulted image piping b in  k filter. 

for k = 0 to K do 

 

for c = 0 to C do 

u = Ggk,cG
T ∈  Rα×α 

Matrices Spitted  U: U(ξ,ν) k,c= uξ,ν 

 

            Fo9weightisr b = 0 to P do 

 

for c = 0 to C do 

v = BT dc,bB ∈ Rα×α 

Spitted v to matrices V: Vc,b
(ξ,ν) = vξ,ν 

 

for ξ = 0 to α do 

 

for ν = 0 to α do 

M (ξ,ν) = U (ξ,ν)V (ξ,ν) 

 

for k = 0 to K do 

for b = 0 to P do 
 

From matrices S s is gathered: sξ,ν = sk,b
(ξ,ν) 

 

Yk,b=ATSA 

 

 

4.1 Minimal 2D algorithm of F(3×3 with 2×2) : 
 

Training a system utilizing highly inclination origin requires com-

putation of the gradients including regard to the input data and 

(weights) loads. For a convolutional  layer, the highest gradient by 

regard to the inputs data is a convolution of the resulting layer’s 

back propagated fault, of dimension (H × W × N × K), including a 

flipped variant of the layer’s S × R filters. Hence it can be estimat-

ed applying the corresponding algorithm that is employed for 

forwarding propagation. 

The pitch with regard the loads (weights) is a layer data inputs 

convolution including the back propagated errors, providing S×R 

results carrier (channel) and per filter. Hence we require compu-

ting the convolution F (H×W, R×S), as W×H is important too 

huge for our active algorithms so which is impossible. Alternative-

ly, we crumble this convolution into a linear sum of inadequate 

convolutions, for in a case, F (2 × 2, 3 × 3). Here the algorithm’s 4 

× 4 image tiles are overlain by 2 pixels in particular dimension, 

and the 3 × 3 results are summed over all tiles to form F( H × W,3 

× 3). 

                                 (14) 

 

With (3+2-1)2= (5−1)2 = 16 multiplies versus linear convolution’s 

2 × 2 × 3 × 3 = 36 multiplies, it gets the same 36/16 = 2.25 arith-

metic difficult computing reduction as the same way forward 

propagation algorithm. 

 

4.2  Minimal 2D algorithm of F(4×4 with 3×3):  
 

The F (4, 3) is least (minimal) algorithm has the derived below 

The data shifts do thirteen floating position directions; the filter 

shifts handle eight, and the inverse transform handle ten. Imple-

menting the nesting equations  allows the least (minimal) equation 

for F(4 × 4), F(3 × 3) that works thirty-six (36=6×6) multiplies, 

while the conventional algorithm uses one forty-four (4×4×3×3 = 

144). This is a computational complexity loss of four. The two-

dimensional data transform do's one fifty-six ((6 + 6)13 = 156) 

floating point directions, the filters are applied does seventy two 

((3 + 6)8 = 72), and the inverse transform does one hundred (10(6 

+ 4) = 100). The amount of computing and constant multiplica-

tions needed by the least (minimal) Winograd converts increases 

quadratically with the tile size Therefore for  

 

                        

 
                                                                                              (15) 

 

 The difficult to a processing in one form to another form will 

confuse any proceeds in the number of multiplications. The con-

sequence of the transform matrix components also improves with 

progressing tile size.  
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4.4 Faster Fourier Transformation for CNN: 
 

The Faster Fourier Transform can be applied to generate a piped 

convolution algorithm are the identical form as above mention 

Algorithm 1. The central variation is that the converts into the 

matrices form and restored among Fast Fourier Transform and 

inverse Fast Fourier Transform, and straight forward multiplica-

tion of complicated Fast Fourier Transform elements generates 

cyclic convolution. Only s × e elements of the (s+p −1)×(e+r−1) 

cyclic convolution are accurate, the residue must be abandoned, 

and the tiles must be projected by p−1 and r−1 in method to re-

generate the rejected outputs. This method is assigned to as pro-

jection and protect mainly, for the discrete fourier transform of an 

[α × α] array of original values can be designed with an array of 

α×(⌊α /2 ⌋+1) complex group values.  

