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Abstract 

 

In this paper, hybrid synchronisation of Vallis chaotic systems using a nonlinear control technique is proposed. Vallis system represents 

the principal quantitative features of the El-Nino Southern Oscillation (ENSO) phenomenon. A nonlinear active control technique is used 

for hybrid synchronisation. Control laws are designed by using the sum of the relevant variables of the both mater and slave systems. 

Required Lyapunov stability condition is devised using Lyapunov stability theory. Numerical simulation results reflect the successful 

achievement of the proposed objectives. MATLAB is used for simulation. 

 
Index Terms: Chaotic System, ENSO, hybrid synchronisation, lyapunov stability Theory, vallis System. 

 

1. Introduction 

Sensitivity to initial conditions is a generic feature of chaotic 

dynamical systems. Two chaotic systems starting from slightly 

different initial points in the state space separate away from each 

other with time. Therefore, controlling of two chaotic systems to 

make them synchronised has aroused a great deal of interest. The 

idea of synchronizing two identical chaotic systems starting from 

different initial conditions was introduced by Pecora and Carroll 

[1]. Synchronisation of chaotic systems has been extensively 

investigated in the last few years and many possible applications 

have been discussed using computer simulation and realised in 

laboratory condition. 

The researchers widely use drive-response synchronisation. In this 

scheme, the output of drive system is used to control the response 

system. Synchronisation means to achieve zero error between 

states of drive and response systems. Another important and 

similar phenomenon between two dynamical systems is anti-

synchronisation. During anti-synchronisation state of both drive 

and response systems show the same amplitude but opposite in 

phase. Anti-synchronisation causes the sum of state of drive and 

response systems converge asymptotically to zero. Similarly, the 

hybrid synchronisation phenomenon means coexistence of 

synchronisation and anti-synchronisation both, i.e., some of the 

states are anti-synchronised and the rest are synchronised. 

In 2008, C. Li et al. [2] investigated the coexistence of anti-

synchronisation along with synchronisation, i.e. some of the state 

variables were synchronised and the rest anti-synchronised. In this 

paper pair of states of coupled Chen system are anti-phase 

synchronised, and the rest is complete synchronised by nonlinear 

active linear control via a single variable. Sufficient conditions for 

the hybrid synchronisation were obtained in terms of asymptotic 

stability. The work by Sudheer et al. [3, 4] investigated the hybrid 

synchronisation of hyperchaotic Chen systems [3] and 

hyperchaotic Lu systems [4] in 2009. Nonlinear active control is 

designed to achieve hybrid synchronisation between drive and 

response systems using the sum and difference of relevant 

variables of the chaotic systems. In 2012, Sundarapandian et al. 

[5, 6] presented hybrid synchronisation of hyperchaotic Lorenz 

systems and hyperchaotic Chen systems [5] in 2011 and chaotic 

Arneodo and Rossler systems [6], etc. 

G. K. Vallis [7] investigated the Vallis system which represents 

the principal quantitative features of the ENSO phenomenon. 

These phenomena are the occurrence of sea-surface warmings in 

the eastern equatorial pacific and the associated trade wind 

reversal. It is the three variables conceptual model, namely near 

surface temperatures in the east and west equatorial ocean and a 

wind driven current advecting the temperature field. For a large 

range of parameters, the model is chaotic and aperiodically 

produces El-Nino like events. El-Nino is the occurrence of an 

anomalously warm pool of the water in the eastern equatorial 

Pacific Ocean. In 1988, G. K. Vallis [8] further considered the 

lower order continuous models, with and without external 

stochastic forcing and reveals that even in the absence of 

stochastic forcing, chaos and aperiodic ENSO events can occur. 

After a long time, in 2014, a maiden attempt is made by J. 

Samantaray et al. [9] to investigate the anti-synchronisation of 

Vallis system [7] when p=0. In the year 2015, the work by B. M. 

Garay et al. [10] the Vallis’ symmetric and asymmetric Lorenz 

models [8] for El-Nino systems of autonomous ordinary 

differential equations in 3D with the usual parameters are 

considered. In this paper, they located topological horseshoes in 

iterates of Poincare return maps based on the standard 

Mischaikow-Mrozek-Zgliczynski approach.  

Literature reveals that the flow of the water motion on the surface 

of ocean, temperatures in western and eastern parts of the ocean 

need synchronisation and anti-synchronisation using appropriate 

control technique. Also, it is apparent from the paper [9] that the 

fluctuations of the temperature in western and eastern parts of near 

equatorial area of the ocean are the major concern and may be 

further improved significantly. Therefore, motivated with these 

issue, an attempt is made to achieve hybrid synchronisation of 

Vallis chaotic systems, in this paper. 

