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Abstract 
 

An increasing number of elderly and disabled people urge the need for a health care monitoring system which has the capabilities for 

analyzing patient health care data to avoid preventable deaths. Medical Telemetry is becoming a key tool in assisting patients living re-

motely where a “Real-time Remote Critical Health Care Monitoring System” (RRCHCMS) can be utilized for the same. The RRCHCMS 

is capable of receiving and transmitting data from a remote location to a location that has the capability to diagnose the data and affect 

decision making and further providing assistance to the patient. During the cardiac analysis, several artifacts solidly affect the ST seg-

ment, humiliate the signal quality, frequency resolution, and results in large amplitude signals in ECG that simulate PQRST waveform 

and cover up the miniature features that are useful for clinical monitoring and diagnosis. In this paper, several leaky based adaptive filter 

structures for cardiac signal improvement are discussed. The Circular Leaky Least Mean Square (CLLMS) algorithm being the steepest 

drop strategy for dropping the mean squared error gives a better result in comparison with the Least Mean Square (LMS) algorithm. To 

enlarge the filtering ability some variants of LMS, Normalized Least Mean Square (NLMS), CLLMS, Variable Step Size CLLMS (VSS-

CLLMS) algorithms are used in both time domain (TD) and frequency domain (FD). At last, we applied this algorithm on cardiac signals 

occurred due to MIT-BIH database. The performance of CLLMS algorithm is better compared to LLMS counterparts in conditions of 

Signal to Noise Ratio Improvement (SNRI), Excess Mean Square Error (EMSE) and Misadjustment (MSD). When compared to all other 

algorithms VSS-CLLMS gives superior SNRI. These values are 13.5616dB and 13.7592dB for Baseline Wander (BW) and Muscle Arti-

fact (MA) removal. 
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1. Introduction 

WHO report on global health scenario confirms that the major 

mortality rate is due to the reason that the patient is not timely 

treated. In [1-3] Suzzanna M. M. Martens, Mohammed Reza Mei-

dani, Naumann Razzaq et al. discussed the suppression of the 

Power Line Interference (PLI) and harmonics added as noise to 

the High-Resolution ECG (HRECG). In [4] G. V. S. Karthik et al. 

presented several efficient and less complex signal conditioning 

algorithms for a brain signal enhancement in remote health care 

monitoring applications.  In [5] H. Sharma et al. presented a tech-

nique that removes the baseline wander (BW) from electrocardio-

gram (ECG). In [6] Santhosh Kumar Yadav et al. described power 

line interference; baseline wander, muscle noise etc are due to the 

Adaptive White Gaussian Noise (AWGN). In [7] Rik Vullings et 

al. described that the ECG monitoring techniques are more neces-

sary and less disruptive. In [8] Ebadollah Kheirati et al. described 

the paper that introduces an improved signal decomposition model 

based Bayesian Framework (EKS6). In [9] Rahman et al. present-

ed an efficient and simplified nonlinear adaptive filters, having 

compound calculations such as multiplier, free weight update 

loops is used for termination of noise in ECG signals. In [10] Lu-

kas smital et al. discussed about the adaptive wavelet wiener filter-

ing of ECG signals mainly attentive on the diminition of broad-

band myopotentials (EMG) in ECG signals. In [11] Shintari Izumi 

et al. studies say that the Wearable Healthcare system must be 

with the exact size and weight constraints which enforce consider-

able restrictions on battery size and signal to noise ratio of biolog-

ical signals. In [12] Muhammad Zia Ur Rahman, G. V. S. Karthik 

et al. proposed several block based leaky LMS algorithms for 

artefact removal from cardiac signal. In [13] Ke Li et al. discussed 

the lossless ECG with low-power wearable devices. In [14] 

Jinseok lee et al. described an automatic motion and noise artifacts 

which sometimes results in the disturbances in accuracy and per-

formance of signals taken from the Holter monitor. In [15] Nassim 

Ravanshad et al. presented a level crossing QRS method says that 

an asynchronous analog is converted as information used for com-

puting the RR intervals in ECG waves. In [16] Fatiha bouaziz et 

al. discussed an ECG signal gives a clinical procedure so as to 

evaluate a cardiac condition of a patient. In [17] E. Arrais Junior et 

al. discussed about ECG detection mechanism based on the Re-

dundant Discrete Wavelet Transform (RDWT) analyzed with 

MIT-BIH arrhythmia database. In [18 -19] Gabriel Nallathambi, 

Jun Jhang et al. discussed about fire (IF) sampler and Body Area 

Networks (BAN). In [20] Jacquemet et al. discussed the drawing 

out and study of T-waves causing the atrial flutter in ECG. Several     

related biomedical signal processing techniques are presented in 

[21]-[48]. 

