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Abstract

Building process models from the available data in the event logs is the primary objective of Process discovery. Alpha algorithm is one of the
popular algorithms accessible for ascertaining a process model from the event logs in process mining. The steps involved in the Alpha
algorithm are computationally rigorous and this problem further manifolds with the exponentially increasing event log data. In this work, we
have exploited task parallelism in the Alpha algorithm for process discovery by using MPI programming model. The proposed work is based
on distributed memory parallelism available in MPI programming for performance improvement. Independent and computationally intensive
steps in the Alpha algorithm are identified and task parallelism is exploited. The execution time of serial as well as parallel implementation
of Alpha algorithm are measured and used for calculating the extent of speedup achieved. The maximum and minimum speedups obtained
are 3.97x and 3.88x respectively with an average speedup of 3.94x.
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1. Introduction

Process mining is a novel discipline which is derived from process
modeling and analysis along with data mining. A range of tools are
available in process mining which can not only be used for process
improvement but also for getting data-driven insights. Both struc-
tured as well as unstructured processes can be analyzed by using
process mining techniques. The possible benefits are considerable;
just by examining the discovered model, important perception can
be obtained. Information systems play an important role in exe-
cuting business processes in many organizations.Organizations use
a number of IT based business solutions to run their operational
processes. Examples of such solution includes Work flow Manage-
ment Systems (WMS), Customer Relationship Management (CRM)
Systems and Enterprise Resource Planning (ERP). In many cases
these information systems may not be aware of the process model in
which these are a part and in such cases process discovery becomes
important [1], [2]. Process discovery, conformance checking and
further improvements of real processes are the primary tasks that are
carried out by process mining techniques by extracting knowledge
from the available event logs in information system [3].
Improving performance of computationally exhaustive process min-
ing algorithms is challenging as it requires efficient processing of the
event log data which is increasing exponentially. It becomes compu-
tationally intensive and time consuming task for process discovery
algorithms to work on ever increasing event logs. Thus, there is a
need to make the process discovery algorithms efficient enough to
handle the rapidly growing event logs through parallelism.
The Alpha algorithm [4] is one of the important algorithms in Pro-
cess Mining which explores process models from event logs. The
proposed research work is motivated by the need to investigate the

efficiency and scalability of Alpha algorithm in a parallel comput-
ing environment by using Message Passing Interface programming
[5]. The objective is to accelerate Alpha algorithm with the help of
different parallelisms provided by MPI.
The remainder of this paper is organized as follows: A brief general
idea of process mining along with the works that have been done
in the area of process discovery has been presented in the literature
review section. We then present a general description of MPI con-
structs for parallel processing. In the following section a parallel
execution framework for the Alpha algorithm has been proposed
by using MPI implementations with a meticulous depiction of the
required parallel programming paradigm constructs. Execution re-
sults of the experiments are presented for both the serial version as
well as the parallel version of the Alpha algorithm to demonstrate
performance and scalability. Result discussion and analysis of the
same is presented before the conclusion with a glance to further
scope of improvement.

2. Literature Review

Process discovery involves a combination of machine learning and
data mining techniques. Description of process discovery algorithms
along with their respective notations can be found in [4], [6], [7], [8],
[9], [10],[11].
Process discovery algorithms may be categorized as local or global
approaches [12]. local approaches involve building process models
from the relations that exist between activities in event logs, e.g.,
Alpha [4], Alpha++ [7], and Heuristic Miner [6]. But, global ap-
proaches begin with a full model and try to improve those models in
successive phases later on. Genetic [13], [14] and region mining[9],
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[10] are examples of global approaches.
Methods proposed by Greco [15], Song [16] and Bose [17] use
clustering and abstraction at the level of traces to mine complex
process having noise. Similarly, the methods presented by Dongen
[18] and Gunther [19],[20] also mine complex and noisy processes
by using clustering and abstraction at the level of activities.
Goedertier et. al.[21] described a robust process discovery method
which is based on generating negative examples artificially to en-
hance learning. Work proposed by Ferreira and Gillblad [11] deals
with discovering process models from event logs where case IDs are
unavailable.
As a supportive tool, process mining has also been used for detecting
anomalous event behavior [22] and distributed work flow execution
[23].
van der Aalst in his work in [24], [25], [26], and [27] applied the
divide and conquer strategy for event log decomposition to tackle
with the problem of large event logs. To decompose large event
logs the concept of passages is proposed in [24]. Passages are more
suitable for distributed conformance checking rather than process
discovery as prior knowledge about the process model is required
to identify passages. In [28] a heuristic based streaming process
discovery algorithm has been proposed where the mining algorithm
updates a finite queue of events with new events to periodically
rediscover the process model rather than updating the discovered
process model.
Discovering state based process models by identifying different
facets, or perspectives rather than focusing on events or activities
that are executed in a particular process has been proposed by van
Eck in [29].
In [30] van der Aalst et al. proposed a generic process discovery
approach based on localized event logs. Events are localized by
assigning a non-empty set of regions to each event and it is assumed
that regions can only interact through shared events.
A novel reverse engineering technique for obtaining real-life event
logs from distributed systems has been proposed by Leemans and van
der Aalst in [31] where they have been able to analyze the operational
processes of software systems under real-life conditions, and use
process mining techniques to obtain precise and formal models.
The existing literature has attempted to discover processes under
the presence of noise in the event log data, presence of loops in
the process model, using clusters, divide and conquer strategies.
However, the strategy of exploiting parallelism in the algorithm has
not been sufficiently exploited. The present paper proposes to exploit
parallelism to improve efficiency in executing the Alpha algorithm.