Rest of the paper is organised as follows. A brief description is 

presented about Vallis system in Section 2. In the Section 3, 
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hybrid synchronisation using a nonlinear active control is 

demonstrated and stability analysis is achieved. Results and 

discussion is given in the Section 4. Finally, Section 5 reveals the 

conclusions and future scope. 

2. Description of vallis chaotic system 

Vallis chaotic system (talks about eastern and western temperature 

fluctuation and flow of water motion) are the major part of 

research. The Vallis system is given by the following equation. 

 

{

𝑥̇ = −𝑎𝑥 + u𝑦  
𝑦̇ = −𝑦 + 𝑥𝑧     
�̇� = 1 − 𝑥𝑦 − 𝑧 

                                                                          (1) 

 

where 𝑥 is the water motion on a surface of ocean and 

 

{
𝑦 = [𝑇𝑤 − 𝑇𝑒] 2  ⁄

𝑧 = [𝑇𝑤 + 𝑇𝑒] 2⁄ .
 

𝑇𝑤 and 𝑇𝑒 are temperatures in western and eastern parts of ocean, 

respectively. u and 𝑎 are positive parameters of the Vallis system 

(1). The phase plane behaviour of Vallis system is shown in the 

Fig. (1) which reflects the chaotic behaviour. 

 
Fig. 1: Chaotic attractors of the vallis system 

3. Hybrid synchronisation of vallis chaotic 

Systems 

Vallis chaotic system is considered as master as well as slave 

systems. The master and slave systems are defined in (2) and (3), 

respectively, as: 

{

�̇�𝑚1(𝑡) = −𝑎𝑥𝑚1(𝑡) + 𝑢𝑥𝑚2(𝑡)

�̇�𝑚2(𝑡) = 𝑥𝑚1(𝑡) − 𝑥𝑚2(𝑡) + 𝑥𝑚1𝑥𝑚3(𝑡)

�̇�𝑚3(𝑡) = −𝑥𝑚1(𝑡)𝑥𝑚2(𝑡) − 𝑥𝑚3(𝑡)
                                (2) 

and  

{

�̇�𝑠1(𝑡) = −𝑎𝑥𝑠1(𝑡) +  𝑢𝑥𝑠2(𝑡) + 𝑢1(𝑡)

�̇�𝑠2(𝑡) = 𝑥𝑠1(𝑡) −  𝑥𝑠2(𝑡) + 𝑥𝑠1(𝑡)𝑥𝑠3(𝑡) +  𝑢2

�̇�𝑠3(𝑡) = −𝑥𝑠1(𝑡)𝑥𝑚2(𝑡) − 𝑥𝑠3(𝑡) + 𝑢3(𝑡)        

(𝑡)                (3)                                                 

where, 𝒖𝟏, 𝒖𝟐 and 𝒖𝟑 are the control laws added to slave system. 

To achieve hybrid synchronisation, the error is defined as given in 

(4).  

 

{

𝑒1(𝑡) = 𝑥𝑚1(𝑡) + 𝑥𝑠1(𝑡)

𝑒2(𝑡) = 𝑥𝑚2(𝑡) − 𝑥𝑠2(𝑡)

𝑒3(𝑡) = 𝑥𝑚3(𝑡) + 𝑥𝑠3(𝑡)

                                                          (4) 

 

It may be noted that the first and third states are anti-

synchronising and the rest is synchronising. The error dynamics is 

written as: 

 

{

�̇�1(𝑡) = �̇�𝑚1(𝑡) + �̇�𝑠1(𝑡)

�̇�2(𝑡) = �̇�𝑚2(𝑡) − �̇�𝑠2(𝑡)

�̇�3(𝑡) = �̇�𝑚3(𝑡) + �̇�𝑠3(𝑡)

                                                           (5) 

Further, the above error dynamics is modified as: 

 

{

ė1(t) = −ae1(t) + u [xm2(t) + xs2(t)] + u1(t)                                             

ė2(t) = −e2(t) + xm1(t) − xs1(t)[1 + xs3(t)] + xm1(t)xm3(t) − u2(t)

ė3(t) = −xs1(t)xs2(t) + xm1(t)xm2(t) − e3(t) + u3(t)
            (6)  

 

The objective is to design a nonlinear active control to guarantee 

the error, 𝒆𝒊(𝒕) between the states of the model (master) system 

and plant (slave) system tends to zero asymptotically, as time 

tends to infinite. 

