

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (3.12) (2018) 773 -778

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Analysis of Vulnerability Detection Tool for Web Services

Senthamil Preethi K
1
, Murugan A

2

2Assistant Professor (SG),

1,2Dept. of Computer Science & Engineering, SRM IST, Chennai, Tamil Nadu, India

*Corresponding Author Email: 1senthamilpreethi@gmail.com, 2murugan.abap@gmail.com

Abstract

The demand of the web services requirement is increasing day by day, because of this the security of the web services was under risk. To

prevent from distinct types of attacks the developer needs to select the vulnerability detection tools, since many tools are available in the

market the major challenging task for the developer to find the best tool which suitable for his application requirements. The recent study

shows that many vulnerability detection tools provide a low coverage as far as vulnerability detection and higher false positive rate. In

this paper, proposed a benchmarking method to accessing and comparing the efficiency of vulnerability detection tools in the web service

environment. This method was used to illustrate the two benchmarks for SQL injection and cross site scripting. The first one is

depending on predefined set of web services and next one permits user to identify the workload (User defined web services). Proposed

system used the open source and commercial tools to test the application with benchmarking standards. Result shows that the

benchmarks perfectly depict the efficiency of vulnerability detection tools.

Keywords: Web services; vulnerability identification; Benchmarking;

1. Introduction

Web services are used to enable the communication among

various application to exchange data and incorporate the

framework by using open standards such as XML, SOAP, and

REST and so forth [1].

In general, security of web application is exceptionally feeble [2].

Often codes are deployed with vulnerability in the web services.

Web services are generally insecure so that any security threat will

most possibly be undetected and misused by attacker.

A vulnerability can be defined as a “Weakness in an information

system, system security procedures, internal controls, or

implementation that could be exploited or triggered by a threat

source.”

OWASP identify top 10 web application security vulnerabilities

[4] are Injection such as SQL injection, LDAP injection, and

CRLF injection and Cross-Site Scripting etc.

Injection flaws, for example, SQL injection, LDAP injection, and

CRLF injection arise while untrusted information is directed

towards the mediator as a component of the command or query.

The attacker’s aggressive information could trap a translator into

run the inadvertent commands or getting the information with

lacking legitimate approval.

Cross site scripting flaws happen when the attacker infuse

malicious script to the application which contains untrusted

information and sent to new browser with improper inspection or

else update the existing web page with user specified data [6]. So,

it allows attackers to run or modify the contents in the objective's

program which can commandeer client sessions, damage websites

or divert a user to mischievous activity.

There are three types of cross site scripting: -

 Stored XSS Attacks

 Reflected XSS Attacks

 Dom-Based XSS Attacks

Stored XSS attacks is directly injected a script is permanently

stored in the target servers such as database, visitor log and

comment field etc.., Later the victim is tried to access the affected

webpage in a web browser, in the background the malicious script

is executed and retrieve the stored user information [6]. It is also

called as persistent or type-I XSS.

Reflected XSS attacks are in the form of email messages, social

media and web links which routed to the phishing sites and inject

the vulnerable code in the victim browsers, it is also called as non-

persistent or type-II XSS.

Dom-Based XSS Attacks, it is based on the client-side attack and

web server doesn’t know the client is affected by this type of

attack.

The attacker can inject the payload which will be stored as a part

of the DOM and executed when the data is read from the DOM.

Vulnerability detection tools. To prevent vulnerabilities, the

developer has to do the list of actions such as apply coding best

practices [7], utilize static code analyzers, perform security code

audit and run the penetration tests etc.

Vulnerability detection tools are most normally utilized by the

engineer in the web service environments to help mechanized

security inspection and contain some of the critical tools for ensure

programming improvement. There are distinctive techniques

proposed for vulnerabilities detection such as penetration testing

and static code analysis. These two methods were broadly utilized.