Considering health conditions of the person, a few very cru-

cial steps in RRCHCMS are as following: 
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1. Signal attainment through IOT enabled sensor 

nodes. 

2. Transferring the data through the cloud through 

gateways. Supressing the noises from the ECG 

wave gives the signal usable for correct diagnosis 

and usage of correct data transmission protocol re-

duces the power consumption and thus increased ef-

ficiency in wireless communication and also during 

the data analysis. 

3. Data from the remote places will be sending to the 

doctor with the help of the web-mobile interface. 

The core objective of this paper is to enhance the signal with 

the help of the Adaptive Noise Cancellers (ANC) applicable 

in real time. 

2. Computationally Proficient Adaptive 

Filtering Techniques 

2.1 Adaptive filter structure 
 

Fig 1(a) shows a filter with a ECG signal 𝑔1 as input by addi-

tive noise ℎ1 whereas the traditional input is artifact ℎ2 per-

haps traced from one more noise producer ℎ2 that is correlat-

ed in a someway with ℎ1. If the filter output is z and the filter 

error is k = (𝑔1 +  ℎ1)- r, then 

 

    k2 = (g1 + h1)2 − 2i(g1 + h1) + i2 

=(h1 − i)2 + g1
2 + 2g1h1 − 2ig1                                 (1) 

 

while wave and artifact are uncorrelated, the Mean-Squared 

Error (MSE) is 

 

E[k2] = E[(h1 − i)2] + E[g1
2]                                     (2) 

 

Reducing the MSE results in the finest least–squares approx-

imation of the wave 𝑔1. 

Fig 1(b) represents one more condition, wherever the Electro-

cardiogram is traced from many conductor leads. The first 

input 𝑔1 + ℎ1 is a wave from one of the leads. A traditional 

wave 𝑔2  is gained from a second lead that is artifact less. 

Reducing the MSE leads to a filter output y that’s the easiest 

least-squares guess of wave 𝑔1. Using a system alike to (1) we 

are able to 

 

E[k2] = E[(g1 − i)2] +E[h1
2]                                (3) 

 

2.2 Basic Least Mean Square Algorithm 

 

The LMS technique is a repetitive method for reducing the 

MSE among the primary and the traditional inputs. The LMS 

algorithm can be represented as  

lt+1 = lt + 2µktBt                                    (4) 

 

Where  𝑙𝑡 = [𝑙1𝑡𝑙2𝑡 … … 𝑙𝑗𝑡 … … 𝑙𝑛𝑡]𝑇 is a deposit of filter 

loads at time t. 𝐵𝑡 = [𝐵1𝑡𝐵2𝑡 … … 𝐵𝑗𝑡 … … 𝐵𝑛𝑡]𝑇  is the input 

vector at time t of the models from the traditional signal, 𝑎𝑡 is 

the wanted primary input from the ECG to be filtered, 𝑖𝑡 is the 

filter output that is the best least squares estimate of 𝑎𝑡. 

 

kt=at- it                                        (5) 
 

Parameter µ is empirically selected to produce convergence at 

a preferred rate; the larger its value, the earlier the conver-

gence is and is equal to 1/(4µ€), where € is the largest eigen-

value of the autocorrelation matrix of the reference signal. 

This parameter causes excessive Misadjustment or instability, 

1/€ > µ > 0. 

3. Proposed Technique 

The filtering and weight adaption of CLLMS technique with 

the numeral filter taps of M is written as 

 

i(n)=∑ lr(n − 1)B(n − r)M−1
r=0                                       (6) 

k(n)=a(n)-i(n)                                                 (7) 

δt(n) = µk(n)l(n)/(||p||
2

+ δ)                               (8) 

 
(a) 

 
(b) 

Fig. 1: Two adaptive filter structures. Type 1(a): the reference input is 

noise 𝐡𝟐 correlated with noise 𝐡𝟏 : the desired signal appears at k (n). Type 

1(b): The reference input is signal 𝐠𝟐 correlated with signal 𝐠𝟏 : the desired 

signal appears at i(n). 