Stability analysis of vallis chaotic system while hybrid 

synchronisation 

Let the suitable control laws 𝒖𝟏(𝒕),𝒖𝟐(𝒕),𝒖𝟑(𝒕) be defined as: 

 

{

𝑢1(𝑡) = −𝑢 [𝑥𝑚2(𝑡) + 𝑥𝑠2(𝑡)]                              

𝑢2(𝑡) = 𝑥𝑚1(𝑡)𝑥𝑚3(𝑡) − 𝑥𝑠1(𝑡)𝑥𝑠3(𝑡) + 𝑒1(𝑡)

𝑢3(𝑡) = 𝑥𝑠1(𝑡)𝑥𝑠2(𝑡) + 𝑥𝑚1(𝑡)𝑥𝑚2(𝑡)
                       (7) 

 

Using the control inputs  𝒖𝟏(𝒕),𝒖𝟐(𝒕) and𝒖𝟑(𝒕), the modified 

error dynamics is written as: 

 

{

�̇�1(𝑡) = −𝑎𝑒1(𝑡)

�̇�2(𝑡) = −𝑒2(𝑡)

�̇�3(𝑡) = −𝑒3(𝑡)
                                                                        (8) 

 

Let a Lyapunov function candidate be defined as: 

 

𝑉(𝑒) =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2)                                                             (9) 

 

Assuming if 𝑽(𝒆) is continuously differentiable function, then we 

have  

 

�̇�(𝑒) = 𝑒1(𝑡)�̇�1(𝑡) + 𝑒2(𝑡)�̇�2(𝑡) + 𝑒3(𝑡)�̇�3(𝑡)                         (10) 

 

As putting the value in above function, we get  �̇�(𝒆) as: 

 

�̇�(𝑒) = −𝑎𝑒1
2(𝑡) − 𝑒2

2(𝑡) − 𝑒3
2(𝑡)                                        (11) 

 

�̇�(𝒆) < 𝟎 i.e. the origin is asymptotically stable. In addition, 𝑽(𝒆) 

is radially unbounded. Therefore, the origin is globally 

asymptotically stable [11] while hybrid synchronisation. 

4. Results and discussions 

MATLAB is used for numerical simulation. Initial condition for 

master and slave systems are considered as [𝟒 𝟎. 𝟒 𝟎. 𝟑]𝑻 and 

[𝟏 𝟐 𝟏]𝑻, respectively. Simulation is done for 10 seconds with 

step size 0.005. The time and frequency domain analyses are 

achieved and shown in the Fig. 2. 

The required control inputs and synchronisation errors are 

depicted in the Figs. 3(a) and 3(b), respectively. Time domain 

response in the Fig. 2 reveals that the hybrid synchronisation is 

achieved successfully. Synchronisation errors shown in the Fig. 

3(b) reflects that the objective is achieved using the appropriate 

nonlinear active control inputs Fig. 3(a). Finally, the phase plane 

behaviours of the master and slave systems are shown in the Fig. 4 

to have a simultaneous look while hybrid synchronisation. 

Frequency domain analysis reveals the information about the 

parameters like leakage factor, sidelobe attenuation and mainlobe 

width for each of the states of the master and slave systems and 

summarised in the Table 1. 

5. Conclusions and future scope 

In this paper, hybrid synchronisation between the Vallis chaotic 

systems using nonlinear active control technique is achieved. 
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Nonlinear active control laws are designed successfully to achieve 

hybrid synchronisation. The designed control laws insure the 

stability of the error dynamics. Globally asymptotically stability 

condition is derived by using Lyapunov stability condition. 

Simulation is achieved in MATLAB and MATLAB results 

correspond the successful achievement of the proposed objectives. 

Therefore, it is concluded that the flow of the water motion on the 

surface of ocean, temperatures in western and eastern parts of the 

ocean are synchronisation and anti-synchronisation using 

appropriate nonlinear active control technique.Further 

improvement may be possible while hybrid synchronisation using 

other robust control design as a future work. 

 

 

 

 
Fig. 2: Shows the time and frequency response behaviours of the master 

and slave systems 

 
(a) 

 
(b)                                                                          

Fig. 3: Represents the control inputs in (a) and hybrid synchronisation 

errors in (b), between the mater and slave systems 

 
Fig. 4: Shows the phase behaviour of the master and slave vallis chaotic 

systems under hybrid synchronisation 

 
Table 1: Frequency Domain Analysis 

Parameters States of Master and Slave Systems 

 First State Second State Third State 

Leakage factor (%) 66.04 73.53 21.79 

Sidelobe attenuation (dB) -5.70 4.0 -11.60 

Mainlobe width (-3dB) 0.00079346 0.00079346 0.00036621 
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