

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.32) (2018) 367-370

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

SIS Framework for Risk Assessment Through Quantitative

Analysis

1
D.NagaMalleswari,

2
Dr.K.Subrahmanyam

1,2Dept of CSE , K L E F,Vaddeswaram, India

*Corresponding author E-mail: nagamalleswary@kluniversity.in

Abstract

Now a days, risk management plays very important role in Information systems, currently there are various risk assessment techniques.

When system is analysing the source code, automatically some disputes may arise which depends on various reasons. These disputes

may arise some of the risks in information system which may leads to loss of some data. To avoid that, in this paper we are implementing

a framework for source code analysis which is used for brief assessment of risk, which includes guidance to risk minimization. In this

framework source based risk assessment is done through the source code analysis. In order to assess risk that arose from the source code,

first we need to calculate complexity of a source code in Information System. Finally the complexity which is the result of this

framework will indicates the risk intensity of the source code.

Keywords:Risk Assessment, Risk Management, Source code analysis, Effort or Performance.

1. Introduction

Software Product will be developed in order to meet the collection

of conditions and requirements of a group of business people. The

necessity for high software quality continues to raise because the

software systems dependencies and destructing effects due to a

failure or a software error can cause in terms of finance and life-

time.[1]

Therefore, it is major and dominant that the software system

works mainly according to its functional requirements, and also to

the non-functional requirements which decides the software prod-

uct’s quality. If a software system is more complex, the mistakes

will be more done by the programmers, introduction of faults that

can lead to an erroneous output or an execution failure in an in-

consistent component. The relationship between failure and a fault,

a risk observed in software system can be seen as a potential issue.

[7] To reduce software operation risks, code which has the issue to

cause errors and risk has to be identified so that obligatory actions

like performing a more testing on the code that can be taken to

obviate the occurrence of such problems. Consequently, these

things can make programmers or the developers to detect risks in

the software before it is sited and reduction in code maintenance.

2. Literature Review

Risk Management can be defined as the measure of risk contain-

ment and mitigation. Good software helps an organization to grow

better, where unproductive software may lead an organization go

worse. The software failures are caused by the reasons are called

Risk. [2] It is observed that risk has been arising majorly at five

different areas during the development of an software application

they are Application and system architecture, New and unproven

technologies, Organizational, User and functional requirements,

Performance

 Assessing and analysing of risk are the keys ways to eradicate

risk and make the project successful. Assessment of risk can be

done in many ways and many more methods were proposed. Some

of them are mainly assessed manually or traditionally. We are

mainly concentrated on the assessment of source code analysis.

We found few models assessed source code through gathering

information from stakeholders and reviews conducted on the de-

sign of documents. These were considered to be the secondary fact

retrieval. The system’s source code is completely analysed and

this may include the code which has been written in different lan-

guages for different interactions and subsystems and, this is con-

sidered as a primary fact retrieval. Finally, the obtained results

from the analysis of source code are compared with obtained re-

sults from the reviews and opinions of stakeholders. Therefore this

helps to find a way to validate the views and hence they decide

whether it is a risk or a misunderstanding. [3] Few proposed mod-

els of risk as dynamic and static risk assessment models. The risk

is assessed block wise i.e. methods, files and functions of an ap-

plication of software. Static model deal with the code structure

such as number of p-uses,c-uses , function calls, definitions etc.

and other model which is dynamic describes the test coverage of

the dynamic system of the calibrated metrics which are used in the

model. In this we found mainly two principles. They are 1. The

higher risk means the more complex in the coded structure 2. The

less risk means more thoroughly the code is tested. [4]

3. Existing System

The traditional quantitative measurement by calculating the risk

impact by collection of information from various available sources.

This is the main method in monetary value calculation. EMV can

368 International Journal of Engineering & Technology

be abbreviated as Expected Monetary Value. The EMV is calcu-

lated as given below:-

EMV = Probability x Impact (1)

Impact = maximum Impact x Pi (2)

EMV = Pe x Pi x maximum Impact (3)

Pe represents the Probability of an event.