3. Event logs and process mining

The concept of process mining is explained in this section by taking
an example from [4] and this has been used as a continuing example
in the remaining sections of this paper.
Event logs are a collection of events citing to cases (process in-
stances), the event types (activities) and the respective time stamps
of each event type. Events correspond to the implementation of
activity instances or tasks. In a work flow management system this
can be represented by the completion of a task or activity. Thus,
event types are synonymous to tasks or activities. The example event
log consisting of 22 events over 3 cases are shown in Table 1. The
execution of activity X indicates beginning of each case, whereas
execution of activity Z indicates ending of each case. The execution
of activity M is followed by the execution of activity N and the
vice-versa is also true. A finite set of activities available for each
individual case constitute a trace. A trace σ can be defined as a set
of finite events or activities for a single case (process instance)in an
event log where events follow a temporally ordered sequence, e.g.,
(Trace) σ= t1. . . tn The event log which is taken as an example in
Table 1 contains the following six traces:

 

X 

 

M 

N 

K 

Z 

Figure 1: A work flow net representing the event log in Table.1

σ1 = σ6= XMNZ, σ2 = σ5 = XNMZ, σ3 =σ4 = XKZ
Figure.1 shows the work flow net [32] pertaining to a process model

Table 1: An Example of Event Log

CaseID Activity Time Stamp
1 X 1
1 M 2
2 X 3
2 N 4
3 X 5
3 K 6
1 N 7
1 Z 8
2 M 9
2 Z 10
3 Z 11
4 X 12
4 K 13
5 X 14
5 N 15
6 X 16
6 M 17
5 M 18
6 N 19
4 Z 20
5 Z 21
6 Z 22

that can result in the event log shown in Table.1

Filtering out noise is an important task in process mining. Noise
can be defined as “outliers” [1], i.e. remarkably uncommon traces,
but not errors in the log. As the algorithm may result in a massively
complex process model by attempting to measure also for uncommon
traces, the “noisy” data are not taken into account in the Alpha
algorithm [4].

Any process mining approach begins with establishing the ordering
relationships among activities present in a trace in the event log.
Different process mining techniques apply different procedures to
determine the ordering relations based on event logs, however. An
activity does or does not succeed another activity forms the basis of
this ordering relationship. In a recorded event log, all such ordering
relations are fetched out and accumulated for further processing. It
is significant to know in which manner and of what frequency two
events pursue each other rather than retaining each process instance
or trace. Once the computations of these ordering relations are
completed, a relatively small data set need to be operated on by the
process mining algorithms to generate the process model.
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4. The MPI model