For increasing complex numbers the conventional algorithm is 

applied, this function of equals 4(⌊α /2 ⌋ + 1)/α > 2] uncommonly 

multiplies per every data input. Different method, i.e. to our un-

derstanding has not been used in convents, is to practice a fast 

algorithm to multiply complex numbers with three real multiplica-

tions [3]: 

 

(a0 + ia1)(b0 + ib1) = [a0b0 − a1b1,i(a0b1 + a1y0)]  

                              = [ucva + uavc,i(uavc − ubvb)]                          (16) 

 

Where  

 

                   ua = a0  

                   ub = a0 + a1 , va = b0                                              (17) 

                  uc = a1 − a0  ,vb = b1 , vc = b0 + b1 

 
Table 1: Arithmetic complexity between Winograd algorithm   Fast Fouri-

er Transform 

Tile 

 
Winograd 
Algorithm   FFT 

a′ b′ c′ d′ a′  d′ 

3 8.00 - - -   

4 5.00 3.00 4.75 1.50   

5 1.78 2.60 3.24 1.24   

6 2.25 4.33 2.00 2.78   

8 4.78 6.50 1.23 3.38 3.44  4.42 

16     4.94 3.23 

32     6.42 4.24 

64     2.20 8.30 

128     5.14 13.37 

256     1.05 11.42 

 

In Table 1 multiply inputs tiles (a′), data transform forms the one 

tiles to another (b′), filter transform applied to data (c′), and in-

verse transform to normalized the data(d′) normalized arithmetic 

complexity between Winograd algorithm   Fast Fourier Transform 

based convolution network of . Direct convolutions have tile size 

three. 

A convnet algorithm based on Fast Fourier Transform can com-

bine this by adjusting the FFT of the filter and data to result in the 

matrices with real values (Va,Vb,Vc) and (Ua,Ub,Uc)  instead of the 

obsession valued matrices V and U 

 

T = UaVc M1 = −UbVb + T,  

M0 = UcVa + T M = (M0,iM1)                                                      (18) 

 
Table 2: The Stability and Normalization between the Fast Fourier Trans-

form and CGEMM 

 

The collection of brief matrix T is achieved using natural Single 

precision floating General Matrix Multiply(SGEMM) with C = T 

and β = 1, at that value of computing two floating period guidance 

per output. In the Table 2 Think of these preparations as joining to 

the cost of inverse transform. As we compares the Fast Fourier 

Transforms and Single precision floating General Matrix Multiply 

(SGEMM). 

5. Logical Computing Analysis 

In our system of fast convnets, the arithmetic stage computation 

complexity is: 

 

B = N⌈H/s⌉⌈E/e⌉CK(s+p−1) (e+r −1)                                          (19) 

 

If s = e = 1, equation approaches the arithmetic complexity of 

linear convolution. Hence linear convolution is the least algorithm 

for F(1 × 1, P × R), although our report applies least(minimal) 

convolutions, the convnet layer itself means claim not 

least(minimal) because it produces higher convolutions than are 

rigidly required. We could decrease the number of convolutions 

by applying Strassen recursions(SR Recursions) as in [6], but 

every recursion decreases all three dimensions of our models by 

half while contributing only an (8/7) decrease in computation 

complexity. 

