
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering &Technology, 7 (3.12) (2018) 1257 -1264 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 

 

Research paper  

 

 

 

Optimal Control Signal for an EEG Based Casual BCI 
 

Satyajit Sen Purkayastha
1
, V K Jain

2
, H K Sardana

3
 

 
1Electrical and Electronics Engineering, Amrapali Institute of Technology and Science, Haldwani, INDIA 

2Electrical and Instrumentation Engineerng, SantLongawal Institute of Engineering and Technology, Longowal, Sangrur, INDIA 
3HRD, Central Scientific Instruments Organisation, Sector 30, Chandigarh, INDIA 

*Corresponding Author E-mail: 1sen.satyajit@rediffmail.com , 2vkjain27@yahoo.com, 3hk_sardana@csio.res.in 

 

 

Abstract 

 
BCI (Brain computer interface) is a control and communication system which allows electrophysiological activity to control a computer 

or a peripheral device directly, without taking the natural route of peripheral nerves and muscles. The prime motive behind developing 

BCI technology was its ability to act as the only interactive link for people disabled by amyotrophic lateral sclerosis (ALS), cerebral 

palsy, spinal cord injury, stroke and similar neuromuscular disorders of high severity. However in the last decade, a gradual shift in BCI 

end-users from patients to casual (healthy) individuals has increased significantly. Because of this shift, BCI community has recognized 

the need for EEG based casual BCI to be more efficient and user friendly, keeping in mind the customized needs of healthy (Casual) 

user. So for increasing the performance of such BCIs, the selection of optimal control signal plays a very significant role. Hence, in this 

work, we evaluate various EEG control signals (CS) in accordance with considerations relevant to user-friendliness of casual BCIs and 

point up their neuro-physiological origins as well as their effectiveness in current applications. Finally, we recommend a set of 

parameters for selection of optimal EEG based control signal for casual BCIs and the best suitable option available among the present 

day control signals.  
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Slow cortical potentials, Non motor cognitive task, User friendly.  

 

1. Introduction  

The purpose of an EEG based casual BCI is to interpret the user‟s 

intentions by means of monitoring electrophysiological activity 

non-invasively. As established, EEG is the summation of the post-

synaptic potentials produced by hundreds and thousands of 

neurons having identical radial orientation [1]. These signals are 

the resultant of a range of parallel processes taking place during a 

cognitive task, larger fraction of which is still inexplicable and 

their exact points of origin are still unrevealed. Nevertheless, 

physiological phenomena of few signals have been successfully 

decoded, which could be modulated by a user enabling the BCI 

systems to interpret their intentions. Hence, these EEG signals act 

as control signals (CS) in various BCIs, including “Casual end 

user” BCI. The user-friendliness is a major consideration for the 

Casual BCIs, but the phrase "user-friendly" seems a simple 

enough perception to understand; however like so many vivacious 

concepts; it skids out of the turf when we focus the research 

microscope on it. The difficulty of defining the concept of “User-

friendly” results from the fact that it largely has two performance 

indices, the ease of performing the process and the utility of the 

final outcome of the process. So far, the concept of user-

friendliness has been applied to both former and later indices quite 

haphazardly. We call a BCI application user-friendly if its features 

can be used easily by a BCI trainee, meanwhile we also call it 

user-friendly if the person using the BCI application provides 

positive feedback to us once we get the application up and 

running. Therefore, no set criterions are fixed till date, for the user 

friendliness of casual BCIs.  

In this paper, Section II details the neuro-physiological origin of 

various EEG control signals relevant to casual BCI. Section III 

evaluates the effectiveness of these control signals in current 

applications; Section IV proposes the major considerations for 

“user-friendliness” of CasualBCI; Section V assesses the utility of 

various EEG control signals focusing on the “User-friendly” 

perspective. Finally, section VI discusses the results and presents 

the optimal EEG control signal for the context. 