Message Passing Interface (MPI) is one of the many paradigms avail-
able for writing parallel programs. It can be employed on a single
processing node as well as on multiple connected nodes for parallel
processing. The primary objective of MPI is to provide efficient,
portable and flexible standard for programs that utilize message
passing for computation. MPI is also responsible for providing a
suitable programming environment for the tasks or computations
having regular communication patterns.
Several subroutines constitute the MPI library which is being used to
identify and implement explicit parallelism in programs by using spe-
cial constructs. Most of the distributed memory architecture use MPI
constructs to speed up the computation. Message passing paradigm
is based on dividing a single computational task into several indepen-
dent processes and running these processes on different computing
nodes concurrently. This scheme involves creating many concurrent
processes and distributing the required data among these processes
for computation. There are several data distribution schemes. MPI
does not have the concept of shared data. Data required by one pro-
cess, if held by another process, must be sent to the former process
by initiating a send operation by the later process. The internal meth-
ods and policies that are required for message delivery are described
in an MPI message passing protocol.
Eager and rendezvous [33] are the two commonly used message
passing protocols. Eager is an asynchronous protocol where a send
operation is allowed to complete without getting an acknowledgment
from a matching receive operation. On the other hand, rendezvous is
a synchronous protocol where an acknowledgment is required from
a matching receive operation for a send operation.
Writing parallel programs using MPI is a risky task as MPI allows
programmers to have control over data distribution as well as process
synchronization. Hence, correctness of a parallel program is affected
by the data distribution and synchronization requirements.
The proposed work focuses on the parallel programs developed by
MPI using MPICH2 [34] which is an open source implementation
of MPI. In this case to get the final executables, an MPI source
program is first compiled and then linked with the MPI libraries. A
user can place a copy of the executable program on a processor by
issuing a directive to the operating system. The user directive must
contain the number of processes. This implementation is compatible
with a variety of hardware platforms and also can be integrated with
programming languages such as C/C++ and FORTRAN. This paper
is about MPI implementation of the Alpha algorithm [4] using C.

5. Redefining the Alpha algorithm using the
MPI API

The MPI implementation of the Alpha algorithm is described in
this section. The algorithm is being described by highlighting the
ordering relations available among activities in an event log.

5.1. The Alpha Algorithm

The objective of the Alpha algorithm is to discover a process model
and represent it in the form of a work flow net [32] from a recorded
event log assuming zero noise in the log data. The first step of the
Alpha algorithm is to trace out the causal relationship [4] which
can be derived from the ordering relationships existing between the
activities in an event log. As an example, we can say that, activity X
is causally related to activity Y when Y always succeeds X but not
the vice versa in an event log. Further, there may be four types of
causal relationships possible between any two activities depending
on the ordering relations that may be present between any two
activities. These four types of ordering relations can be defined as
follows:

Let A be a set of activities and P be an event log over A. Let x, y ∈
A:

• x >P y iff there is a trace σ = t1t2t3 . . . tn−1 in P such that σ ∈ P
and ti = x and ti+1 = y for i ∈ {1, . . . ,n−2}

• x→P y iff x >P y and y 6>P x
• x ‖P y iff x >P y and y >P x
• x]Py iff x 6>P y and y 6>P x

The >P represents the basic temporal ordering relationship between
two activities from which other relations are derived. A possible
causal ordering relationship between two activities is represented
by →P. The ‖P represents the parallel relationship between two
activities in the event log. The ]P represents unrelated activities
in the event log, i.e., those activities that never follow each other
directly.
For the event log shown in Table 1 the pair of activities having the
basic temporal relationship is shown in Table 2. Table 3 represents
the pair of activities having causal relations. The parallel relations
computed from the event log is shown in Table 4. Similarly, Table 5
shows those activities which are unrelated to each other.

Table 2: Basic Temporal Ordering Relation

Activity x Activity y
X M
M N
N Z
X N
N M
M Z
X K
K Z

Table 3: Causal Relations

Activity x Activity y
X M
X N
M Z
N Z
X K
K Z

Table 4: Parallel Relations

Activity x Activity y
M N
N M

The detailed steps involved in the Alpha algorithm are as follows:

(i) AP = {t ∈ A|∃σ∈Pt ∈ σ}
Determine the set of unique activities present in the event log.
In the given example event log P, AP from A is {X ,M,N,Z,K}.

(ii) AS = {t ∈ A|∃σ∈Pt = f irst(σ)}
From the set of all activities A, determine the set of activities
which do not have immediate predecessor anywhere in any of
the trace in the log. In the given example event log P, AS is
{X}.

(iii) AE = {t ∈ A|∃σ∈Pt = last(σ)}
From the set of all activities A, determine the set of activities
which do not have immediate successor anywhere in any of the
trace in the log. In the given example event log P, AE is {Z}.
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Table 5: Unrelated Activities

Activity x Activity y
X Z
M K
N K
X X
M M
Z Z
N N
K K
Z X
K M
K N

(iv) Determine the above mentioned relations (>,→,‖, ]) between
all activities and represent them in the form of a matrix called
footprint by scanning through the traces present in the event
log. The generated footprint matrix for P is shown in Table 6.