Pi represents the Probability of a maximum value. [5]

There is one more metric i.e. MR which means Management Re-

verse [2]. MR is given as

This parameter is used to reduce the risk. [2]

From this existing system we also have two more approaches 1.

Datrix approach 2. Risk Assessment Using Source Code Approach.

Datrix Approach: This Datrix approach which is identified at

Bell Canada. In this approach source of an application is analysed.

Its main objective is to attain maintainability of the application or

software with respect to source code. Datrix approach related to

the concept of Abstract Semantic Graph. To get such a graph we

need to parse the source code. The Abstract syntax tree is obtained

(AST). [2] The AST is implemented to extract semantic infor-

mation like variable type, scope of the identifier etc. This infor-

mation which is obtained is then added to the Abstract Syntax

Tree as edges, node attributes or other kind of annotations, that

gives the productions of Abstract Syntax Tree. To find out more

risks, this graph must be more considerable [6].

Risk Assessment using Source Code Approach

This approach helps to gauge the risk by following process which

divides the process, as two phases. The information came out dur-

ing first phase is produced by the automatic analysis of the Project

source code. This information called as primary information.

Secondary phase, in this secondary information taken from re-

views of the software application developers. A gauge or tool in

the JAVA based is introduced for the collection of primary data

using the analysis of source code. The information which is gath-

ered in the initial phase are to be placed in the corresponding ta-

bles in the database. After this stage the risk analysis is analysed

by the core analysers to write necessary corrections to get the

effective information.

4. Proposed System:

From the disadvantages of existing system to risk assessment like

shortages of the determining tool for versions, shortage of global

view, which may help for the representation of the sub graphs.

There is tight dependency between the outcomes and the analys-

er’s shortage of few metrics for assessment of risk. Our proposed

system which is a framework, mainly overcomes the disad-

vantages of the existing system on assessing the source code risk

in information systems with help of the Cyclomatic complexity.

The framework is designed in such a way that, by applying vari-

ous software metrics to a source code which can be an effective

gauge of software Risk. Our framework follows an order as shown

below.

From the above figure it is clear that any process related to risk

first starts and comes under Risk Management Process. We are

under the step of risk mitigation. Mitigation is nothing but an as-

sessment. This framework well suits that. So, this framework fol-

lows the risk management process and finds out the intensity of

the risk by using Cyclomatic complexity. This results the com-

plexity. Based on the table provided in the cyclomatic complexity

Table 1, we can decide how much risk does our source code has?

Considering that complexity we can make more changes to the

code and make that code more efficient. So we can say that this

framework helps to make the source code more efficient by mini-

mizing the risk.

Based on the complexity calculation, there is a way by which

complexity can be calculated i.e. Cyclomatic complexity, can be

helpful in assessing effort of the source code that used to prevent

future maintenance issues and software Risk.

Cyclomatic complexity is used to estimate the total complexity of

a real time application or specific methodology in it. The software

source metric numerically measures a program's analytical

strength based on flow and decision paths in the source code. it is

measured from the control flow graph, where every individual

node on the control flow graph which represents undividable

groups or commands within the source code.

It is used to measure the performance of any type of source code.

Self-determining path is a path which has minimum one edge

which was not approved or visited before.

Cyclomatic complexity can be calculated with respect to proce-

dures, macros, methods, modules, classes within a program [10].

International Journal of Engineering & Technology 369

Figure 1: Representation of nodes and edges

Representation of Flow graph for a Source program:
Representation of Flow Graph for a program is defined as many

nodes connected with the edges. Following are Flow graph figures

for following statements like looping statements like while, if-else
statement, until and normal sequence of flow.

Figure2: Flow graph representation for statements.

Mathematical demonstration of Cyclomatic Complexity:

Mathematically, it is collection of self-determining paths through

the flow graph diagram. The complexity of the Source code can be
measured through the formula-

CV(G) = EN - NN + 2

Where,

NN - Count of Nodes

EN - Count of edges

CV (G) = PN + 1

Where PN = Count of predicate nodes (conditional nodes)

Cyclomatic complexity can be calculated traditionally by the

above mathematical notation if the source code is little and minor.

