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Abstract

This paper addresses the parameter estimation problem for a manufacturing process based on the Auto-Regressive Moving
Average (ARMA) model. The accurate estimation of the ARMA model’s parameter helps to reduce the production costs,
provide better product quality, increase productivity and profit. Meta-heuristic algorithms are among these approximate
techniques which have been successfully used to search for an optimal solution in complex search space. Meta-heuristic
algorithms can converge to an optimal global solution despite traditional parameter estimation techniques which stuck by local
optimal. A comparison between Meta-heuristic algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
Accelerated PSO, Cuckoo Search, Krill Herd and Firefly algorithm is provided to handle the parameter estimation problem
for a Winding process in the industry. The developed ARMA-meta-heuristics models for a winding machine are evaluated
based on different evaluation metrics. The results reveal that meta-heuristics can provide an outstanding modeling performance.
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1. Introduction

Currently, physical process modeling has become one of the
challenging problems in the application of control system
design [1, 2]. Traditional modeling techniques are complex,
time-consuming and unsatisfactory especially when there is
a lack of exact knowledge about the system or present noise.
However, the development of an appropriate model structure
for a winding process in the industry appears to be essential
for model-based control. The goal of modeling is always to
develop a correct and reliable model of a real manufacture
process.
With the growth of manufacture process complexity and the
need for more advanced software simulation tools for pro-
cess monitoring and control; a need for the development of
advanced methods for the analysis and design of nonlinear
industrial processes was created [3, 4]. The goal of the new
process models is to meet the required high process safety
standard and top product quality. Automation of manufac-
ture processes involves the development of several precise
mathematical models to enhance the potentiality of simulat-
ing and quantifying complex industrial operation.
Linear models have been proposed as a solution for the sys-
tem identification process. These models are simple, like the
Moving Average (MA) model. Thus, we may use a simple
algorithm to estimate the model parameters like Least-Square
Estimation (LSE) [5–7]. LSE has been used as a useful tool

in solving the parameter estimation problem for a known
system structure. This structure can be either linear or non-
linear. Although, most nonlinear systems can be linearized by
representation with differential or difference equations, mod-
eling nonlinear systems using linear models involves many
approximations. These approximations are sometimes not
sufficient to reflect the real behavior of the nonlinear systems.
Thus, to get a suitable model structure which reflects real
system information, there is usually an increasing cost. This
cost is due to the need for more advanced algorithms which
can handle complex model structures.
To solve the model identification problem many models were
introduced [8–11]. A few of these models are the Hammer-
stein, Winer, Winer-Hammerstein and the Volterra-series.
Indeed, for many dynamic systems, the use of nonlinear mod-
els can characterize physical processes [12]. Unfortunately,
most of these models have some difficulties. For example, a
large number of parameters that need to be identified, i.e.,
when using the Volterra series [13, 14].
Modeling and control of various winding process were explored
in the literature [1, 2, 15, 16]. The winding process at the
Alum factory at Naga Hammadi in Egypt was studied in
many publications. A Genetic Programming (GP) model
was considered to model the dynamic of a winding process.
GP was able to explore the space of possible tree structure
and find a simple mathematical model the provided better
results than the traditional linear model [17]. A Feedforward
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Neural Network with BackPropagation (FFBP) was also
proposed to develop a nonlinear model for the winding process
[18]. Recently, authors in [19] provided a new method based
Bi-directional Echo State Reservoir Networks (Bi-ESNs) to
model the winding system.
In this paper, a number of nature-inspired meta-heuristic
algorithms for parameter tuning of an ARMA model to bet-
ter model the dynamics of a manufacturing process in a real
winding machine. The meta-heuristic algorithms applied
in this work include common algorithms such as GA, PSO,
Accelerated PSO (APSO), Cuckoo Search (CS), Krill Herd
(KH) and Firefly algorithm (FA). The developed and opti-
mized models are evaluated and compared based on different
evaluation metrics.
This paper is organized as follows. In Section 2, background
on various metaheuristic algorithms and how they work in
practice is presented. The description includes Genetic Al-
gorithms, Particle Swarm Optimization and the Accelerated
PSO, Cuckoo Search, Krill Herd and Firefly algorithm. Var-
ious model structure for modeling dynamic system is pre-
sented in Section 3. We give an introduction to the winding
process in the industry in Section 4. In Section 5, the for-
mulation of the parameter estimation problem-based ARMA
model is presented. The evaluation metrics adopted to test
the performance of the developed estimate based on various
metaheuristic algorithms are introduced in Section 6. In
Section 7, we provide the setup parameters for tuning each
algorithm adopted in this study and the experiments and
results.

