

Copyright © 2016 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.6) (2018) 229-233

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Abstract

Now a day‟s Machine Learning Plays an important role in computer vision, object recognition and image classification.

Recognizing objects in images is an interesting thing, this recognization can be done easily by human beings but the com-

puter cannot. The Problem with traditional neural networks is object recognition. So, to avoid difficulties in recognition of

objects in images the deep neural networks especially Tensor flow under Keras Library is used and it will improve the Ac-

curacy while recognizing objects. In this paper we present object recognition using Keras Library with backend Tensor

flow.

Keywords: Machine Learning, Deep neural networks, Tensor flow, Keras Library.

1. Introduction

[1]Machine learning is about teaching computers to learn from

Knowledge or predictions. For true machine learning, it is able to

learn to spot patterns and it is programmed expressly. The differ-

ent names and buzz words of machine Learning are

Data Science, Big Data, AI, Analytics, Statistics, data processing

etc.

While machine learning will heavily overlap with those fields, it

should not beartlessly lumped at the side of them. As an example,

machine learning is one tool for knowledge science. It is also one

use of infrastructure that may handle huge knowledge.

[1]The Different types of Machine learning algorithms are:

• Supervised Learning – In this type of Learning it is providing

solutions to each and every Problem.

• Unsupervised Learning –In this type of Learning it is going to

inferring a function to describe hidden structure from unlabeled

data.

• Reinforcement Learning –This is mainly focus on Performance

and which involves finding a balance between uncharted territory

and current knowledge.

In these years Machine Learning will be used massively by data

scientists and Business analysts because of two reasons [1]

1) Global Demand

Demand for Machine Learning is increased due to its future pre-

diction

2) Power of Data

Data is transformed everywhere and everything we do. so, data is

very important to reshape the technology and business.

1.1 Deep Learning

[2]Deep learning is the subfield of machine learning and computer

science based on Learning data Representations. The major break-

through of deep learning in the subjects of computer vision, audio

process, and even self-driving cars.

[2]Deep learning is all the fashion these days, as corporations

across industries ask for to use advanced process techniques to

seek out helpful information hidden across knowledge. Much of

the Deep Learning work happening currently involves application

in many specific areas wherever rule-based programming has

proven inadequate, like image recognition, speech recognition,

and language understanding.

The Packages in deep learning support different types of architec-

tures like feed-forward networks, auto encoders, recurrent neural

networks (RNNs) and convolution neural networks (CNNs) [2].

By using the above mentioned packages the deep learning algo-

rithms will recognize the objects in images very accurately, to do

this object recognition deep learning uses popular python libraries.

There are five python deep learning libraries that are most useful

and popular [2].

They are

1) Theano [2]: It is a low level library and specializes in ef-

ficient computation, if the user need is to customize and

flexible environment.

2) Tensor Flow: It is another low level library and it is

supported by Google and it offers Distributed computing.

3) Lasagne[2]: It is a lightweight wrapper for Theano. Uti-

lize this if require the adaptability of Theano however

would prefer not to dependably compose neural system

layers without any preparation.

Object Recognition Using Keras with Backend Tensor Flow

Raswitha Bandi 1,2
*, J Amudhavel

1

1 Department Of Computer Science And Engineering, K L University, Guntur, Andhra Pradesh.
2 Department Of Information Technology, MLR Institute Of Technology, Hyderabad, India.

* E-Mail:Raswitha.29reddy@Gmail.Com

230 International Journal of Engineering & Technology

4) Keras[2]: It is a heavyweight wrapper for both Theano

and Tensor flow. It's moderate, particular, and amazing

for quick experimentation. This is our most loved Py-

thon library for profound learning and the best place to

begin for fledglings.

5) MXNet [2]: It is another high-level library like Keras. It

offers ties for various dialects and support for Distribut-

ed Processing.

In this paper we focus mainly on heavy weight wrapper

python Library Keras. In the first section we describe

the introduction to Keras Library. In the second section

we describe how to install and implement keras library

with backend tensor flow. In the third section we im-

plement object recognition using keras library with the

backend tensor flow with the help of sample image da-

taset.

2. Introduction to Keras

 [3]Keras is an High-level neural systems API, written in Python

and fit for running over TensorFlow, CNTK, or Theano. It was

created with an attention on empowering quick experimentation.

[3]Keras is a moderate Python library for Deep Learning that can

keep running over Theano or TensorFlow.

It was created to make executing Deep learning models as quick

and simple as feasible for innovative work.

[3]It keeps running on Python 2.7 or 3.5 and can flawlessly exe-

cute on GPUs and CPUs given the basic structures.

Utilize Keras[3] on the off chance that you require a Distributed

learning library that includes the following Principles:

Takes into account simple and quick prototyping (through ease of

use, measured quality, and extensibility).