2. Physiological Origin of EEG Based BCI 

Control Signals  

Control signals for an EEG based Casual BCI is obtained non-

invasively and could be categorized into two main sections, 

Evoked signals section and Spontaneous signals section [2, 3]. In 

brain research, it is a widespread tactic to evaluate the EEG 

signals in response to how a lone neuron or a set of neurons reacts, 

when subjected to different stimuli. Hence, Evoked signals are 

defined as the changes in the normal ongoing EEG activity, due to 

the introduction of specific stimulations to the user. These signals 

are widely known as Evoked Potentials (EP). Whereas, 

spontaneous signals are the measure of the EEG on the user‟s 

scalp and are called spontaneous as these signals are associated 

with usual and regular activities of living brain which goes on 

continuously. The significant control signals in evoked signals 

section are Steady State Evoked Potentials (SSEP) and P300 [2,3], 

whereas within the category of spontaneous signals section, the 

most used control signals are sensorimotor rhythms. Slow cortical 

potentials and non-motor cognitive signals.  

mailto:1sen.satyajit@rediffmail.com


1258 International Journal of Engineering & Technology 

 

A. Steady State Evoked Potentials (SSEP):  

These are brain potentials which materialize when the user is 

introduced to a periodic stimulus such as a flickering picture or a 

sound modulated in amplitude. Here, the brain activity has the 

same frequency as the stimulating frequency. In other words, the 

rate of stimulation will be followed by the frequency of the 

response, and thereby serve as a frequency signature in the brain 

signal [4, 5, 6]. Nowadays, diverse kinds of SSEP are used as 

control signals like: Steady State Visual Evoked Potentials 

(SSVEP) [4, 7, 8, 9,10], Somatosensory SSEP (SSSEP) [6] and 

auditory SSEP (ASSR) [5].  

 

(i). Steady State Visual Evoked Potentials (SSVEP): These are 

the resultant evoked potentials triggered by visual stimulus with a 

frequency range of 6 Hz to 25 Hz, which has substantial inter-

subject variability [11]. When a flashing stimulus is used, the 

SSVEP exhibits a sinusoidal waveform with fundamental 

frequency similar to the flashing frequency of the stimulus, but if 

the stimulus is a pattern then SSVEP occurs at their harmonics 

with a reversal rate [12].The major cause for using SSVEP as a 

control signal is due to the facts that the amplitude and phase of 

SSVEP are highly responsive to stimulus parameters such as 

repetition rate, spatial frequency and modulation depth (13). 

Moreover in extended interval of time, the discrete frequency 

components remain closely constant for SSVEP components, both 

in amplitude and phase [13]. In addition SSVEPs are also less 

susceptible to artifacts produced by blinks, eye movements and 

electromyographic noise contamination [14,15,16].  

 

(ii). Somatosensory Steady State Evoked Potentials (SSSEP): 

These are evoked potentials generated at primary and secondary 

somatosensory cortices as a result of tactile stimulation caused by 

repeated pressure against the skin [17,18,19]. These potentials are 

recorded by applying vibratory stimuli of variable modulation 

frequencies and exhibit the greatest signal to noise ratios at 

modulation frequencies of 26 Hz [20]. Even broader maximum in 

the frequency range could be generated between 21 and 27 Hz 

[17,21,22]. These frequencies elicit the largest SSSEP amplitudes 

and accordingly are utilized as a control signal for BCIs.  

 

(iii). Auditory Steady State Rhythms (ASSR): These are the 

responses to auditory stimulations produced by amplitude 

modulated tones [23, 24]. These oscillatory responses are 

generated at auditory cortex, even though modulated by 

thalamocortical systems [25, 26] and the optimal frequencies for 

modulation are in the 40 Hz range [19, 22, 27, 28, 29, 30, 31]. The 

worth of ASSR as control signal is still not apparent as the reason 

of power increment at 40 Hz is vague [29]. However, the steady-

state responses in the auditory cortex reflects sensory processing 

through integration of auditory signals over time within the 

primary auditory cortex [ 24, 32] and thus provides supports the 

use of ASSR as a control signal.  

B. P300 Evoked Potentials:  

These potential consists of a positive waveform appearing 

approximately 300 ms after a rare and relevant auditory, visual or 

somatosensory stimulus [33]. It is generated through the “odd-

ball” paradigm, where the user is requested to focus on a random 

sequence composed of two kinds of stimuli, one being less 

frequent than the other [10]. If the rare stimulus is relevant to the 

user, its appearance triggers a P300 in the user‟s EEG, which is 

located in the parietal areas. It has been established that, lesser the 

probability of occurrence of a stimulus, the larger is the amplitude 

of the response peak [34, 35]. This property affirms the use of 

P300 evoked potential as the control signal.  