(v) RP = {(X ,Y )|X ⊆ Ap∧X 6=∅∧Y ⊆ AP∧Y 6=∅∧∀x ∈ X∀y ∈
Y x→P y∧∀x1,x2 ∈ Xx1]Px2∧∀y1,y2 ∈ Y y1]Py2}
The set RP is generated by using the footprint matrix and can
be given as:
RP = {({X},{M}),({X},{N}),({X},{K}),({M},
{Z}),({N},{Z}),({K},{Z}),({X},{M,K}),({X},
{N,K}),({M,K},{Z}),({N,K},{Z})} by considering the ex-
ample event log.

(vi) QP = {(X ,Y ) ∈ RP | ∀(X ′,Y ′)∈RPX ⊆ X ′ ∧Y ⊆ Y ′ ⇒ (X ,Y ) =
(X ′,Y ′)}
The set QP represents the maximal set pairs which can be stated
as: RP, if for a set pair (X ,Y ), all activities in X are a subset
of activities in set X ′ and all activities in set Y are a subset of
activities in set Y ′ and (X ′,Y ′) set pair is present in RP, then
set pair (X ,Y ) in RP is considered to be same as set (X ′,Y ′). In
the given example event log:
QP = {({X},{M,K}),({X},{N,K}),({M,K},{Z}),
({N,K},{Z})}.

(vii) In LP, a place is generated for each distinct pair of set (X ,Y ).
Along with it, an input place SP and output place EP are gener-
ated. In the given example event log:
LP = {SP,EP,L({X},{M,K}),L({X},{N,K}),
L({M,K},{Z}),L({N,K},{Z})}

(viii) FP = {(x,L(X ,Y ))|(X ,Y )∈QP∧x∈X}∪{(L(X ,Y ),y) | (X ,Y )∈
QP∧ y ∈ Y}∪{(SP, t) | t ∈ AS}∪{(t,EP) | t ∈ AE}
The flow relation FW is generated as: For each set pair (X ,Y )
in QP, arcs are connected from every activity present in set
X to a place generated for the set pair (X ,Y ) and arcs are
also connected from the place to every activity present in set
Y . Activities in AS are connected to the input place SP and
activities in AE are connected to the output place EP. In the
given example event log:
FP = {(SP,X),(X ,L({X},{M,K})),(L({X},{M,K}),Y ),
. . . ,(Z,EP)}

(ix) Finally, Al pha(P) = (LP,AP,FP) The generated work flow net
of the Alpha algorithm is represented by LP, AP and FP is
shown in Figure 1.

Table 6: Footprint matrix of the given example event log

X M N Z K
X ] → → ] →
M ← ] ‖ → ]

N ← ‖ ] → ]

Z ] ← ← ] ←
K ← ] ] → ]

5.2. The MPI implementation of the Alpha algorithm

To parallelize the Alpha algorithm it is important to identify the
discrete and independent tasks involved in it which can be executed
concurrently. Specifically, a thorough investigation is required to
exploit task-parallelism [35]. In task-parallelism, the various tasks
carried out in solving a problem are partitioned among the computing
processors or cores. From a thorough analysis of the Alpha algorithm
it is found that step (i) through step (iii) are independent tasks,
and hence, these can be run in parallel to take advantage of task-
parallelism. Task-parallelism can again be exploited in step (iv) of
the Alpha algorithm where it involves deriving the four types of
ordering relations among various activities recorded in the event
log and building the footprint matrix. Once the footprint matrix is
generated, step (v) and step (vi) can be executed in parallel using
task-parallelism. It may be noted that the size of the event log,
where the log-based ordering relations occurs, is significantly large
in comparison to the size of the data set that is being used for the
subsequent computations of LP, FP, and generation of the work flow
net in Step (vi) through step (ix) respectively. The tasks involved in
computing LP, FP, and generation of the work flow net are dependent
on the number of distinct or unique activities fetched out from the
recorded event log rather than the size of the event log itself. Thus,
it is significant to employ the distributed memory multiprocessing
from the MPI API for the execution of step (i) through step (vi)
while deriving the ordering relations available in the event log that
can benefit from the parallel computation.
Using the message passing constructs available in the MPI API the
Alpha algorithm can be redefined as follows to take advantage of
parallel computation:

