

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (3.12) (2018) 740 -743

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Dynamic High Availability Architecture Framework for SOA

Computing

S.Kumaresan
1*

, Sumithra Devi.K.A
2

1Bharathiyar University, Tamil Nadu

2DayanandSagar Engineering & Technology,Bangalore

*Correponding Author Email: 1skumaresan_77@yahoo.com, 2sumithraka@gmail.com

Abstract

In Software technology stackCloud services provides easy coupling implementation to enhance encapsulation data between multiple

platform data exchanges. My finding towards introducing High Availability Architecture for cloud environment which covers Load

Balancing, Failover, High Availability Resources. To achieve thisfeatures it’s identified framework architecture which is called as

Dynamic High Availability Architecture Framework for SOA Computing which increase cloud services standard inhigh witheasy

adaptable security. Even though cloud service supports loose coupling and isolation business logics. At current cloud service provide

wants to launch new web service request on fly same service will notnotified into client in real-time scenario. To overcome this

complicated situation we have introduced (GHAFC) Generic Architecture Framework in Cloud Computing. Which will support data

exchanges between producer and consumer onthe fly with real time scenario.

1. Introduction

This paper provides Generic Architecture Framework for

CloudComputing by which we achieve High Availability, Load

Balancing, and Failover. Access the applications as utilities over

the internet. It allows us to create, configure, and customize the

business applications online.Cloud Computing can be defined as

delivering SAAS,PAAS,IAAS (CPU, RAM, Network Speeds,

Storage OS software) a service over a network (usually on the

internet) rather than dedicated data center having the computing

resources at the customer location and hosted remotely. Given

above architecture applications performance increases and CPU

processor

Dynamic High Availability Architecture Framework suit for

below environment.

 Public Cloud Model

 Private Cloud Model

 Hybrid Cloud

 Virtualization

 Hardware Virtualization

 Software Virtualization

 Server Virtualization

 Storage Virtualization

 Supports High Availability

 Supports Fail Over

 Supports Load balancing

High Level Component Architecture captured in Figure-1,

contains 3 Major section which is High Availability, Failover,

Software Load balancing from Application Server

Figure 1 -HAGFC High Level Components Diagram

1. 1 Web Servcie Data Isoloation Layered

Interact with Multiple System or Platform communication we can

uses Web services are long livable mainstream technology in

common use throughoutmultiple domain business industries, and

allow widely used in enterprise boundary and in B2B and B2C

stream. Business domain essentially encapsulate a confidential

data into simple form and exposed as functional capabilities for

invocation by client program via a web service. Web service will

bridge the multiple system and stitching the sharing multiple

complex business data over the internet protocol.

 Software as a Service (SaaS)

 Platform as a Service (PaaS)

 Infrastructure as a Service (IaaS)

https://www.javatpoint.com/public-cloud
https://www.javatpoint.com/private-cloud
https://www.javatpoint.com/hybrid-cloud
https://www.javatpoint.com/hardware-virtualization
https://www.javatpoint.com/software-virtualization
https://www.javatpoint.com/server-virtualization
https://www.javatpoint.com/storage-virtualization

International Journal of Engineering & Technology 741

Fig. 2: HAGFC Framework Layered Diagram

Above figure described into HAGFC layered architecture which is

used for cloud computing as a type of framework that relies on

support high availability , load balancing , failover computing

resources, having different services delivered to an cloud hosting

and devices through the Internet rather than having local data

center or personal computer to deploy and handle applications.

In order to archive 99.9999 application availability in cloud

computing uses networks of large groups of hardware servers

connected together to divide the resource and data-processing

across nodes.Generic Architecture Framework techniques are used

to maximize the power of cloud computing.

The goal of Generic Architecture Framework cloud computing is

to apply high performance computing power in Infrastructure,

Platform and Application which served to consumer applications

in order to save time and financial resources to purchase, deploy

and maintain an infrastructure in dedicated data center.

1. 2 Hybrid Data Service Technology

Information Industries started adopting Cloud Computing and also

changed the way companies looking into their digital

Infrastructure now a days. Generic High availability cloud

computing with its unique architecture brings in new opportunities

and challenges implementation. Generic Framework unique

curriculum content which will bring beginners easy

implementation with Cloud technologies.

The Generic Framework will start with basic introduction to cloud

concepts like SAAS, PAAS and IAAS. You will also implement

with Linux systems or window and changing the Infrastructure

landscape in cloud.

Fig. 3: HAGFC Framework Data flow Diagram

1.3 Generic Web Servcie Data Coupling

Above figure described into HAGFC data flow

architecturediagram contain below

 Single Web Admin application used to configure and control

all the application.

 Single Application Scheduler Instance used for all the

Domain

 Single Web Instance used for all the Web application.

 Single JMS Instance used for all the messaging in form of

MDB’s.

 One Generics. Jar file used for Web/JMS/E-mail Scheduler

applications.