 

 

 

 

C. Motor and Sensorimotor Rhythms: 

 
 Rhythms originating at motor cortex as a result of cerebral 

activity and motor activity comprise this category. These rhythms 

consist of oscillations in the brain activity in the frequency band 

(7–13 Hz) and (13–30 Hz), which are generally known as Mu and 

Beta rhythms respectively [10]. These rhythms are used to control 

BCIs as one could be trained to generate these modulations 

voluntarily [36,37]. The amplitude could also be varied when 

cerebral activity is associated with any motor task [38, 39]. 

Similar modulation patterns are observed when a mental dummy 

run of a motor act without any apparent motor output is done [38]. 

Besides, two kinds of amplitude modulation are possible with 

these rhythms namely event-related desynchronization (ERD) and 

event-related synchronization (ERS). In ERD amplitude 

suppression of the rhythm occurs whereas ERS exhibits amplitude 

enhancement, hence these are excellent control signals for a BCI.  

D. Slow Cortical Potentials (Scp):  

These are slow EEG voltage shifts those continue for hundreds of 

milliseconds to several seconds [10]. They fit into the fraction of 

EEG signals below 1 Hz and are tied to changes in the levels of 

cortical activity. Positive SCPs match with decreased activity in 

individual cells whereas Negative SCPs associate with increased 

neuronal activity [40]. As it is possible to make variations either 

positive or negative by training, hence SCP could be used in 

controlling a BCI [41, 42].  

E. Non-Motor Cognitive Signals:  

These are the signals generated while performing mental tasks like 

multiplication, object rotation, alphabets composition or counting. 

As established,left hemisphere of brain processes the analytic, 

verbal and serial information whereas right hemisphere processes 

the visual-spatial information [77]. Hence these signals exhibit 

hemispheric specialization and are easily recognized using power 

spectrum or Autoregressive Coefficients of the EEG signal [43] 

and therefore could be utilized in controlling BCIs.  

3. Effectiveness of Control Signals in Current 

BCIS  

A. SSEP for BCI:  

SSEPs are entirely measurable with non-invasive methods and the 

mental tasks associated with the recording procedure are mostly 

effortless. This makes SSEPs a much anticipated collection of 

brain signals. A SSEP-BCI is based on a less demanding mental 

strategy of selective attention, which makes this system more 

efficient and fast [44].  

 

(i). SSVEP for BCI: SSVEP control signal is used in two 

different ways [45], in first; the users are trained to control the 

strength of their SSVEP, where binary control actions are 

possible. For example, a device can be turned on or off, moved up 

or down, etc. These willfully controlled changes in SSVEP results 

in controlled actions. Whereas, in the second method, multiple 

SSVEPs are used as control and the user requires very little 

training, in view of the fact that the system capitalizes on the 

naturally occurring responses. For example, multiple frequencies 

via virtual keys on a screen are displayed and the user decides on 

the favouredkey by just staring on it, which in turnis coupled to a 

control action. In first method, users perform 200 trials each 

without training with 92% classification accuracy (average) in a 

binary choice system and 28.5 selections per minute could be 

achieved. However, a major boost could be achieved in 

classification accuracy by using the third harmonics and Gaze 

shifting, but the later is not necessary for some users and at the 
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same time relies heavily on the task and display [46, 47, 48, 49]. 

Some of the systems could exhibit up to 64 visual stimuli and a 

communication rate of 10-12 words/min as established by Sutter 

et al [3, 50]. Few of the systems as proposed by Cheng et al. with 

13 flickering light targets could exhibited an average classification 

accuracy of 77.3% and show a maximal capability of 54.46 

bits/min [51]. Likewise the online system of Nielsen et al. 

containing 9 squares, each flickering at a different frequency 

exhibits classification accuracy (average) of 79.7% along 

withcapability of selecting 9.3 characters per minute [52]. These 

results indicate the possibility of driving a multi-class SSVEP-

BCI.  

 

(ii). SSSEP for BCI: SSSEP system of Muller-Putz et al. 

demonstrates a 2-class BCI where stimuli are applied to the index 

fingers and the subject have to focus on eitherof the finger tips. 