Because of time points of confinement or asset limitations,

designer need to choose the particular tool from the list of tools

accessible on the web without knowing the subtle elements of

tools [7] whether this tool will distinguish every one of the

mailto:1senthamilpreethi@gmail.com
mailto:sganeshkumar78@gmail.com

774 International Journal of Engineering & Technology

vulnerabilities or not. They depend on the tool to distinguish all

the security issues on the code which was created by the engineer.

2. Related Works

Vulnerability Detection: Penetration testing and static code

analysis both are surely understood methods regularly utilized

through designers towards discover security weaknesses in web-

services. It is finished utilizing powerful implementation of a

program, detection consists in examination of the results, which

restrict perceptibility on the interior activities. Static code analysis

is depending upon investigation of the source code, which permits

characterizing particular code patterns designs inclined to security

vulnerabilities. In any case, it does not have a dynamic perspective

of the application conduct within the sight of a realistic workload.

Distinctive between these two techniques is previous does not

expect access to the bytecode and the last need to get to byte code.

Penetration testing tools used to test the application for

vulnerabilities by an automatic way with the given input esteems.

Past study demonstrates an adequacy of the tools in web-services

is extremely pitiable. e.g., in [5] demonstrates a few

disadvantages, in particular: the significant contrast in the

distinctive tool is low scope (For 2 scanners, there is under 20%),

as well as high quantity of false positives. The contemplate

displayed in [8], [9] are additionally affirmed the constraints.

Static code analyzers give a viable programmed approach to

feature the conceivable coding mistakes without the run the

application [8]. In [12] creators broke down 3 tools and contrasted

the viability and the code audit. The tools attained higher

productivity than the surveys in identifying software defeat

(security issues not considered in the investigation) in five modern

Java-based applications, however every one of the tool reachable

false positive proportions is more noteworthy than 40 percentage.

Those issue is additionally affirmed on [8].

Runtime anomaly detection used to find deviances in a chronicled

outline of legitimate commands. In [13] author proposed a method

that merge pen. testing with anomaly detection to revealing SQL

Injection. Additional examination demonstrates an AMNESIA

[14], a tool used to identify and stay away from SQL injection

attacks and that tool merge both runtime monitoring and static

analysis. The drawback for that approach depends on the learning

stage with the goal that it's hard to ensure the culmination and it

prompt false positives and undetected vulnerabilities.

Benchmarks are standard tools that permit assessing and

comparing systems or components according to with particular

qualities such as dependability, performance, and so on [3]. The

investigation on performance benchmarking has been begun long

back. The benchmark range can be easy to extremely complex

benchmarks centering complex framework (e.g., DBMS, working

system). This benchmark used to enhance next ages of

frameworks. More works has been led for dependability

benchmarks by various individuals and subsequent diverse

methodologies [15]. At long last, inquire about a security

benchmark is most recent theme with numerous undeveloped

inquiries [16], [17].

A few researches, demonstrate the significance of assessing testing

methods utilizing controlled experimentations. In [11] the creators

specified the troubles behind making controlled situations.

Further works tried to evaluate the efficiency of vulnerability

detection tools (e.x. [9], [12]). Indeed, past works think about

dissimilar tools under circumstances, which can't be generalized or

effortlessly reproduced, in this manner results about are of

restricted utilize.

Another work is introduced in [9]. It suggests a strategy to assess

WVS using software fault injection techniques. Programming

issues were infused with code, demonstrating its qualities and

shortcoming about scope of VD and FP.

HP WebInspect is a tool that “performs web application security

testing and assessment for today's complex web applications, built

on emerging Web 2.0 technologies. HP WebInspect delivers fast

scanning capabilities, broad security assessment coverage and

accurate web application security scanning results” [18].

Acunetix Web Vulnerability Scanner “is an automated web

application security testing tool that audits a web application by

checking for exploitable hacking vulnerabilities” [19].

3. Benchmarking Approach

The proposed system to develop a benchmark for vulnerability

detection tools based on measurement-based techniques. The basic

concept to working with this type of this tools under the

benchmarking using a web services code with and without

vulnerabilities and the results shows that the small set of measures

represent the tools detection capabilities. A benchmark must be

particularly focused to a specific domain [3].