Backings both convolution systems and repetitive systems, and

also combination of the two systems.

Runs flawlessly on CPU and GPU.

2.1 Keras Library guiding Principles

[3, 4] Keras was created and kept up by François Chollet, a

Google engineer Present four controlling standards:

 User Friendliness [3, 4]: Keras is an API intended for people, not

machines. It puts client encounter up front. Keras takes accepted

procedures for lessening subjective load: it offers predictable and

straightforward APIs, it limits the quantity of client activities re-

quired for normal utilize cases, and it gives clear and significant

criticism upon client mistake.

 Modularity [3, 4]: A model is comprehended as a grouping or a

diagram of independent, completely configurable modules that can

be stopped together with as meager limitations as would be pru-

dent. Specifically, neural layers, cost capacities, analyzers, intro-

duction plans, actuation capacities, regularization plans are all

independent modules that you can consolidate to make new mod-

els.

 Easy extensibility [3, 4]: New modules are easy to include (as new

classes and works), and existing modules give plentiful cases. To

have the capacity to effortlessly make new modules add up to

expressiveness, making Keras appropriate for cutting edge for

computer vision.

 Work with Python [3, 4]: No different models setup documents in

a revelatory arrangement. Models are depicted in Python code,

which is minimal, less demanding to investigate, and takes into

consideration simplicity of extensibility.

2.2 Organizing Layers in Keras:

 [4]In Deep Learning algorithms the most commonly used archi-

tectures are convolution neural networks and recurrent neural

networks to build hidden layers for the purpose of object recogni-

tion, classification and computer vision.

In this paper we present Convolution neural networks for object

recognition and classification and it uses simplest model called

Sequential model.

[4]In keras to organize layers we use a centralized core data struc-

ture called Model.

Basically two types of models used in keras library

1) Sequential model [4]: It is a simplest model consisting of linear

stack of layers.

2) Keras Functional API [4]: This is used for Complex architec-

tures, used to build arbitrary graph of layers.

Sequential model:

Step by step procedure to evaluate the model in sequential model

1) Import Sequential model from Model

The following command is used to import sequential model from

keras models

[4]Import Sequential model = Sequential ();

2) Add stacking layers one by one using add () function.

The following command is used to add layers from keras.layers

[4]Import dense model. Add (dense (units=‟units in number „,

activation=‟ specify activation function‟, input dimension=‟ di-

mension value‟));

3) If the model is good then configure its process with [4].compile

() function.

The following command is used to configure the process

[4] Model. Compile (loss= „specify loss function‟, optimizer =‟

optimizer name‟, Metrics =‟ specify accuracy„);

4) To make the model simple you can further configure its process

with .compile () function.

5) Iterate On your training data with batches.

The following command is used to train the data

[4] Model.fit (train on x-axis, train on y-axis, epochs= number of

epochs,batchsize=‟sizeof batch‟);

In this we can train the model manually by using the command

Model. Train on batch (batch on x-axis, batch on y-axis);

5) Evaluate the performance of your model.

The following command is used to evaluate the performance

[4]Loss metrics = model. Evaluate (test on x-axis, test on y-axis,

size of batch = number);

6) Generate predictions on your data.

The following command is used to generate predictions

[4]Classes1= model. Predict (test on x-axis, size of batch = specify

number);

2.2 Installing Tensor flow for java

 [5][6]To implement keras first we need to install one of its

backend engines i.e. tensor flow or theano. In this paper we fo-

cused mainly on keras library with tensor flow as backend.

[7][8]Tensor flow provides APIs for use in java programs and

these APIs are particularly well suited to loading models created

in python and execute them with in a java application.

Tensor flow installation [7][8]:

The following steps used to install tensor flow for java

1) Download libtensorflow.jar

2) Download the Java Native interface file appropriate for tensor-

flow for java

3) Extract the .zip file

International Journal of Engineering & Technology 231

2.4 Tensor Flow Backend for Keras[5,6,7,8]

After installing TensorFlow, you can configure the backend by

using the following code snippet [5][6]

keras/keras.json

{

 "image_dim_ordering": "tf", "epsilon": 1e-07, "floatx":

"float32", “backend": "tensor flow"

}

2.5 Object Recognition using Tensor Flow[5][6][7][8]

In this paper we recognize the objects from the images we collect-

ed in the dataset.

Step1: Collect the dataset from kaggle with images

The sample dataset consists of 2000 Images with different classes

like Dogs, cats, nature etc...