LDA (Linear Discriminant Analysis) is used to detect thisraise of 

the elicited SSSEP and the online performances may vary from 

57.5-83.1% per subject per day. However few considerations have 

to be taken care of for using SSSEP; firstly the human sensory 

system has specific resonance range and hence scrutiny of 

anoptimal frequency range has to be done [13, 21]. Secondly, few 

subjects may have concentration problems and may not focus in 

the entire session of 160 trials [6]. However, the advantages are 

the possibility to avoid eye muscle control problems and its 

stability. Furthermore, they are measurable on a single trial basis.  

 

(iii). ASSR for BCI: ASSR signal has not been used for driving a 

BCI yet however the results of Hill et al.[53] implies the prospect 

ofutilizing auditory stimulation and focus to drive a BCI with no 

previous training. Hereresponse of auditory stimuli modulates 

ERP in a reliable manner and hence a single trial is sufficient. In 

this research ERP was used, but in both cases of ERP and ASSR 

the amplitude could be modulated by attention, which is an 

indication that the report of Hill et al. can be used as a base for 

future ASSR-BCI research. Future research should definitely be 

based on the fact that patients may not be able to shift gaze in 

many cases and hence it is a significant motivation to add ASSR-

BCI to the palette of available BCI paradigms.  

B. P300 for BCI:  

A matrix of 6x6 displaying numbers, symbols, commands, 

alphabets is generally used for P300 based BCIs. It was first 

proposed by Donchin et al. where either a row or a column flashes 

in every 125ms for 12 times. The subjectfocuses on the preferred 

option in the matrix and counts the number of times the preferred 

option flashes. The parietal cortex EEG is digitised and then the 

average response to a row and a column is weighed up, plus for 

each choice the P300 amplitude is found. The P300 response is 

unusual for preferred option and the BCI make use of this 

outcome to decide the user‟s intention. The communication rate 

achieved is one word per minute with no initial training 

requirements. However, P300 changes response to conditioning 

protocols [3, 55, 56, 57, 58, 59] and it is also time variant. So, in 

long term, P300 might get habituated in [35] causing deterioration 

or improvement in BCI performance. 

C. Motor and Sensorimotor Rhythms for Bci:  

These rhythms are very useful for the design of endogenous BCIs 

as these rhythms do not need any actual movement [39], however 

controlling SMR is quite complicated as motor imagery is difficult 

for most users. This system demands user training, because users 

need tocarry out motor imagery from where related SMRis 

recorded and later classified. In the end, feedback is provided to 

the user in the audio or visual form, but its effectiveness 

isconsiderablylow in spite of wide usage, so Hwang et al. [60] 

suggested a method where the user is presented with real-time 

feedback in the form oftheircortical activity. Wadsworth [61], 

Berlin [62] or Graz [63] BCIs also uses SMRand 20-25 bits/min 

ITR (information Transfer Rate) have been successfully achieved 

[64]. Moreover both synchronous mode and asynchronous mode 

operations are possible in these BCIs.  

D. Slow Cortical Potentials (SCP) for BCI:  

Users can generate and regulate voluntary changes in SCP using a 

thought-translation device (TTD)[65]. Generally SCP is extracted 

by filtering followed by EOG removal and then it is presented to 

the user in the form of a visual feedback from a computer, where 

the screen has two options at the top and the bottom. This choice 

between options consumes almost 4 seconds and the final 

selection of option is displayed in various ways. Success in 

training depends on various aspects like psychological and 

physical condition of user, motivation, sleep quality, pain, mood 

and social situations, etc [65,66]. Moreover the users skill to 

modulate SCP effects the performance and hence the initial trial 

decides the importance of SCPs as a control signal [65,67]. 

Accuracy rates vary from 65% to 90% but longer training is also 

required.  

E. Non-motor Cognitive Tasks for BCI:  

Mental tasks such as mental rotation of shapes, visual counting, 

music imagination,mental generation of words, mental 

mathematical computations, etc. are used to drive BCIs 

[2,43,68,69,70,71]. All these tasks create specific EEGpatternsin 

specific locations in cortex which make them distinct from each 

other. A motor imagery BCI system based on imagination of cube 

rotation, arithmetic tasks and word concatenationwas developed 

by Millan at el [72,73]. Similarly Penny at el. developed a motor 

imagery system that works together with non-motor cognitive 

tasks [74,75] whereas Curran et al. utilized auditory imagery, 

imageryofmotor tasks, and imagery spatial navigation for BCI 

driving [76]. These systems could recognize and analyze 

spontaneous EEG with 70% accuracy and 5% errors. Besides, the 

users could be trained in a short period of 5 days.  