Computerised tools must use if the source code is compound or if

the lines of code is as immense as this includes many control flow

graphs. On Basis of complexity value, the coding team or the de-

veloping team can decide the necessary modifications can be tak-

en for evaluation. Source code with a complexity value of below

or equal to 10 can be treated as low complexity or complexity

with considerable range. This effort value calculated can be used

to assess the risk factors and can be helpful to the improvement of

source code part. In Software system majority of the risks can be

caused by the Source code of the project. Hence deducing the

risks in the source code can help the system to be more risk free.

Using the Cyclomatic complexity as a primary factor for an appli-

cation or a system helps the organization to identify the major -

risk parameters and helps to develop for the improvement or the

adjustment approaches to reduce the threats or identified risks,

repair time, productive issues, technical issues in the source code.

Understanding the system’s complexity provides clear analysis

regarding where a developed source program needs additional

improvement or effort to be kept in order to get the successful
development in the multitier, multiple technology organization. [8]

The table gives layout on the complexity value and equivalent

denotation of CV (G):

Table1: Complexity value equivalence meaning

Complexity value Description

1-10

Cost and Effort is less

High Testability
 Structured and well written code

11-20

Cost and effort is Medium

Medium Testability
Complex Code

21-40

Cost and Effort are high

Low Testability

Very complex code

>40

Very high cost and effort

Not at all testable

Tools for calculation of Cyclomatic Complexity:

Different tools are obtainable for determining the complexity of

the software system. There are defined tools are used for certain

technologies and languages. Complexity has been observed by the

total count of decision making nodes and number of individual

functions in a Source code. The looping statements like for-each,

while,for,do-while,catch,try,switch-case statements and decision

making points are conditional statements like if-else in a source

code.

Examples of tools for Cyclomatic complexity calculation are

● CCCC - C and C++ Code Counter

● GMetrics – Find complexity metrics in Java, JSP based

applications

● OCLint - Analysis of Static code for C, JAVA and

technical level Languages

In this paper we considered the CCCC tool to measure the Cy-
clomatic complexity

The CCCC is a code analyser and counter tool for the analysing

the source code in multiple languages (mainly JAVA, CPP),

which gives a detailed report in Table format in HTML form and

XML report on different observations of the given source code. It
is Free of Cost and compatible in all systems.

Depths of code of this kind are generally referred to as 'software

source code metrics', or more precisely 'software risk metrics' (as

the term 'software metrics` also covers measurements of the soft-

ware process, which are called 'software process metrics'). There

is a reasonable agreement among modern opinion privileged per-

sons in the software engineering field that measurement of some

kind is probably a Good Thing, although there is less agreement
on what is worth measuring and what the measurements mean.

CCCC has been developed as free software, and given in com-

mand prompt model to input the source code. Users are supposed

to compile the program themselves, and to modify the source to
reflect their preferences and interests using the generated reports.

5. Result:

We have calculated the effort value for the Pharmacy management

system source code in C++ using CCCC tool. The report generat-

ed consists of Lines of Code, Complexity Number, Lines of

Comment, and Depth of Inheritance Tree with individual com-
plexity values of independent functions.

From the report we can finally calculated the effort of the Infor-

mation system of Pharmacy application to assess the risk in the

source code of system with high efficiency effort estimating

method.

370 International Journal of Engineering & Technology

Detailed Report on Module Anonymous

Metrics Tag Overall Per function

Lines of Code LOC 156 ******

McCabe's Cyclomatic

Number

MVG 26 ******

Lines of Comment COM 30 ********

LOC/COM L_C 5.200

MVG/COM M_C 0.867

Weighted Methods per

Class(weighting=unity)

WMC1 5

Weighted Methods per

class(weighing=visible)

WMCv 0

Depth of Inheritance tree DIT 0

Number of Children NOC 0

Coupling between objects CBO 0

Information Flow Measure

(inlusive)

IF4 0 ********

Information Flow Measure

(visible)

IF4v 0

Information Flow Measure

(concrete)