 Metrics. Portray the viability of the tools which identifying the

benchmarking in vulnerabilities that continue in the workload

services. The metrics needs to be easy to understand and must

permit comparison of tools.

 Workload. The method to represents the tool which perform

the Benchmark execution and it present the list of services are

utilized during the Benchmarking Process. Based on the

requirement workload can be predefined or info provided by the

consumer.

 Procedure. Interpret the process and guidelines have been

extracts the report after executing the benchmark.

3.1 Metrics Computation

The benchmark measurements ought to be processed from the data

gathered at the time of benchmark execution and should take after

the entrenched measuring the viewpoint commonly utilized as a

part of performance benchmarking [3]. Comparative measures that

can be utilized for correlation or for development and tuning.

A key trouble identified with the benchmark measurements is

dissimilar vulnerability detection tools report vulnerability in

various manner. For instance, for each vulnerable input

corresponding vulnerabilities are reported in the penetration-

testing tools. In static analysis tools for each vulnerable line in the

code the vulnerabilities are reported. Our proposition is to portray

the vulnerability detection tools utilizing the F-Measure proposed

by van Rijsbergen [10]. It can be characterized as

 Precision. The ratio of correctly detected vulnerabilities to the

number of all detected vulnerabilities:

Precision = TP / (TP+FP) (1)

 Recall. The ratio of correctly detected vulnerabilities to the

number of known vulnerabilities:

Recall = (TP/ TV) (2)

Where:

- True positives (TP) is the no. of true vulnerabilities detected;

- Fault positives (FP) is the no. of vulnerabilities detected but it

doesn’t present;

- True vulnerabilities (TV) is the total no. of vulnerabilities could

be present in the code.

F-Measure = (2*precision*recall) / (precision + recall) (3)

3.2 Workload

The workload characterizes the work that must be finished by the

vulnerability detection tools in the time of benchmark run. It is

predominantly influenced by three factors such as type of web

services, kinds of vulnerabilities and detection methods.

Two choices are accessible with respect to the meaning of the

workload:

 Predefined workload. The benchmark contains a predefined

collection of web services with vulnerabilities.

International Journal of Engineering & Technology 775

 User-defined workload. The responsibility of the user to

select the target collection of services.

3.3 Procedure

1. Planning. Planning stage comprising:

a. Workload selection and characterization. Needed while user

responsibility to select target collection of services.

b. Tools identification. There are lot of tools are present both in

open source and commercials. Determine the tools to be

benchmarked.

2. Execution. Run the tools for different benchmarking and

generate the report for further analysis.

3. Analysis. Characterize the tools benchmarked using the report

generated in the execution phase.

a. Metrics computation. Analyze the vulnerabilities revealed by

the tools and calculate the metrics.

b. Ranking and selection. Prioritize the tools and select the

most effective tool (or tools) using the preferred ranking.

Step 1.a isn't required in case of benchmarks depends on a

predefined workload. Then Step 1.a is extremely significant for

user-defined benchmarks, as it incredibly impacts the benchmark

outcomes.

Table 1: Vulnerability Found in the Workload

Benchmark Service Name Vuln. Inputs Vuln. Queries LOC Avg.C

tpc-app

New products 14 1 102 4.6

Product detail 0 0 122 5.6

Change payment method 1 2 98 5.1

New customer 2 3 204 5.7

tpc-w

Create new customer 1 1 44 3

Creates hopping cart 1 1 208 2.68

Do authors each 0 0 162 2.9

Admin update 10 4 85 5.2

Get customer 2 1 48 4.1

Get password 1 2 41 2

Do subjects each 3 1 47 3.1

Get username 0 0 45 2.3

Get most recent order 2 3 125 5

tpc-c

payment 2 2 328 24

Stock level 3 1 90 5

Order status 6 12 208 12

delivery 4 5 228 22

New order 2 4 328 33

total 54 43 2513 _

4. Benchmark for Predefined Workload

(VDBMWS-PRE)

 Type of web services. SOAP web services implemented in

Java, which are nowadays commonly used for data exchange and

systems integration [21].