2. Nature-inspired Metaheuristics

Various Meta-Heuristic algorithms were explored to solve
different types of problems such as global function optimiza-
tion [20], optimizing neural networks [21–24], software effort
estimation [25], and parameter estimation problem for man-
ufacturing processes. Due to space constraints, we focus
only on closely related work of based estimation problem
for manufacturing processes that used nature-inspired algo-
rithms. System identification of single-input-multiple-output
(SIMO) systems was studied in [26]. In [27], GAs was used
to solve the parameters of an induction motor from machine
test data. GAs was also used to estimate the longitudinal
aerodynamic parameters of an airplane in [28]. Another
trend for parameter optimization PSO was introduced to
solve many parameter estimation problems in the industry.
In [29], PSO algorithm was used to estimate the parameters
of nonlinear chaotic systems. PSO successfully estimated the
model parameters in the presence of noise.
Metaheuristics are global search algorithms, and their goal is
to find an acceptable solution within a reasonable timeframe
when the problem is very complex, and the search space is
extremely large. In their essence, metaheuristics incorporate
randomness and a local search in their process. These features
support metaheuristics to find a suboptimal solution when
applying traditional algorithms for evaluating every possible
solution is impossible. However, this doesn’t mean grantee
that metaheuristics will always find the optimal solution
neither that they will work. There are two main components
of the metaheuristic algorithms: exploration and exploitation.
In the exploration component, the algorithm tries to explore
and test different areas in the search space, while on the other
hand, in the exploitation component, the algorithm tries to
focus the search around some suboptimal found solutions [30].
Nature-inspired algorithms are popular types of metaheuris-
tics. As their name implies, the idea and the design of these

algorithms are inspired by phenomena that occur in nature.
Most of the nature-inspired algorithms are population-based
algorithms where they start by randomly generating a pre-
determined number of candidate solutions (also called indi-
viduals) then they start to iteratively update the generated
solutions using a specifically designed mechanism. In every it-
eration, the algorithm evaluates all individuals using a fitness
function to assess their quality considering them as possible
solutions for the targeted problem. In some metaheuristics,
fitness values affect the search direction of the algorithm.
Evolutionary Algorithms were introduced to solve many prob-
lems in manufacturing and industry [31–33,33]. Evolutionary
algorithms are mainly inspired by the Darwinian theory of
evolution and natural selection. The best example of this type
is the well-regarded Genetic Algorithm (GA). GA was first
proposed and designed in the works of John Holland [34,35].
GA is distinguished by its reproduction operators namely;
the crossover and mutation operators. On the other side,
most of the Swarm Intelligence algorithms are inspired by
the movement or interaction of some families of birds, fish
or animals in nature. A well-regarded example of this cate-
gory is the Particle Swarm Optimization (PSO). PSO was
first introduced by Kennedy and Eberhart in 1995 [36]. In
PSO, individuals (or particles) are updated based on the
best found solution for all individuals and the best solution
found by the updated individual itself. Other remarkable
and more recent nature-inspired metaheuristic algorithms are:
Krill Herd (KH) [37], Accelerated PSO (APSO) [30], Cuckoo
Search (CS) [38,39] and Firefly Algorithm (FA) [30,40].

3. ARMA Model

One of the most significant step of modeling a system is
the choice of a suitable model structure. The determina-
tion of model order help to fit the model with the collected
measurements via the input output process. This step if im-
plemented correctly lead to a better model performance [41].
An example of an input-output model is given in Equation 1.

y(t) = f(y(t−1),y(t−2), . . . ,y(t−n),
u(t−1),u(t−2), . . . ,u(t−m)) (1)

where u(t),y(t) represents the system input-output at time t.
n and m represent the number of past outputs and inputs,
respectively. f can be a static or dynamic function which
provides the input-output relationship. If a system under
study is linear, f is a linear function and Equation 1 can be
revised to become:

y(t) = a1y(t−1) +a2y(t−2) + · · ·+any(t−n)
+ b1u(t−1) + b2u(t−2) + · · ·+ bmu(t−m) (2)

ARMA model represent a form of linear time series models
which are widely used to solve many modeling problems in
engineering [17,18]. The equation that formulate a ARMA
model with two inputs u1(t) and u2(t) and a single output
y(t) can be described in Equation 3.

y(t) =
n∑

i=1
αiu1(t− τ) +

n∑
i=1

βiu2(t− τ)

+
n∑

i=1
γiy(t− τ) (3)

y(t− τ) represents system output response where τ (τ ∈
1,2, . . .m). m is the model order. i is the time samples that
takes values from i= 1, . . . ,n.
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4. Winding Machine in Industry

The winding model plant presented, in this study, character-
izes a subsystem frequently used in numerous manufacture
processes such as in paper industry where rolling mills and
web conveyance are used [15]. Its main function is to control
the linear speed, the thickness or/and the tension of a strip.
Tension is defined as the longitudinal force applied to process
material, or in another word, how tight the material is pulled.
Assume that the line speed of a process is kept constant
with a pinch roll. Thus, the winder motor is going to be
controlled by a motor controller which will regulate a fixed
motor current. A cross-section of the Winding Machine in
the industry is shown in Figure 1. The PLC is used to collect
data which helps in the development of a winding machine
process model.