In classification to easily the formulas, we will pretend that W/s 

and H/e have no remains. This multiplication complexity has de-

rived as: 

 

                   B = (s + p − 1)2/s2NHECK  

                       =α′NHECK                                                      (20) 

 

Thus α = (s + p − 1)2 and α′ = α/s2 the total equations that can be 

translated   and further equation     

 

T (D) = β/s2NHEC ,T(F) = γCK ,T(I) = δ/s2NHEK                 (21) 

 

Wherever δ, β and γ, is the amount of floating point directions 

applied by the relative transforms for individual tiles. Distributing 

the difficulty of every change by in M allows its corresponding 

complexity: 

 

T (D) B/ = (β)/ (Kα2) = (β′)/K 

T (F)/B = γ/ (NHEα2/s2) 

       = γ/ (Pα2) = γ′/P                                                                 (22)  

 T (I)/B = δ/ (Cα2) = (δ′)/C 

 

We define as γ′, δ′, and β′ the normalized computation complex-

ities of the filter, input data, and the corresponding inverse trans-

forms, individually. P = HNE/s2 is the no. of pipeline per channel 

as in the unit by Average multiplication complexity of the content 

layer is given by combining the intervals for each stage: 

 

Q = (1 + β′/K + γ′/P + δ′/C) α′ (NHECK)                                  (23) 

 

In series to get a large boost up, the arithmetic complexity of α′ is 

very small then the transform complexities δ′ β′, and γ′ need each 

be short correlated with C, P and K individually. 

Based convnet layers and  FFT including fast CGEMM is highly 

effective with the Winograd algorithms is most faster then 

CGEMM, the tile size is higher compared to Winograd means 

Faster Fourier Transform based convnet design to hold modified 

data required a high representation workspace. To transform cost a 

common amount of transformed data must be held in position and 

to produce matrices with high accuracy of with CGEMM that 

GPU needs high computational for the convolutions layers to read 

and processing data. 
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6. Implementation of GPU 

 
We implemented F(2 × 2,3 × 3) the newest formation of NVIDIA 

GPU[7], the 1080Ti(titan X), has many benefits over GPU for 

computational multiple prominently the introduction of a R/W L2 

global cache for device memory. This allows accelerated pro-

grams and analyses signing the code. In case, the similar change 

of difficulty into device relieves various software and optimization 

difficulties. Our operations note that the CNN performance grows 

2-3 generations faster simply by changing from GPU 1080ti to 

1085ti Conventional evaluations of CUDA code is extremely time 

spending and incompetent inclined. We Computing processing for 

the innovative architecture, relying on the L2 cache for many of 

the device representation access, alternatively of input writing 

code that uses arrangements and shared memory.in below table 3  

diffrentional layers of  VGG network  with a gflops standard op-

timizations are present future image analysis problems. 

Code received by this Masic strategy is fast adequately. We use 

the back types of Computing: pre-computed representations pre-

sented loops within template kernels, stamped patterns to achieve 

combined vision accesses and personnel wheresoever possible.In 

Table 3 Supplementary standard optimizations are pleasant in case 

future image analysis problems will demand even more computing 

power that depends on computations of both GPU. 

7. Experimenting on different networks 

For More accuracy and speed experiments with VGG Network [2], 

the data VGG is tested in Google Tensorflow and are managed by 

us. The 3x3 filters with a deep network in the convolution layers, 

are tabulated in the Table 3. 
 

Table 3: Convolution layers of VGG network of the point defined 

Layers Depth’s C × W × H K GFLOPs  

conv 1.1 1 64 × 234 × 234 64 0.18 

conv 1.2 1 63 × 234 × 234 64 2.70 

conv 2.1 1 64 × 275 × 132 128 2.85 

conv 2.2 1 128 × 132 × 132 128 1.70 

conv 3.1 1 128 × 58 × 58 256 2.85 

conv 3.2 2 256 × 58 × 58 256 10.10 

conv 4.1 1 253 × 58 × 58 512 2.85 

conv 4.2 2 512 × 38 × 38 512 10.10 

conv 5 3 512 × 15    × 15 512 13.70 

      

Total     47.03 

 