 Kind of vulnerabilities. SQL Injection. Vulnerabilities

allowing SQL Injection are especially significant in web services

[7].

 Detection methods. Penetration testing, static code analysis,

[22], [23].

Goal to characterize a delegate workload we have chosen to adjust

code from three standard benchmarks created by the Transactions

Processing Performance Council, to be specific: TPC-App, TPCC,

and TPC-W (for details http://www.tpc.org).

Table I shows the collection of web services discovered by the

security professionals, LOC indicate number of lines of the code

and Avg.C indicate average Cyclometric complexity of the code.

The outcomes display 54 vulnerable inputs and 43 vulnerable SQL

queries in the collection of services. Clearly, this was an unsafe

decision as there was some likelihood of getting code without

vulnerabilities. However, as expected, the final code incorporates a

few SQL Injection vulnerabilities (see Table 2), which is

illustrative of the present circumstance in real web services

development (as appeared in [5], [18]).

The workload services are presently implemented in Java. To rise

a benchmark domain, we need to improve the workload in more

languages.

Table 2: Tools under Benchmarking

Code Provider Tool Technique

VT1 HP WebInspect

Penetration testing VT2 Kali linux Kali

VT3 Acunetix Web Vulnerability

Scanner

SAT
1

Univ.
Maryland FindBugs

Static code

analysis

SAT

2 Veracode,Inc Veracode

SAT

3 IBM

Rational software

analyzer

4.1 Experimental Evaluation

Three penetration-testing tools have been benchmarked, including

three well-known commercial tools, in particular: Kali linux, HP

WebInspect, and Acunetix scanner. Sequence of the tools changed

in evaluation.

A. Benchmarking Results

To exhibit benchmarks, Tools chosen in the Stage1 (planning) are

executed on the workload code (Stage2. execution). A

vulnerability detailed are physically affirmed, differentiated and

then recognized on a Stage1 to compute a benchmark

measurement and prioritize the tools (Stage3.analysis). Tools

properly identified the vulnerability are calculated as true

positives. Tools not properly identified the vulnerability with the

previous ones are physically affirmed and then only it is stated as

false positives. In spite of the fact that this isn't a stage

incorporated into the benchmarking method, it was very helpful to

endorse the outcome of the code audits directed by the security

experts.

Table 4 introduces a potential rank for the tools for VDBMWS-pre

and PEBMWS-USD. Fragmented the ranking into inputs or q

ueries for the predefined benchmarking (VDBMWS-PRE).

Table 3 shows some whole benchmarking outcomes (F-Measure,

precision, and recall). Moreover, 2 of the static code analysis tools

(SAT2 and SAT3) show preferred outcomes over the penetration-

testing tools. SAT1 and VT3 shows exceptionally poor F-Measure

776 International Journal of Engineering & Technology

outcomes. About recall, SAT3 have the best outcomes, next SAT2

is best. VT3 is lower for the both F-Measure and recall, regarding

precision is good and announced no false positives but it

recognized just 3 vulnerabilities. Static analysis is better than

penetration testing except SAT1.

Table 3: Benchmarking Results for both benchmark

Benchmarking Injection Tool F-Measure Precision Recall

UserDefined

SQL

VT1 0.0554 1 0.0285

VT2 0.3984 0.4361 0.3666

VT3 0.2963 0.336 0.265

XSS

VT1 0.4 0.3119 0.3505

VT2 1 0.0588 0.1111

VT3 0.4173 0.2924 0.3439

PreDefined

Inputs(SQL)

VT1 0.2626 0.3693 0.2037

VT2 0.1894 0.2731 0.145

VT3 0.0226 1 0.0114

Queries(SQL)