4. Considerations for a Casual BCI to be “User 

Friendly” 

For a Casual BCI to be user friendly there are primarily two 

performance indices explicitly - the ease of performing the process 

and the usability of final outcome of the process, hence the major 

necessities are formulated keeping in mind the following:  

A). Convenience and comfort: For user friendly category of 

Casual BCIs, a major factor that should be considered is that the 

target user group may not necessarily be dependent on the system 

for vital activities. Moreover, if the usage of the system demands 

some inconvenience in the form of medical alterations (invasive 

systems), time consumption in the form of system preparation / 

training or increased level of fatigue after the usage, then the 

chances of utility by the target users will reduce, diminishing the 

system‟s user friendliness.  

B). Stable system performance: Any system is considered better if 

it exhibits stable system performance and for Casual BCI this 

takes the form of interpreting the thoughts or instructions of the 

user in a proficient way and faithfully reproducing the output in 

minimum possible timeframe.  

C). Cost factor: Any system with minimal cost has more 

likelihood of satisfying consumers provided the above two 

conditions are fulfilled.  
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Fig. 1: Representation of necessary conditions for becoming “user 
friendly” BCI: 

 

 
Fig. 2: Representation of necessary conditions for optimal control signal 

5. Assessment of Various Control Signals for a 

User Friendly BCI:  

All the considerations for the “user friendly” casual BCI are 

directly or indirectly dependent on the selection of the control 

signal for driving the BCI and an optimal control signal should 

have the following attributes:  

 

A). Precisely characterized: Optimal control signal should be 

precisely characterized for an individual as it would act as the lone 

source of information for the system. More characterized the 

control signal more is the controllability.  

B). Readily modulated or translated: Optimal control signal should 

be readily modulated or translated for the efficient conversion of 

the user‟s intention and results in better system performance.  

C). Detection is reliable and consistent: Optimal control signal 

should be detected consistently and reliably as it would directly 

influence the stability of the system, more reliable and consistent 

control signal will have more stable output.  

So, keeping in view the necessary conditions for a “user friendly” 

Casual BCI and the mandatory attributes of optimal control signal, 

the specific and elaborate considerations for selecting the optimal 

control signal for a user friendly Casual BCI has been formulated 

in the form of a chart, which not only provides the ideal value of 

all the considerations for the optimal control signal of a “user 

friendly” BCI but also provides the comparative status of all the 

other EEG control signals. 

 

 

 

Table 1: Comparative chart of optimal and major control signals used in BCIs 

 

Signals 

 

SSVEP 

 

SSSEP 

 

ASSR 

 

P300 

 

Motor/Sensorimot

or Rhythms 

 

SCP 

 

Non-motor 

cognitive task 

 

Optimal 

control 

Signal for 

user friendly 

BCI 

 
Consideration

s 

 

 

 

 

Physiological 

phenomena 

 

Brain 

potential 
generated 

because of 

visual 
stimulus 

 

Brain 

potential 
generated 

because of 

tactile 
stimulus 

 

Brain 

potential 
generated 

because of 

auditory 
stimulus 

 

Brain 

potential 
generated at 

about 300 

ms because 
of 

interspersed 

infrequent 
and 

frequent 

stimuli. 

 

Increase/ decrease 

in mu and beta 
rhythms because of 

motor activities 

 

Slow 

voltages 
shift in the 

EEG which 

is inversely 
related to 

cortical 

activity. 

 

Signals 

generated 
while 

performing 

mental tasks 

 

Brain 

potential 

which could 

be generated 

easily and 

can be 

precisely 

characterize

d 

 

Types of 

inputs used 

for 

generation of 

control signal 

 

Evoked 

 

Evoked 

 

Evoked 

 

Evoked 

 

Spontaneous 

 

Spontaneou

s 

 

Spontaneous 
 

Spontaneous 

 

Stimulus 

required or 

not 

 

 

Required 

 

Required 

 

Required 

 

Required 

 

Not required 

 

Not 

required 

 

Not required 
 

Not required 

 

Stimulus 

Frequency 

 

 

6Hz to 
25Hz 

 

21Hz to 
27Hz 

 

40 Hz 

 