Our fast algorithms with single (fp32) and half (fp16) precisions 

data and filters are observed for accuracy .fp32 arithmetic instruc-

tions are used by us. The uniform distribution [-1, 1], consisting of 

random data and filters are used to calculate the absolute element 

error.By direct convolution with a double precision accumulator, 

we analyze ground truth for any changes. 
 Our GPU implementation of F(2x2, 3x3) in correlation with 

cuDNNv3[1] measures its speed on a superclocked NVIDIA Titan 

X GPU.A maximum clock rate of 1126 MHz was observed by 

disabling the boost clock. A GPU yields a device peak throughput 

of 2 × 3072 × 1126 = 6.96 TFLOPS and has 3072 cores..Division 

of computation of number of GFLOPs by direct convolution gives 

the speed for a given layer which is listed in table-3. 

This Algorithm is active on the GPLOP. The ratio of the total 

GPLOPs and runtime Code gives total throughput. 

 

8. Results and Discussion 

 
The single precision (fp32), half precision (fp16) and their filters  
Are used to test the accuracy of the different convolution layer 

algorithms with input data .F(2 × 2, 3 × 3) is more accurate than 

that of direct convolution. The simple transforms of F (2 × 2, 3 × 

3) do not lose much precision, and reduction over C channels is 

offered by its multiplication stages, rather than RSC filter ele-

ments which are overcome by convoluting directly . F (4 × 4, 3 × 

3) has a more substantial erroneousness, even though it is more 

accurate than convoluting directly with fp16 data. 
The algorithm testing are reasonably accurate with fp16 data. Here 

the precision of the inputs is limited in accuracy. Convoluting 

directly is accurate for training and having deduction with data of 

low precision [4, 5].so, it has limited accuracy in the precision of 

the inputs. We conclude that in F (3 × 3, 4 × 4) .Table 6 and Table 

5 shows the total throughput of VGG Networklayer-E for cuDNN 

and our F (2×2, 3×3) is implemented in fp16 and fp32 data for 

different sizes of batch. For fp32 data, F(2 × 2, 3 × 3) is 1.48X at 

N = 64  and 2.26X as fast at N = 1. The N = 16 has throughput of  

9.49TFLOPS. For fp16 data, F(2×2, 3×3) extends its gain over-

cuDNN, recording 10.28 TFLOPS  for N = 64’s throughput.The 

performance of N=8 is pretty good at 9.57 TFLOPS. 

 

 
Fig. 1:.:Histogram of VGG fp32 data. 

 

 In Fig.  1 exposes layer throughput. If cuDNN uses the FFT algo-

rithm, then hatch marks indicate the layer, otherwise direct convo-

lution will be used. For F (2 × 2, 3 × 3), the external filter trans-

form (FX) is used which are indicated by the hatch marks; other-

wise, the fused transform will be faster. 

 

cuDNN is likely to select its FFT algorithm for intermediate val-

ues of N erroneously, despite the fact that it performs poor, under 

2 TFLOPS. It reveals that it's just a bug. Low performance at 

moderate values of N suggests that the convolution by FFT im-

plementation either uses large tiles or  just a single tile per image, 

asin [5]. Unless N is large this leads to inefficient multiplication 

stages.cuDNN FFT performs much better but stays well under 8 

TFLOPS, at large N.F(2×2, 3×3) performs better than cuDNN at 

every layer and group size, except the layer conv1.1, which con-

tributes less than 0.5% of the total network computation in general, 

we notice that the FX variant of our implementation performs best 

unless the number of filters and channels are substantial. 

The filter transform computation requires large memory. Thus 

transformation of more massive filter decreases. The computation-

al efficiency.F(2 × 2, 3 × 3) performs inadequately in the case 

when N=1 for 14×14 layers. During this case, the 8×4 superb-

lockruns over the image boundary and computes unwanted pixels. 

The output of this layer configuration is about 5TFLOPS, where 

cuDNN performance is just 1.6 TFLOPS. 