SAT1 0.168 0.1561 0.1618

SAT2 0.8719 0.6324 0.7331

SAT3 0.7293 1.1236 0.8845

Table 4: Benchmarking Ranking for both benchmark

Benchmarking Injection Criteria 1st 2nd 3rd

UserDefined

SQL

F-Measure VT2 VT3 VT1

Precision VT1 VT2 VT3

Recall VT2 VT3 VT1

XSS

F-Measure VT1 VT3 VT2

Precision VT2 VT1 VT3

Recall VT1 VT3 VT2

PreDefined

Inputs

F-Measure VT2 VT1 VT3

Precision VT3 VT2 VT1

Recall VT2 VT1 VT3

Queries

F-Measure SAT3 SAT2 SAT1

Precision SAT2 SAT3 SAT1

Recall SAT3 SAT2 SAT1

Figure 1 demonstrates a vulnerability revealed via tools (bar chart

exhibits the quantity of liabilities identified through PT and SAT).

A main perception is that every one of the tools distinguished

under 34% of the vulnerabilities. SAT3 distinguished greater

number of vulnerability with 100% of TP (outstanding outcome),

however it recognized ≈37% false positives. Indeed, an issue

shared by SAT1, which stated more than ≈68% of false positives.

The reason is that these tools identify certain examples that

generally point out the vulnerabilities, but many times they

identify vulnerabilities that do not exist, because of natural

restrictions of the static outline of the script.
Tool TP FP

VT1 23.05% 0.61%

VT2 32.39% 55.32%

VT3 1.82% 0.00%

SAT1 13.89% 68.80%

SAT2 56.28% 8.27%

SAT3 100% 37.12%

Fig. 1: VDBMWS-PRE-results for both PT and SAT

5. Benchmark for User Defined Workload

(PEBMWS-USD)

 The type of web services - SOAP web services [21],

 Kind of vulnerabilities- SQL Injection [2] and XSS [6]

 Detection methods. Penetration testing [22].

5.1 Workload Definition and Characterization

We propose a programmed method to distinguishing the collection

of liabilities beached on the utilization of a tool that consolidates

attack signatures and interface monitoring to recognize SQL

Injection vulnerabilities in web services [20].

A vital feature is proposed benchmark could be simply stretched

out to various kinds of infusion vulnerabilities. The main

imperative is that the benchmark client needs to characterize a

workload comprising different sorts of vulnerability and afterward

physically portray these vulnerabilities.

Fig. 2: Simple representation of ws-sign detection tool

5.1.1 Vulnerabilities Identification

A benchmark incorporates the Sign-WS tool, which actualizes the

method proposed in [20]. By using attack signatures and interface

monitoring method (ASIM) tends to the confinements of

International Journal of Engineering & Technology 777

penetration testing in the detection of injection vulnerabilities in

web services.

A Workload Emulator component evaluates a web service

portrayal also produces collection of legitimate solicitations, those

are later altered by the attack injector unit. For the period of these

procedure, the interfaces have been checked toward identify the

signatures that denote vulnerability.

5.2 Experimental Evaluation

To exhibit benchmarks, I have taken a collection of web services

incorporated into the proposed benchmark. To describe a workload

(Stage1. planning) we utilized the ASIM approach. Benchmark

over the penetration testing tools (exhibited on table 1) running on

the workload code (Stage2. execution). A vulnerability detailed

are physically affirmed, differentiated and then recognized on a

Stage1 to compute a benchmark measurement and prioritize the

tools (Stage3.analysis).

Fig. 3: PEBMWS-USD results for the PT

Tools TP(SQL) FP(SQL) TP(XSS) FP(XSS)

VT1 3.39% 0.00% 40.23% 60.35%

VT2 43.63% 56.42% 7.59% 0.00%

VT3 31.53% 62.32% 37.72% 52.67%

5.2.1 Characterization of the Workload

A Sign-WS tool identified vulnerability has been physically

affirmed to ensure a nonexistence of a false positives (asserted on

[20]). The tool stated zero false positives, however a scope was

just 73.9% (119 tp obtainable of 161 TV). Later we will

demonstrate, in spite of the fact that some of the true

vulnerabilities are considered while count of some measurements,

sign-WS stated ones were sufficient for a decent estimation of the

tools efficiency.