6 Hz to 40 
Hz 

 

NA 

 

NA 

 

NA 
 

Stimulus 

should not be 

required 

 

Location of 

origin of 

control signal 

 
Occipital 

cortex 

 
Primary and 

secondary 

somatosensor
y cortices 

 
Auditory 

cortex 

 
Parietal 

Cortex 

 
Sensorimotor cortex 

 
Central, 

frontal and 

parietal 
cortex 

 

 
Cerebral 

Cortex 

 

Easily 

traceable 

 

Training 

required or 

 

Not 
required 

 

Not required 

 

Not 
required 

 

Not 
required 

 

Required 

 

Required 

 

Required 
 

Not required 
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not 

 

 

Approach 

 

 

Exogenous 

BCI 

 

 

Exogenous 

BCI 

 

Exogenous 

BCI 

 

Endogenou

s BCI 

 

Endogenous BCI 

 

Endogenou

s BCI 

 

Endogenous 

BCI 

 

Endogenous 

 

Dependency 

 

 

Dependent 

 

Dependent 

 

Dependent 

 

Dependent 

 

Independent 

 

Independen
t 

 

Independent 
 

Independent 

 

Synchronous/ 

Asynchronou

s 

 

 

Synchronou
s 

 

Synchronous 

 

Synchronou
s 

 

Synchronou
s 

 

Synchronous and 
asynchronous 

 

Synchronou
s 

 

Asynchronous 
 

Asynchronou

s 

 

 

 

Resistance to 

Subject 

variability 

 

 
 

High 

variability 

 
 

High 

variability 

 
 

High 

variability 

 
 

High 

variability 

 
 

Minimumvariability 

 
 

High 

variability 

 
 

Minimum 

variability 

 

 

Minimum 

variability 

 

Effect of 

emotion 

 

 

High effect 

 

High effect 

 

High effect 

 

High effect 

 

Minimum effect 

 

High effect 

 

Minimumeffe
ct 

 

Minimum 

effect 

 

 

 

 

 

Level of 

fatigue 

 

 
Maximum 

fatigue 

 
Maximum 

fatigue 

 
Maximum 

fatigue 

 
Maximum 

fatigue 

 
Minimumfatigue 

 
Minimum 

fatigue 

 
Minimum 

fatigue 

 

Minimum 

fatigue 

 

Easiness 

 

 
Difficult 

 
Difficult 

 
Difficult 

 
Difficult 

 
Easy 

 
Easy 

 
Easy 

 

Easy 

 

No. of 

commands 

 

 
Large 

number of 

commands 

 
Large 

number of 

commands 

 
Large 

number of 

commands 

 
Large 

number of 

commands 

 
Small number of 

commands 

 

 
Large 

number of 

commands 

 
Small number 

of commands 

 

 

Small 

number of 

commands 

 

 

Command 

reliability 

 

 

Highly 

Reliable 

 

Highly 

reliable 

 

Highly 

reliable 

 

Highly 

reliable 

 

Low reliability 

 

Highly 

reliable 

 

Low 

reliability 

 

Highly 

reliable 

 

Controllabilit

y 

 

 

Less 

 

Less 

 

Less 

 

Less 

 

High 

 

High 

 

High 
 

High 

 

Information 
transfer rate 

(bits/min) 

 

 

30 to 100 
 

 

25 

 

1.12 to 2.08 

 

20 to 25 
 

 

3 to 35 

 

5 to 12 

 

- 
 

As high as 

possible 

 

System 

Accuracy 

 

 

95.5% 

 

 

70 to 80% 

 

 

64.67 to 

84.33 % 
 

 

80 to 95% 

 

 

90 to 100% 

 

 

65 to 90% 

 

 

70 to 90% 

 

 

High 

 

 

Preparation 

time 

 

 

5 min 

 

5 days 

 

10 to 15 
min 

 

5 min 

 

2 to 20 weeks 

 

5 hrs to few 
weeks 

 

150 sec to few 
min 

 

Minimum 

 

 

Number of 
Choices 

 

 

High 

 

Average 
 

 

Average 
 

 

High 

 

Low 

 

Low 

 

Average 
 

 

High 

 

 

S/N 

 

 

High 

 

 

Average 

 

 

Average 

 

 

Low 

 

 

High 

 

 

Average 

 

 

Low 

 

 

High 

 