Step 1 : Read event log data
Step 2 : Initialize MPI by calling MPI Init()
Step 3 : Create new processes and assign ranks to these processes

to carry out the tasks mentioned in the step (i) through
(iii) of the Alpha algorithm

Step 4 : Assign tasks to the newly created processes
if( process rank == 0) { Compute AP;}
if( process rank == 1) { Compute AS;}
if( process rank == 2) { Compute AE ;}

Step 5 : Synchronize all processes by calling MPI Barrier()
Step 6 : Assign tasks to the newly created processes

if( process rank == 0) { Compute x >P y;}
if( process rank == 1) { Compute x→P y;}
if( process rank == 2) { Compute x ‖P y;}
if( process rank == 3) { Compute x]Py;}

Step 7 : Synchronize all processes by calling MPI Barrier()
Step 8 : Create new processes and assign ranks to these processes

to carry out the tasks mentioned in the step (v) and (vi)
of the Alpha algorithm

Step 9 : Assign tasks to the newly created processes
if( process rank == 0) { Compute RP;}
if( process rank == 1) { Compute QP;}

Step 10 : Synchronize all processes by calling MPI Barrier()
Step 11 : Compute LP;
Step 12 : Draw Al pha(P);

A schematic representation of the above mentioned redefined version
of the Alpha algorithm is given in Figure 2.

6. Experimental set up and results

Scalability and effectiveness of the redefined version of the Alpha
algorithm were evaluated through an experimental study. A small
tool was developed using C programming language to generate
the synthetic event logs. In each event log file the following three
fields are present: case id, activity name and time stamp of each
activity. This tool has been used to generate event logs based on
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Figure 2: Schematic representation of the redefined Alpha algorithm

different process models by varying the following two parameters:
number of activities and proportion of splits (like AND splits and
XOR splits). Activity names were represented through the English
alphabets from ‘A’ to ‘Y’. To check the impact of number of unique
activities on the over all execution time of the Alpha algorithm,
four process models were created with 10, 15, 20 and 25 unique
activities respectively. The number of cases were set to 8, 13, 18 and
23 respectively for the above said process models. Based on these
four process models, event logs of different sizes consisting of event
traces ranging from 3×106 to 3×107 were generated. The size of
event log files generated were varied from approximately 90 MB to
1.08 GB where the use of parallel programming becomes effective.
Both the serial version as well as the parallel version of the Alpha
algorithm were developed using C programming language with GCC
4.4.6. While developing the parallel version of the Alpha algorithm
the Open MPI 1.8.8 API was used and hyper threading was set to
on. Table 7 shows the details of machine hardware and software
configuration used for the experimental set up.

Table 7: Hardware and software configurations used for experiments

Parameters Values
CPU (2 Numbers) per node of
a 13 node High Performance
Computing Cluster

E5-2650 Intel Xeon @ 2.0GHz

Physical Cores per node 16
Operating System Red Hat Linux
GCC Compiler Version 4.4.6
OpenMPI Version 1.8.8

To get the accurate execution timings of programs, the experiments
were performed in isolation. Table 8 to 11 shows the average exe-
cution time of 100 runs of serial as well as parallel version of the
Alpha algorithm for 10, 15, 20 and 25 activity sets respectively. The
number of traces were varied from 3×106 to 3×107 for each activ-
ity set to generate separate event logs. The performance comparison
between the serial execution time and the parallel execution time
recorded in seconds for each individual set of activities are shown in

Figure 3 through 6.

Table 8: Average execution time of 100 runs of serial as well as parallel
version of the Alpha algorithm for 10 unique activities

No. of Traces Told (in Seconds) Tnew (in Seconds)
3000000 0.3730782 0.0944132
6000000 0.7457835 0.191517889
9000000 1.127482667 0.286959667

12000000 1.513307333 0.38105
15000000 1.92095875 0.4893884
18000000 2.242879714 0.565480167
21000000 2.62120375 0.662925667
24000000 3.0105085 0.7608428
27000000 3.396431857 0.8697522
30000000 3.8610816 0.97478725

Table 9: Average execution time of 100 runs of serial as well as parallel
version of the Alpha algorithm for 15 unique activities

No. of Traces Told (in Seconds) Tnew (in Seconds)
3000000 0.466754099 0.118119333
6000000 0.936497601 0.241112625
9000000 1.33079863 0.338792571

12000000 1.791727937 0.4518388
15000000 2.256376384 0.5739615
18000000 2.687997151 0.677909333
21000000 3.098169096 0.7835148
24000000 3.483099485 0.880258
27000000 4.011759718 1.019492167
30000000 4.493973526 1.137441833