5.2.2 Benchmarking Results

Table 4 displays a benchmark measurement for each tool, Sign-

WS revealed a vulnerability upon consider a base collection of 119

vulnerabilities. As should be obvious, highest F-Measure is VT2

and then VT3. VT1 shows exceptionally poor F-Measure

outcomes. About precision, VT1 is best and announced no false

positives, and VT2 shows some best outcomes. At last, as far as

recall, VT2 have the best outcomes, next VT3 best. A recall of VT

is low as it recognized just 3 vulnerabilities.

Fig. 3 demonstrates a vulnerability revealed via tools (bar chart

exhibits the quantity of liabilities identified through Sign-WS

tool). A main perception is that every one of the tools

distinguished under 44% of the vulnerabilities revealed through

Sign-WS.

For cross site scripting, we have taken collection of 129

vulnerabilities. VT1 is best for F-measure and recall. About

precision VT2 is best but it produces lower outcomes for F-

measure and recall. Some tool identify SQL injection is very well

but it’s fail to detect XSS.

5.2.3 Contrast with the Predefined Benchmark

To analyze some consequences for a current benchmark through a

benchmark of a predefined workload. In spite of the fact that we

are thinking about the similar collection of web services, in user

defined workload consider just subcategory of current

vulnerability. This is clearly additionally a path for authenticating

the workload description, measurements estimate methods

proposed to help a benchmark.

Table 3 depicts some measurements acquired for together

benchmarks. Of course, the measurements contrast somewhat in

light of the fact that the base collection of TV is unique. The F-

Measure points are reliably lesser in VDBMWS-PRE. Because of

the greater values for recall in PEBMWS-USD. At long last,

precision is the equal in the two benchmarks, except for the

instance of VT2. This is because of the Sign-WS tool not reported

a vulnerability identified for VT2 also is excluded in the base

collection of true vulnerabilities. But the coverage is high in Sign-

ws. Indeed, it doesn't influence the relative outcomes and the tools

positioning is exactly the equal for the two benchmarks.

6. Conclusions

This research work produced an approach to describe benchmarks

for vulnerability detection tools in web services. This approach has

been utilized to characterize two concrete benchmarks focusing on

tools capable to identify SQL Injection vulnerabilities and cross

site scripting. The first one is in view of predefined workload,

while the second one is user responsible for describing a workload.

Some of the tools has been benchmarked, comprising both

commercial and open-source tools.

The outcomes demonstrate a proposed benchmark effortlessly

utilized to evaluate and contrast different experts. Indeed, some

benchmark measurements gave a simple method to prioritize the

tools in benchmarking, prompting comparable rankings in the two

scenarios.

A benchmark property was authenticated also examined then

recommend benchmarking method useful to determine

benchmarks for vulnerability detection tools focusing on various

domains.

Furthermore, work can be expanding benchmark to different sorts

of vulnerability and utilizing a benchmarking method to deal with

characterize benchmarks for various kinds of web services. The

job of collecting and portraying the workload might expensive,

however a few situations it surely might be justified regardless of

the effort as it enables to comprehend the efficiency for some

various tools accessible to identify vulnerability. Finally, we also

have an idea to automate the verification of outcomes then the

support of a benchmark.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications. first ed., Springer, 2010.