IF4c 0 ********

Functions

Function Prototype LOC MVG COM L_C M_C

DepartmentMenu(queue*)
definition

D:\hosmng.cpp:200

97 14
13

7.462 1.077

InputPatient(void)

definition

D:\hosmng.cpp:152

17 4 4 ----- -----

OutputPatient(patient *)

definition

D:\hosmng.cpp:174

13 3 1 ------- ------

ReadNumber()
definition

D:\hosmng.cpp:190

6 1 2 ------- ------

Metrics Tag Overall Per function

Lines of Code LOC 156 ******

McCabe's Cyclomatic

Number

MVG 26 ******

Lines of Comment COM 30 ********

LOC/COM L_C 5.200

MVG/COM M_C 0.867

Weighted Methods per

Class(weighting=unity)

WMC1 5

Weighted Methods per
class(weighing=visible)

WMCv 0

Depth of Inheritance

tree

DIT 0

Number of Children NOC 0

Coupling between
objects

CBO 0

Information Flow

Measure (inlusive)

IF4 0 ********

Information Flow

Measure (visible)

IF4v 0

Information Flow

Measure (concrete)

IF4c 0 ********

Result Analysis: The report generated above by the CCCC tool

and calculated accurately the Cyclomatic Complexity which

means the effort or performance as 26 and Lines of Code as 156

which mean it is a Low Testable Cost and Effort are high, Very

complex and composite code. So, the code must be modified ac-

cordingly in order to get the low effort value.

6. Conclusion and Future Work

The research on risk management process helped us to propose a

software Risk assessment Framework, which is cost effective and

assessing the risk from Source code perspective. In this frame-

work, the Lines of code will be measured and Performance of the

source code is calculated in the form of complexity. One Infor-

mation system was taken and the complexity value is calculated

by the proposed assessment framework which produces accurate

risk reports.

The efficiency of our proposed method is high while comparing to

other methods with the real time projects calculated for Infor-

mation systems.

Graph1: Effort analysis for Source code

Our current research assesses the performance of the source code

using cyclomatic complexity. The performance of the source code

can also be measured using essential complexity, module design

complexity, global data complexity and specified data complexity.

References

[1] Kutay, C. and Babar, M. A. 2005. Teaching three quality assur-ance

techniques in tandem-lessons learned. In Fifth International Confer-

ence on Quality Software.QSIC’05. IEEE, 307–312

[2] Risks Armen Keshishian1, Hasan Rashidi21Computer science Dept,

Qazvin Azad UniversityIran, Tehran 2Hasan Rashidi, Qazvin Azad

UniversityIran, Tehran
[3] Arie van Deursen CWI and Delft University of Technolo-gy ,The

Netherlands and Tobias Kuipers, Software Improvement

Group ,The Netherlands
[4] W. Eric Wong, Yu Qi, and Kendra Cooper Department of Com-

puter Science University of Texas at Dallas Richardson, TX 75083

{ewong, yxq014100, kcooper}@utdallas.edu
[5] J. Kontio, “The riskit method for software risk management”, Insti-

tute for Advanced Computer Studies and Department of Com-puter

science, University of Maryland, 1999.
[6] Lapierre, Sebastien, Lague, Bruno and Leduc, Charles. “Datrix

Source Code Model and its Interchange Format: Lessons Learned

and Considerations for Future Work. Montreal”, Canada: Bell Can-
ada, Quality Engineering and Research, 2002.

[7] Lyu, M., Yu, J., Keramidas, E. and Dalal, S. ARMOR:Analyzer for

Reducing Module Operational Risk. In Proceedings of the Twenty-
Fifth International Symposium on Fault-Tolerant Compu-ting (Pas-

adena, California, June 1995). IEEE Computer Society, Washing-

ton, DC, 137-142.
[8] http://sarnold.github.io/cccc/CCCC_User_Guide.html

[9] http://www.castsoftware.com/glossary/cyclomatic-complexity

[10] http://qafriend.com/software-metrics/cccc-tool-for-cyclomatic-
complexity

[11] http://www.guru99.com/cyclomatic-complexity.html