The speedup (S) equation can be given as:

S = Told/Tnew (1)

where Told is the execution time without any improvement or
serial execution time and Tnew is the new execution time with
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Table 10: Average execution time of 100 runs of serial as well as parallel
version of the Alpha algorithm for 20 unique activities

No. of Traces Told (in Seconds) Tnew (in Seconds)
3000000 0.618671211 0.156168571
6000000 1.206095859 0.308301429
9000000 1.84865367 0.4699095
12000000 2.431231725 0.613604333
15000000 3.022988887 0.76624025
18000000 3.648282832 0.919373333
21000000 4.250329563 1.073778286
24000000 4.897456803 1.237426778
27000000 5.466739782 1.385718857
30000000 6.032665968 1.538624333

Table 11: Average execution time of 100 runs of serial as well as parallel
version of the Alpha algorithm for 25 unique activities

No. of Traces Told (in Seconds) Tnew (in Seconds)
3000000 0.71672409 0.18089225
6000000 1.383316825 0.3528266
9000000 2.11859639 0.53893725
12000000 2.754495407 0.695379333
15000000 3.422744406 0.867125
18000000 4.131517661 1.042739
21000000 4.839376429 1.223209667
24000000 5.435420378 1.374165
27000000 6.169023575 1.558599
30000000 6.849986317 1.738214333
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improvement or parallel execution time [36]. For this experimental
set up: Told = Average Serial Execution Time and Tnew= Average
Parallel execution time.

The speedup value was set to 1x for the serial execution time. Table
12 represents the respective speedup achieved for different number
of traces. It can be observed from Table 12 that the maximum and
the minimum speedup achieved are 3.97x and 3.88x respectively
with an average speedup of 3.94x.

7. Conclusion

A series of experiments are conducted to observe the performance of
the Alpha algorithm on parallelization. The MPI parallel computing
construct is used for computations across multiple nodes of the
computing cluster. From experiment it is observed that the speedup
is as high as 3.97x and the average speedup is 3.94x with the parallel
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Figure 6: Comparison between Serial and Parallel execution time (No. of
unique activities=25)

version of the Alpha algorithm. It is also observed that in a given data
set, the parallel execution outperforms the serial execution. Thus,
we are able to accelerate the execution of the Alpha Miner algorithm
using task based parallelism and achieved better execution time by
utilizing the potential of distributed memory computing.
Our proposed parallel approach for computing the different discrete
and independent tasks of the Alpha algorithm can now be used on
larger size event logs. The proposed parallel approach of building
footprint matrix and finding maximal set pairs can enable to work
on higher count of activities.
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Table 12: Speedup achieved for different number of traces

No.of traces Speedup
10 Activities 15 Activities 20 Activities 25 Activities

3000000 3.9515470294408 3.95154702575234 3.96156030011954 3.96216029155478
6000000 3.89406704456731 3.88406704543157 3.91206704072721 3.92067045115079
9000000 3.92906319827866 3.9280631982925 3.93406319727522 3.93106319891601
12000000 3.97141407426847 3.96541407466557 3.96221407549937 3.96114074186901
15000000 3.92522329912192 3.93123299036608 3.94522329908929 3.94723298947672
18000000 3.9663278128727 3.9651278130434 3.96822781458683 3.96217812990595
21000000 3.95399345730869 3.95419345748159 3.95829345630854 3.95629347899848
24000000 3.95680750346852 3.95690750325473 3.95777502965917 3.95543503000004
27000000 3.90505693115809 3.93505693114364 3.9450569315591 3.95805693125685
30000000 3.96094799147199 3.95094799190492 3.92081799215897 3.94081799174763

Working with MPI model has the following two major benefits as
the memory is distributed among multiple nodes: (i) It is a cost
effective way to scale the memory bandwidth if the accesses are to
the local memory in the node (ii) It reduces the latency for accesses
to the local memory. On the other hand, MPI model also suffers
from higher communication latency problem as communicating data
between processors becomes somewhat more complex. The pro-
posed model exploits only the task level parallelism available in the
Alpha algorithm. But, better speedup may be achieved if we could
exploit both data-parallelism and task-parallelism available in the
Alpha algorithm. Thus, a hybrid approach where both data and task
parallelism could be exploited for obtaining better speedup would
be our future scope of research.
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