Figure 1: Cross section of the Winding Machine

4.1. Winding Process Model

The winding process can be described by physical laws based
Hooke’s Equation 4 with given parameters in Table 1.

dT

dt
= EA

l

[
Vw−Vf )

]
(4)

Table 1: Definition of system parameters

T Wire tension (N)
Vw linear speed of winding spool (m/s)
Vf linear feeding speed (m/s)
E The wire Young’s modulus (N/mm2)
l feeding and winding section’s distance (m)
A Wire cross section (mm2)

In our winding system Vw and Vf are defined as in Equation
5 with the equation’s parameters are defined in Table 2. A
simple diagram that shows the wire path inside the wire feed
component is shown in Figure 2 [8]. The radius variations
results in a corresponding variations in the moment of inertia
of the winding spool.

Vw = 2πwsm

60ns
Ri

Vf =
2πwfm

60nf

Dml

2

Ri =
[
Dmin

2 + id
]

(5)

Table 2: Definition of system parameters

wfm Angular speed of the feeding motor (rad/min)
wsm Angular speed of the spool motor (rad/min)
Dml Rolling mill diameter (m)
Ri Radius of spool at later i (m)
nf Gear box ratio of the feeding motor
ns Gear box ratio of the spool motor

Figure 2: Sectional view of the wire feed [8]

5. Problem Formulation

To see how we can use the metaheuristic algorithms to solve
the parameter tuning problem for the winding process, we
assume we can formulate the problem to a minimization prob-
lem. This problem should have a function f to be minimized
with a set of parameters n as follows:

Min.f(α1, α2, α3, β1, β2, β3, γ1, γ2, γ3)

Each parameters is defined in a certain domain D =
[dmin,dmax], and f(α1,α2,α3,β1,β2,β3,γ1,γ2,γ3) is a posi-
tive function for all values of αi,βi,γi ∈D. Candidate solu-
tions are defined as n-dimensional vectors of parameters of
the form:

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3

The parameters are presented in a vector notation format.
For each vector of parameter, there is an associated function
value serves as its fitness, with lower values preferred for
minimization problems.

6. Evaluation Metrics

To see how the estimated parameters using metaheuristic
search algorithms perform well in the modeling of the man-
ufacture process, we adopted number of evaluation criteria
such as VAF, MAE, MMRE, RMSE and R2. The perfor-
mance of the optimized ARMA based model is evaluated
using the following evaluation criteria:

V AF = [1− var(y− ŷ)
var(y) ]×100% (6)

MAE = 1
n

n∑
i=1
|yi− ŷi| (7)

MMRE = 1
n

n∑
i=1

|yi− ŷi|
yi

(8)

RMSE =

√√√√ 1
n

n∑
i=1

(y− ŷ)2 (9)
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R2 =
∑n

i=1(yi− Ȳi)2−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ȳi)2 (10)

7. Experimental Setup and Results

7.1. Tuning Parameters

Tuning parameters of the metaheuristic algorithms have a
high influence on their performance and the quality of the
generated solutions. Therefore, having more parameters
makes the tuning problem itself more difficult. On the other,
having fewer parameters are considered as an advantage for
the algorithm. Among all the algorithms investigated in
this study, Krill Herd and Cuckoo search have the smallest
number of parameters.
Krill Herd depends only on the number of Krills and a scale
factor for the speed vector while Cuckoo search depends only
the Pa fraction on besides the number of Cuckoos. Pa fraction
is set to 0.25. Speed vector factor of the Krill Herd algorithm
depends on the search space and can be empirically set to a
value in [0,2] [37]. In our experiments, we set this value to
0.25.
Population size, number of particles, flies, and Krills are
unified and set to 50 in all the algorithms. The number of
iteration is also unified and set to 500. The tuning parameters
of GA, PSO, APSO and FA are presented in Tables 4, 5, 6
and 3, respectively.
The domain of the search space is also unified for all algo-
rithms and set to [-5,5]. The parameters of APSO algorithm
are tuned empirically as recommended by [42]. We used the
Root Mean Squared Error (RMSE) as an objective evaluation
criterion to evaluate the developed models. RMSE criteria
is shown in Equation 9. All metaheuristic algorithms have
experimented 25 independent times then the average of the
evaluation measures was calculated.