 One Add-ons. Jar file used for Web/JMS/E-mail Scheduler

applications.

 Each addition of new application deployment required.

 One time deployment for Web/JMS/E-mail Scheduler in case

of maintenance.

 One dedicated EJB configuration for Each train.

 Less Server Down time window period required for

maintenance.

 Deployment System Changed.

2. Proposed Solution

Using Elastic Architecture frame work we could able to achieve

Runtime data mapping with Manager Node and Data node. One

Manager Node will connected with multiple data node which will

store data in to 3 backup.

And also used Docker tools to moved application build into cloud

on the fly for that no server down time required. Web service

support both SOAP & Restful services caching infrastructure over

HTTP GET method (for most servers). This can improve the

performance, if the data the Web service returns is not altered

frequently and not dynamic in nature.

Given below figure High Availability Architecture explain

consumer and provider data exchange between application server.

Server configured with clustered mode witch scheduler based JMS

architecture. Which will provide high performance fail over

application infrastructure.

Fig. 4: High Availability Architecture

2.1 WEB Service Data Coupling

Static Resource Mapping Web service Architecture used in both

SOAP and RESTFUL Web service, Here Server Data Resource

Provider will be having Static and Dynamic Data which will be

given to Consumer to Mapping and Binding Consume the Service.

Consumer has to do configuration according to provider Resource

742 International Journal of Engineering & Technology

for this consumer will spend more time in his application to

consume provider service.

If any changes done in provider side consumer may not aware of

the changes and its lead to the error or unable to find the Resource

from the provider end. And provider also need to inform to Broker

and Broker will inform to new consumer and existing consumer

whenever resource changes done in provider same time consumer

also need to do changes otherwise Consumer, Broke and

Provider will not be in Sync.

Even REST Web service also consumes static Resource from the

Provider, its totally tightly coupled with Resource in Consumer

and Provider. Restful web service are not having Broker Module

in between Provider and Consumer. Restful always directly tightly

coupled with Provider and consumes static data Figure 5-blow

shows the architecture of the Static Resource Mapping Web

service that consists of the following components

2.2 Agent Messaging Framework

Fig. 5: HAGFC building block diagram

Below diagram Generic HA architecture for Cloud computing

Dynamic Resource Mapping Web service that consists of the

following components:

2.3 Web Servcie Load Balancing

Fig. 6: HAGFC Web Service Load Balancing

WAS Scheduler in Cluster Environment:

Advantages:
• Generic WAS scheduler

• High Availability

• Load Balancing

• Fail over

• Scalability

3. Results

The HA Generics tested with Hybrid Elastic Data Architecture

forBidirectional Dynamic Resource Mapping using Data Grid is

Implemented and Tested and also captured result. As mentioned,

both End Service Provider and Service Consumer achieves Loose

Coupling Pattern and Resource Access Dependency has been

removed.

The system Architecture Design “Phase One” was implemented in

testing phase as previously described. As mentioned above, both

Client Service Consumer and End Service Provider are connected

through Data Grid. And uses Java programming language. A

prototype as part of the suggested system has been built and all the

above mentioned features have been implemented.

Implementation:

 Used Java Technology Communicate with Data Grid.

 Used Eclipse Editor for Coding

 Used WXS 7,0 frame work to store Data Grid Key and

Value

 Used Restful Web service and Json Key Value stored

in to Data Grid

 Deployed Java application in to web server Tomcat

a) HA Generics Elastic Data Grid Dynamic Resource

Mapping Implementation Low level Class Design Diagram:

Methodology Used:

Used SOA Web service Methodology to achieve this Result and

followed Enterprise Architecture with B2B business required

specification

Strengths

 Hybrid provide Loose coupling Resource Mapping

 It support Dynamic Resource Mapping, Key & Value can

be changed on fly

 This Architecture More suitable for Cloud Based SAAS

Environment

 URI Resource file Storage can elastic because of using

Data Grid Storage concepts

 No server Down time required

International Journal of Engineering & Technology 743

 No need to restart Consumer and Provider Server for

changes flection

 High volume of Key and Value can be stored

 Based on Data side Storage will be enhanced

 No Data failure and high through put

 Its support for archiving

 Generics frame work supports High availability and

failover, load balancing in application server its self, not required

physical load balancer.

Weaknesses

 Required Little effort to configure Container Server and

Data Sever and storage partition

 Frame work up gradation required based on release

 Little more expensive

4. Conclusion

UsingGeneric Hybrid Elastic Data Grid Architecture, will be

achieved Bidirectional Dynamic Resource mapping in web

service. And also called as Centralized Resources sharing and

configuration between Consumer and Provider.

The specifications for Generics Hybrid Elastic Architecture

supports Bidirectional Dynamic Resource Mapping web services

with Loose Coupling between Provider/Consumer. This

Architecture improves the interoperability among Cloud in SAAS.