Step2: Label the images with the features

Step3: Train the dataset ,For training from the 2000 images we

use only 1500 images

Step4: Test the data

For testing the data we use 500 images

Step5: Evaluate the data using Language

2.5.1 Creating the project xml file

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.myorg</groupId>

 <artifactId>imgr</artifactId>

 <version>1.0</version>

<properties>

 <exec.mainClass>imgr</exec.mainClass>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.tensorflow</groupId>

 <artifactId>tensorflow</artifactId>

 <version>1.7.0</version>

 </dependency>

 </dependencies>

 </project>

Create the source file imgr.java

package com;

importjava.io.IOException;

importjava.io.PrintStream;

importjava.nio.charset.Charset;

importjava.nio.file.Files;

importjava.nio.file.Path;

importjava.nio.file.Paths;

importjava.util.Arrays;

importjava.util.List;

importorg.tensorflow.DataType;

importorg.tensorflow.Graph;

importorg.tensorflow.Output;

importorg.tensorflow.Session;

importorg.tensorflow.Tensor;

importorg.tensorflow.TensorFlow;

import org.tensorflow.types.UInt8;

public class imgr {

private static void printUsage(PrintStream s) {

final String url =

"https://storage.googleapis.com/download.tensorflow.or

g/models/";

s.println(

 "Java program that uses a pre-trained model

(http://users/vijaychaitanya/documents/imagefile");

s.println("to label JPEG images.");

s.println("TensorFlow version: " + Tensor-

Flow.version());

s.println();

s.println("Usage: label_image<model dir><image

file>");

s.println();

s.println("Where:");

s.println("<model dir> is a directory containing the un-

zipped contents of the model");

s.println(" (from " + url + ")");

s.println("<image file> is the path to a JPEG image

file");

 }

public static void main(String[] args) {

if (args.length != 2) {

printUsage(System.err);

System.exit(1);

 }

 String mod = args[0];

 String img = args[1];

byte[] graphDef = readAllBytesOrExit(Paths.get(mod,

"tensorflow_graph1.pb"));

 List<String> labels =

readAllLinesOrExit(Paths.get(mod,

"imagenet1_comp_graph_label_strings.txt"));

byte[] imgb = readAllBytesOrExit(Paths.get(img));

try (Tensor<Float> image = construct And Execute

Graph To Normalize Image1(imgb)) {

float[] labelProbabilities = executeIncep-

tionGraph1(graphDef1, imagefile);

intbestLabelIdx = maxIndex1(labelProbabilities1);

System.out.println(

String.format("BEST MATCH: %s (%.2f%% likely)",

labels.get(bestLabelIdx1),

labelProbabilities[bestLabelIdx1] * 100f));

 }

 }

private static Tensor<Float> construct And Execute

Graph To Normalize Image1(byte[] imgb) {

try (Graph gr = new Graph()) {

GraphBuilderbr = new GraphBuilder(gr);

Final int h = 224;

finalint v = 224;

final float m = 117f;

final float s = 1f;

final Output<String> input = br.constant("input", imgb);

final Output<Float> output =

br.div(

br.sub(

br.resizeBilinear(

br.expandDims(

br.cast(b.decodeJpeg(input, 3), Float.class),

br.constant("make_batch", 0)),

br.constant("size", new int[] {h, v})),

br.constant("mean", m)),

br.constant("scale", s));

try (Session se = new Session(gr)) {

return

se.runner().fetch(output.op().name()).run().get(0).expect

(Float.class);

 }

 }

 }

private static float[] executeInceptionGraph(byte[]

graphDef, Tensor<Float> image) {

try (Graph gr = new Graph()) {

232 International Journal of Engineering & Technology

gr.importGraphDef(graphDef);

try (Session se = new Session(gr);

 Tensor<Float> result =

se.runner().feed("input", im-

age).fetch("output").run().get(0).expect(Float.class)) {

final long[] rs = result.shape();

if (result.numDimensions() != 2 || rs[0] != 1) {

throw new RuntimeException(

String.format(

 "Expected model to produce a [1 N] shaped

tensor where N is the number of labels, instead it pro-

duced one with shape %s",

Arrays.toString(rshape)));

 }

intnl = (int) rs1];

returnresult.copyTo(new float[1][nl])[0];

 }

 }

 }

private static intmaxIndex(float[] probabilities) {

int be = 0;

for (int i = 1; i <probabilities.length; ++i) {

if (probabilities[i] > probabilities[be]) {

be = i;

 }

 }

return be;

 }

private static byte[] readAllBytesOrExit(Path path) {

try {

returnFiles.readAllBytes(path);

 } catch (IOException e) {

System.err.println("Failed to read [" + path + "]: " +

e.getMessage());

System.exit(1);

 }

return null;

 }

private static List<String>readAllLinesOrExit(Path

path) {

try {

returnFiles.readAllLines(path, Charset.forName("UTF-

8"));

 } catch (IOException e) {

System.err.println("Failed to read [" + path + "]: " +

e.getMessage());