 

Cost Effective 

 

 

Yes 

 

Average 
 

 

Yes 
 

 

Average 
 

 

No 
 

 

Yes 
 

 

Average 
 

 

Yes 

 

 

Possibility 
of triggering 

device by 

mistake 

 

 

 
Minimal 

possibility 

 

 
Minimal 

possibility 

 

 
Minimal 

possibility 

 

 
Minimal 

possibility 

 

 
Moderate possibility 

 

 

 
Moderate 

possibility 

 

 
Moderate 

possibility 

 

 

 

Minimum 

 

Stability 

 

 

Moderately 
stable 

 

Moderately 
stable 

 

Low 
stability 

 

Moderately 
stable 

 

Highly stable 
 

 

Highly 
stable 

 

Highly stable 
 

 

Highly stable 
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Errors 

 

 

10 to 20% 

 

- 

 

2 to 5% 

 

5% 

 

10 to 11% 

 

10 to 30% 

 

- 
 

Low 

 

Classes 

 

 
Multi class 

 
Multi class 

 
Single class 

 
Multi class 

 
Multi class 

 
Multi class 

 
Multi class 

 

Multi class 

 

 
Fig. 3: A 3D column graph is prepared by representing the ideal considerations as 2 units and other practical considerations as 1 unit and 1.5 units 

depending on the degree of nearness to the ideal value. 

 

6. Conclusion 

BCI control signals conferred in this paper are already been 

utilized in diverse applications but nobody have donecomparative 

analysis of these control signals till date. It is quite tricky to select 

the optimal control signal as all these signals have their 

advantages and disadvantages. SSVEP, SSSEP, ASSR and P300 

have the advantage that they don‟t demand subject training 

however external stimuli is mandatory which makes the process 

very tiring for the subject. On the other hand, Motor/Sensorimotor 

rhythms,Non-motor cognitive task signals and SCPs are more 

comfortable and come naturally to the subject.These processes 

don‟t demand external stimuli however they require longer time 

period for training.  

With the advancement in signal processing methods one can 

expect a decrease in subject‟s training requirements or even its 

eradication in near future.  

In this work we have initially suggested the three major conditions 

for a Casual BCI to be user friendly namely convenience and 

comfort of the user, stable system performance and cost factor. 

Thereafter, we evaluated the major conditions necessary for a 

control signal to be an optimal control signal for a BCI and 

enlisted three conditions which states that the control signal 

should be precisely characterized, readily modulated or translated 

as well as should be consistent and reliably detected.  

Taking into account the necessary conditions of both the cases of 

“user friendly” Casual BCI and optimal control signal of a BCI we 

formulated a chart with 26 considerations. The chart compares the 

present day BCI control signals such as SSVEP, SSSEP, ASSR, 

P300, Motor and sensory motor rhythms, SCP, Non motor 

cognitive task signals with the ideal optimal control signal on the 

basis of these 26 considerations.  

A 3D column graph is prepared by considering the ideal 

considerations having a weighted value of 2 units and other 

practical considerations as 1 unit and 1.5 units depending on the 

degree of nearness to the ideal value as represented in the Fig 3. 

For example the 24th consideration is “Stability” and the Optimal 

signal should have value for this consideration as “Highly Stable”, 

so while preparing the graph the control signals having the 

“Highly stable value” will have the weighted value of 2 units 

where as “Moderately stable” value will have 1.5 units and “Low 

stability” value will have 1 unit as weighted values. Hence the 

every control signals would be assigned weighted values for every 

consideration in comparison with the considerations of optimal 

control signal. Hence a curve could be drawn where one could 

very easily identify the curve which has maximum degree of 

closeness to the optimal control signal curve, which is a straight 

line. Thus, after comparison of various control signal curves with 

the ideal curve (straight line) of the optimal control signal we 

conclude that Motor and Sensorimotor rhythm‟s curve matches 

the ideal curve to the maximum and hence it is the best possible 

control signal for a user friendly Casual BCI in the present 

scenario. Howsoever scope for improvisation is still there as one 

ballpark figure in this work is the comparison between control 

signal considerations as they are not tested undersimilar 

circumstances, i.e. with same user, same acquisition protocols etc. 

Nevertheless with the advancement of BCI studies and the 

supporting disciplines, one can anticipate an ideal control signal in 

the near future. 
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