Table 3: Firefly algorithm parameters settings

Parameter Value
Alpha 0.4
Betamin 1
Gamma 0.4

Table 4: GA parameters settings

Parameter Value
Selection method Tournament selection
Crossover probability 80%
Mutation probability 5%

Table 5: PSO parameters settings

Parameter Value
Acceleration constant [2.1,2.1]
Inertia Weight [0.9,0.6]
Maximum Velocity 100

7.2. Results

In this section, we apply a number of metaheuristic search
algorithms to estimate the parameters of the winding ma-
chine described in Section 4. Six metaheuristic algorithms:

Table 6: APSO parameters settings

Parameter Value
Randomness amplitude of particles 0.2
Speed of convergence 0.5
Randomness reduction control 0.95

GA, PSO, APCO, KH, CS, and FA were used. To develop
our experiments we used 1000 measurements that were split
into two sets each with 500 measurements for training and
testing. This winding process inputs are presented in Figure
3. The goal of the implemented 25 experiments is to find the
best parameter model that can minimize the error difference
between the actual and the estimated response of the winding
model.

0 50 100 150 200 250 300 350 400 450 500

-100

0

100

Input 1

0 50 100 150 200 250 300 350 400 450 500

-200

0

200

Input 2

0 50 100 150 200 250 300 350 400 450 500

-200

0

200

Output y

Figure 3: Inputs and output for the winding process

Carrying out the experiments described earlier, we obtain
the average convergence and the best-so-far curves for the
metaheuristic algorithms as shown in Figure 4, Figure 5 and
Figure 6 for the Cuckoo, Firefly, GA, PSO, Krill Herd, and
APSO, respectively. It can be noticed that GA is the fastest
to converge while Firefly is the slowest to converge. The
evaluation results for training and testing cases are shown
in Tables 7 and 8, respectively. Based on these results, it
can be noticed that Cuckoo search algorithm outperforms
the other metaheuristic algorithms in optimizing the ARMA
model of the winding machine considering all the evaluation
metrics. On the other side, Firefly algorithm showed the
worst results with a relatively big difference from the second
worst algorithm which is APSO. The algorithms from the
best to worst are ordered as follows: Cuckoo, Firefly, GA,
PSO, Krill Herd, and APSO.
For further analysis, we show the boxplots in Figure 7 for the
results of various metaheuristic algorithms calculated based
on the RMSE results. As it can be seen in the figure, Cuckoo
search algorithm shows the minimum median value and the
most compact box which indicates the stability of the results
of this algorithm. On the contrary, Firefly algorithm has a
broader box which means that the results are more spread
from the median.
In summary, Cuckoo search as a metaheuristic optimization
algorithm over-performs the other algorithms regarding higher
estimation accuracy for the ARMA based models of the
winding machine studied in work. Moreover, Cuckoo search
has only one parameter which is the Pa fraction that needs to
be tuned. Thus, Cuckoo search has an advantage over other
the algorithms which are highly influenced by the tuning
settings of their parameters.
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Figure 4: Convergence curves (a) Cuckoo (b) Firefly
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Figure 5: Convergence curves (a) GAs (b) PSO
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Figure 6: Convergence curves (a) KH (b) APSO
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Table 7: Evaluation Metrics for Training Case

VAF MAE MMRE RMSE R2 Rank
KH 98.77% 6.45 0.030 8.30 0.9876 4
GA 99.04% 5.68 0.006 7.31 0.9904 3
PSO 99.08% 5.64 0.013 7.20 0.9908 2
APSO 98.24% 7.28 0.029 9.67 0.9824 5
Firefly 92.88% 16.14 0.007 20.59 0.9219 6
Cuckoo 99.20% 5.22 0.008 6.72 0.9920 1

Table 8: Evaluation Metrics for Testing Case

VAF MAE MMRE RMSE R2 Rank
KH 92.84% 6.85 0.125 8.68 0.9280 4
GA 94.53% 5.77 0.117 7.57 0.9452 3
PSO 94.74% 5.71 0.113 7.47 0.9472 2
APSO 90.88% 7.50 0.131 9.58 0.9086 5
Firefly 52.47% 18.05 0.405 22.30 0.4941 6
Cuckoo 95.43% 5.24 0.104 6.95 0.9543 1

KH GA PSO APSO Firefly Cuckoo

10

15

20

25

30

35

R
M

S
E

Figure 7: Boxplots for the results of the metaheuristic algorithms based on the RMSE results
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8. Conclusions

In this paper, we present the initial idea of tuning the pa-
rameter of an ARMA model using different nature-inspired
meta-heuristic algorithms for an industrial winding machine.
Data sets generated from an actual industrial process was
used throughout the experiments. Experimental results are
presented and discussed. The results show that some meta-
heuristic optimization algorithms like Cuckoo search and
Particle Swarm Optimization can successfully be used to
tune the ARMA model parameters with minimum modeling
error. However, unlike the other algorithms, Cuckoo search
has the advantage of being a non-parametric algorithm which
doesn’t need any additional effort for parameters tuning.
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