The GHAFC architectures will allow Consumer and Provider

users to work together in new ways and deliver more Flexible and

no resource dependency.

Generics Hybrid Elastic Architecture Bidirectional Dynamic

Resource Mapping supports both SOAP & Restful Web service

with very less Effort and one time configuration required in

Consumer and End Service Provider.

Generics Hybrid Architecture provides Elasticity which adopts

key elements, Map Sets of both Distributed and Non-distributed

System features. The Main advantage of using Data Grid is

flexibility to create partitioned and store Data Object.

The current Cloud Web service SOA Architecture information has

several disadvantages such as tightly coupling, Static Resource

Mapping, Consumer totally depends on Provider Resource path. If

any changes taken place in Provider side it has to inform to Client

in very high priority basis otherwise client and server connectivity

will be totally disconnected.

To overcome these existing problem we have introduced Generics

Hybrid Architectureweb service for both SOAP and Restful

webservice, which will provide loose coupling and also dynamic

Resource data mapping which will help both provide and

consumer to avoid inter dependency.

References

[1] BHARGAVAN, K., FOURNET, C., AND GORDON, A. D,

“Verifyingpolicy-based security for web services”, In CCS ’04:

Proceedingsof the 11th ACM conference on Computer and
communicationssecurity , pp. 268–277, 2004.

[2] BHARGAVAN, K., FOURNET, C., GORDON, A. D.,

ANDO’SHEA, G, “An advisor for web services security policies”,
InSWS ’05: Proceedings of the 2005 workshop on Secure web

services(New York, NY, USA, ACM, pp. 1–9, 2005.

[3] CANTOR, S., MOREH, J., PHILPOTT, R., AND MALER, E,
“Metadata for the OASIS Security Assertion MarkupLanguage

(SAML) V2.0”, OASIS Standard, 15.03.2005, 2005.

http://docs.oasis-org/security/saml/v2.0/saml-metadata-2.0-os.pdf.
[4] D. Richards, S. van Splunter, F. M. T. Brazier, and M. Sabou,

“Composing Web Services using an Agent Factory”, In

Proceedings of the 1st International Workshop on Web Services
and Agent Based Engineering, Sydney, July 2003.

[5] M. O. Shafiq, A. Ali, H. F. Ahmad, and H. Suguri, “AgentWeb

Gateway - a Middleware for Dynamic Integration of Multi Agent

System and Web Services Framework”, In Proceedings of the 14th
IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprise, pages 267–270,

Washington, DC, IEEE Computer Society, 2005.
[6] L. Z. Varga and ´A. Hajnal, “Engineering Web Service Invocations

from Agent Systems”, In Proceedings of the 3rd International

Central and Eastern European Conference on Multi Agent Systems,
pages 626–635, Prague, Czech Republic, June 2003.

[7] BENAMEUR, A., KADIR, F. A., AND FENET, S, “XML

RewritingAttacks: Existing Solutions and their Limitations”, In
IADISApplied Computing 2008 (Apr. 2008), IADIS Press.

[8] CHAN, Y.-Y, “Weakest link attack on single sign-on and its casein

saml v2.0 web sso”, In Computational Science and Its
Applications- ICCSA 2006.

[9] M. Gavrilova, O. Gervasi, V. Kumar, C. Tan,D. Taniar, A. Lagan,

Y. Mun, and H. Choo, Eds., vol. 3982 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 507–516.

10.1007/11751595 54, 2006.

[10] LUTZ, D., AND STILLER, B, “Combining identity federation
withpayment: The saml-based payment protocol”, In Network

Operationsand Management Symposium (NOMS), 2010 IEEE, pp.

495 –502, April 2010.
[11] RAHAMAN, M. A., MARTEN, R., AND SCHAAD, A, “An

inlineapproach for secure soap requests and early validation”,

OWASPAppSec Europe, 2006.
[12] EASTLAKE, D., REAGLE, J., SOLO, D., HIRSCH, F.,

ANDROESSLER, T, “XML Signature Syntax and Processing

“,(SecondEdition), http://www.w3.org/TR/xmldsig-core/., 2008.
[13] GAJEK, S., LIAO, L., AND SCHWENK, J, “Breaking and

fixingthe inline approach”, In SWS ’07: Proceedings of the 2007

ACMworkshop on Secure web services (New York, NY, USA),
ACM, pp. 37–43, 2007.

[14] GROSS, T, “Security Analysis of the SAML SSO

Browser/ArtifactProfile”, In ACSAC, IEEE Computer Society, pp.
298–307, 2003.

[15] GRUSCHKA, N., AND IACONO, L. L, “Vulnerable cloud:

Soapmessage security validation revisited”, In ICWS [1], pp. 625–
631.

[16] GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J.-

J., AND NIELSEN, H. F. SOAP Version 1.2 Part 1:
MessagingFramework. W3C Recommendation, 2003.

http://docs.oasis-/
http://www.w3.org/TR/xmldsig-core/