A global memory workspace up to 2.6GB is used by cuDNN FFT 

in our experiments. In contrast, our fused F((2×2)×( 3×3)) imple-

mentation global workspace not used, and only 16 MB was used 

by the FX variant.  
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Table 4: fp32 versus Fp16 

Layers 

 fp32  
 

Fp(16) 
Directs F(2x2),F(3x3) F(4x4),F(3x3)    

1.2 2.01E-05 2.43E-05 2.84E-04  1.14- 02 

2.2 5.11E-05 3.56E-05 4.41E-04     2.45E-02 

3.2 2.43E-04 4.44E-05 8.06E-04 2.99E-02 

4.2 4.10E-04 3.44E-05 1.05E-03 4.17E-02 

5 2.13E-04 3.50E-05 1.07E-03 5.61E-02 

 

In above Table 4 new capabilities for high output is shown by 

performance of F (2 × 2) × (3 × 3) and small group size with state 

of the art convolutional neural networks. When F (4 × 4, 3 × 3) is 

used, we expect the performance to improve. The maximum num-

ber errors that Occurs in VGG networks Layers 

  
Table 5: VGG Versus Nvidia cuDNN In F32 data 

T       

layers  

 Nvidia cuDNN F(2x2,3x3) 

Speedup 

M(sec) TFLOPS msec TFLOPS    

       
1 13.22 2.12 6.45 1.23 1.96X 

2 30.46 4.83 8.89 6.49 2.26X 

4 106.40 2.49 18.72 8.81 4.51X 
8 331.01 0.89 45.11 9.43 6.24X 

16 210.01 4.03 12.79 8.49 2.01X 

32 231.01 1.45 140.36 8.47 0.97X 
64 380.95 5.44 244.48 8.99 1.78X 

 

In above table-5 VGG versus Nvidia cuDNN in performance net-

work to define the System f32 data.this different between the two 

structured functions between the two data formats. For fp16 data, 

F(2×2, 3×3) extends its gain overcuDNN, recording 9.22 

TFLOPS  for N = 64’s throughput.The performance of N=8 is 

pretty good at 13.22 TFLOPS. 

 
Table 6: VGG Versus Nvidia cuDNN In F16 data 

t       

layers  

 Nvidia cuDNN F(2x2,3x3) 

Speedup 

M(sec) TFLOPS M(sec) TFLOPS    

       
1 12.22 1.22 5.55 0.13 0.96X 

2 32.16 5.43 9.19 5.29 1.36X 

4 206.45 5.39 15.22 2.81 3.41X 
8 241.41 1.49 15.71 5.43 5.74X 

16 230.21 3.02 14.29 6.19 1.21X 

32 241.21 2.35 160.46 8.17 1.47X 
64 340.45 5.34 224.48 9.29 1.78X 

 

In above Table 6 VGG versus Nvidia cuDNN in performance 

Network layer is defined the system of fp16.cuDNN FFT performs 

much better but stays well under 8 TFLOPS, at large N.F (2×2, 

3×3) performs better than cuDNN at every layer and group size, 

except the layer conv1.1, which contributes less than 0.5% of the 

total network computation in general, we notice that the FX vari-

ant of our implementation Performs best unless the number of 

filters and channels are Substantial. 

 
Fig. 2:. Histogram VGG fp16 Network 

 

In above Fig. 2 the tensorflow data which will be prescribe faster 

relevant the time during training with  different layers in pro-

cessing above the mean time graphs will be regulated   

 

 
Fig. 3: The sparsity of two networks Of VGG network 

 

In above Fig-3 cuDNN each graph that draw in the following with 

respective of the functional time period. This time period that 

represent the training part of each data which can allocate by the 

processing by differentiate functions and the equations. A global 

memory workspace up to 2.6GB is used by cuDNN FFT in our 

experiments. In contrast, our fused F ((2×2) × (3×3)) implementa-

tion global workspace not used, and Only 16 MB was used by the 

FX variant  
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