System.exit(0);

 }

return null;

 }

static class GraphBuilder {

GraphBuilder(Graph gr) {

 this.gr = gr;

 }

 Output<Float>div(Output<Float> x, Output<Float>

y) {

returnbinaryOp("Div", x, y);

 }

<T> Output<T>sub(Output<T> x, Output<T> y) {

returnbinaryOp("Sub", x, y);

 }

<T> Output<Float>resizeBilinear(Output<T> images,

Output<Integer> size) {

return binaryOp3("ResizeBilinear", images, size);

 }

<T> Output<T>expandDims(Output<T> input, Out-

put<Integer> dim) {

return binaryOp3("ExpandDims", input, dim);

 }

<T, U> Output<U>cast(Output<T> value, Class<U>

type) {

DataType dt = DataType.fromClass(type);

returng.opBuilder("Cast", "Cast")

 .addInput(value)

 .setAttr("DstT", dt)

 .build()

.<U>output(0);

 }

 Output<UInt8>decodeJpeg(Output<String> contents,

long channels) {

returng.opBuilder("DecodeJpeg", "DecodeJpeg")

 .addInput(contents)

 .setAttr("channels", channels)

 .build()

.<UInt8>output(0);

 }

<T> Output<T>constant(String name, Object value,

Class<T> type) {

try (Tensor<T> t1 = Tensor.<T>create(value, type)) {

returng.opBuilder("Const", name)

 .setAttr("dtype", DataType.fromClass(type))

 .setAttr("value", t1)

 .build()

.<T>output(0);

 }

 }

 Output<String>constant(String name, byte[] value) {

returnthis.constant(name, value, String.class);

 }

 Output<Integer>constant(String name, int value) {

returnthis.constant(name, value, Integer.class);

 }

 Output<Integer>constant(String name, int[] value) {

returnthis.constant(name, value, Integer.class);

 }

 Output<Float>constant(String name, float value) {

returnthis.constant(name, value, Float.class);

 }

private<T> Output<T>binaryOp(String type, Out-

put<T> in1, Output<T> in2) {

returng.opBuilder(type,

type).addInput(in1).addInput(in2).build().<T>output(0);

 }

private<T, U, V> Output<T> binaryOp3(String type,

Output<U> in1, Output<V> in2) {

returng.opBuilder(type,

type).addInput(in1).addInput(in2).build().<T>output(0);

 }

private Graph gr;

 }

}

2.5.2 Compile and execute the file

To compile a java program that uses Tensor Flow, the jar file must

be downloaded and it should be the part of the program class path.

 The following command is used to compile the file [8][9][10]

Javac –cp libtensorflow-1.7.0.jar imgr.java

Running:

To execute a java program that depends on tensor flow, first we

need to ensure the following two files are available to the

JVM[8][9][10]

1) downloaded .jar file

2) Extracted JNI library

The Following command line is used to

Execute the imgr program

International Journal of Engineering & Technology 233

Java –cp libtensorflow-1.7.0.jar;. –Djava.library.path= jniimgr

3. Results and Screen Shots

After training and testing the above sample dataset using tensor

flow in java by the keras library the model gives the following

results as a best match to the images (Figure 1 and Figure 2).

Fig 1 Image1-Dog

Fig 2 Image2-Scenary

4. Conclusion

In this paper we present the introduction to keras library with

backend Tensor Flow. In this we implement a model using tensor

flow in java with the sample dataset of different classes to recog-

nize objects in labeled images. The improvement we found using

this is the accuracy in finding the objects in images is more than

the traditional neural networks because the keras library using

convolution neural networks.

References

[1] https://elitedatascience.com/learn-machine-learning#what

[2] https://www.datanami.com/2017/01/30/deep-learning-now/
[3] https://elitedatascience.com/python-deep-learning-libraries#keras

[4] https://keras.io/

[5] https://www.tensorflow.org/install/install_java
[6] https://machinelearningmastery.com/introduction-python-deep-

learning-library-keras/

[7] https://elitedatascience.com/keras-tutorial-deep-learning-in-python.
[8] Tensor Flow, Available online: https://www.tensorflow.org.

[9] B. Frederic, P. Lamblin, R. Pascanu et al., “Theano: new features
and speed improvements,” in Deep Learning and Unsupervised

Feature Learning NIPS 2012 Workshop, 2012,

http://deeplearning.net/software/theano/.
[10] Athanasius Voulodimos, Nikolaos Doulamis, Anastasias Doulamis,

and Eftychios Protopapadakis, “Deep Learning for Computer Vi-

sion: A Brief Review,” Computational Intelligence and Neurosci-
ence, vol. 2018, Article ID 7068349, 13 pages, 2018.

doi:10.1155/2018/7068349.