[2] S. Christey and R.A. Martin, “Vulnerability Type Distributions in

CVE,” The MITRE Corporation. V1, 1 2007.
[3] J. Gray, “The Benchmark Handbook: For Database and Transaction

Processing Systems”. Morgan Kaufmann Publishers Inc, 1993

[4] https://www.checkmarx.com/2017/12/03/closer-look-owasp-top-10-
application-security-risks/

[5] H. Madeira, M. Vieira, N. Antunes, “Using Web Security Scanners

to Detect Vulnerabilities in Web Services,” International
Conference on Dependable Systems and Networks, Lisbon,

Portugal, July 2009

[6] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P.D. Petkov, XSS
Attacks: Cross Site Scripting Exploits and Defense, Syngress

Publishing, 2007.

https://www.checkmarx.com/2017/12/03/closer-look-owasp-top-10-application-security-risks/
https://www.checkmarx.com/2017/12/03/closer-look-owasp-top-10-application-security-risks/

778 International Journal of Engineering & Technology

[7] D. Stuttard and M. Pinto, The Web Application Hacker’s
Handbook.

[8] M. Vieira and N. Antunes, “Comparing the Effectiveness of

Penetration Testing and Static Code Analysis on the Detection of

SQL Injection Vulnerabilities in Web Services,” Proc. 15th IEEE

Pacific Rim Int’l Symp. Dependable Computing (PRDC ’09), pp.
301-306, 2009.

[9] J. Fonseca, H. Madeira, and M. Vieira, “Testing and Comparing

Web Vulnerability Scanning Tools for SQL Injection and XSS
Attacks,” Proc. Presented at the 13th Pacific Rim Int’l Symposium

on Dependable Computing (PRDC ’07), pp. 365-372, 2007.

[10] Van Rijsbergen C.J., Information Retrieval. Buttersworth, 1979.
[11] G. Rothermel and H. Do, S. Elbaum, “Supporting Controlled

Experimentation with Testing Techniques: An Infrastructure and its

Potential Impact,” Empir. Softw. Eng., vol. 10, pp. 405–435, Oct.
2005.

[12] P. Trischberger, S. Wagner, C. Koller, and J. J€urjens, “Comparing

Bug Finding Tools with Reviews and Tests,” Proc. 17th Int’l Conf.
Testing of Communi. Systems, pp. 40-55, 2005.

[13] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira, “Effective

Detection of SQL/XPath Injection Vulnerabilities in Web Services,”
Proc. IEEE Int’l Conf. Services Computing (SCC ’09), pp. 260-267,

2009.

[14] A. Orso and W.G.J. Halfond, “Preventing SQL Injection Attacks
Using AMNESIA,” Proc. 28th Int’l Conf. Software Eng., pp. 795-

798, 2006.

[15] L. Spainhower and K. Kanoun, “Dependability Benchmarking for
Computer Systems. John Wiley & Sons-IEEE CS Press”, 2008.

[16] H. Madeira and M. Vieira, “Towards a Security Benchmark for

Database Management Systems,” Proc. Int’l Conf. DSN ’05, pp.
592-601, 2005.

[17] A.C. d. Ara_ujo Neto and M. Vieira, “Selecting Secure Web

Applications Using Trustworthiness Benchmarking,” Int’l J.
Dependable and Trustworthy Information Systems, vol. 2, no. 2, pp.

1-16, 2011.

[18] HP WebInspect, 2008, http://www.hp.com
[19] https://www.acunetix.com/vulnerability-scanner/

[20] M. Vieira and N. Antunes, “Enhancing Penetration Testing with

Attack Signatures and Interface Monitoring for the Detection of
Injection Vulnerabilities in Web Services,” Proc. IEEE Int’l Conf.

Services Computing (SCC), pp. 104-111, 2011.

[21] W. Nagy, F. Curbera and N. Mukhi “Unraveling the Web services
Web: An Introduction to SOAP, WSDL, and UDDI,” IEEE Internet

Computing, vol. 6, no. 2, pp. 86-93, Mar./Apr. 2002.

[22] G. McGraw and S. Stender “Software Penetration Testing,” IEEE
Security & Privacy, pp. 84-87, Jan./Feb. 2005.

[23] J.D. Morgenthaler and N. Ayewah, “Using Static Analysis to Find

Bugs,” IEEE Software, vol. 25, pp. 22-29, Sept./Oct. 2008.

http://www.hp.com/
https://www.acunetix.com/vulnerability-scanner/