 

Where δt(n) is adaption aspect of CLLMS technique and  is very 

little positive constant meant for removing divide-by-zero fault 

 

 lr(n + 1) = lr(n) + δt(n)p(n − r)                              (9) 

 

The leakage factor is taken as base for only one of the weights 

following ordinary weight adaption of NLMS is completed 

through each model dispensation. The alternative of which load to 

be customized is made chronologically as given in equation (9). 

Although escape term is practical to only one load at a time, the 

process is recurring circularly. 

 

lt(n + 1) = δt(n)p(n − t) + lt(n)(Q − αslt(n)k(n)k(n))    (10) 

Where      αs =  {
0.00001   if (|k(n − t)lt(n)|) < Ω
0                                         otherwise

 , t= (t+1)  

 

mod (M) and Ω is little positive constant and its rate is 0.00004. 

Later on, we discussed the proposed algorithm with changes to 

weight adaption factor δt(n) like, (i) the error wave k(n) is accept-

ed during the variance limiter and the significant output is used in 

the coefficient–update equation. This is to discontinue the vari-

ance of the filter, which arises due to noise that appears in the 

ECG due to the reference signal y (n). Frequently a divergence 

limiter is a limiter and it doesn’t allow the error to surpass in ex-

cess than the previous fault, (ii) Adaptive filter input power is 

predictable using long-term average of the de-correlated reference 

signals to enlarge the constancy, as well as to diminish the density 
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precisely and (iii) and another advantage is to modify the perma-

nent step size to changeable step size, which is oppositely propor-

tional to long term average of the meeting reached. So, the 

changed equation for assessment of adaption featureδt(n) is ex-

posed as 

 

δt(n) = (
µt(n)

sy(n)

smod(n)

sy(n)
y′(n))                                                      (11) 

 

Where, µ𝑡(𝑛) is the changeable step size and is directly propor-

tional to echo escape parameter Δ (n), smod(n) is the customized 

error signal by variance limiter discussed in the following vice--

section, sx(n) is the durable average of de-correlated faded noise 

wave and y’(n) is the reference signal. The static variables such as 

smoothened fixed previous error ss(n), durable average of error 

wave su(n), durable average of adaptive filter input wave  sy(n), 

and knowledge accelerate counter m(n) are memory factors used 

to pile up earlier states. The knowledge accelerate counter m(n) 

point out’s the number of times loads are endlessly modified. 

 

Divergence limiter: 

This limiter suppresses the error when it is caused due to noise in 

the reference signal, visible at the output. The boundary equation 

is shown in equation (12) and the levelled absolute previous fault 

 ss(n) is modernized as per the equation (13) for the next sample 

processing, 

 

Smod(n) = sign(k (n)) min(γ0 ss(n), |s(n)|)                     (12)  

l(y) = {

ss(n),                                   if (y′(n) = 1)

γ2ss(n) + γ1|s(n)|,                       if (γ0ss(n) ≤ |s(n)|)

γ3ss(n),                         elsewhere

 

 

The block diagram for analyzing the adaption factor δt(n)  unit 

with input as well as output terms is exposed in the figure (2). 

 

The Estimation of Long-term averages: 

The adaptive filter input power, ||𝑝||
2
is expected as, by squaring 

and adding all the input models. This process requires additional 

complication with extra recollection for power level erratic. For 

the inferior order of filter taps, lofty difference in the reference 

power may reason damping. This may guide to in-security now 

and then. So, in our completion, (i) long-term average of de-

correlated reference signal sy(n) is used to expect the input power 

of the adaptive filter and (ii) long-term average of fault su(n) and 

input wave sa(n) are needed to find out the echo escape factor 

∆(n). The averages are determined as given below 

su(n) = su(n − 1) + γ4(|s(n)| − su(n − 1))                              (13) 

sa(n) = sa(n − 1) + γ4(|a(n)| − sa(n − 1))                             (14) 

sp(n) = sp(n − 1) + γ4 (|p(n)| − sp(n − 1))                          (15) 

Where γ4 is a constant and its assessment is equal to (1/(M+1)). 

 

∆(𝐧) =
𝐬𝐮(𝐧)

𝐬𝐚(𝐧)
                                                     (16) 

 
Fig. 2: Building block diagram of adaption factor δt(n) estimation unit. 

 

LMS, NLMS, CLLMS and VSSCLLMS were compared and 

VSSCLLMS lead others. By utilizing presentation measures 

called SNRI, EMSE and MSD, we get ideal outcomes with the 

VSSCLLMS algorithm as observed in Table 1. So, the 

VSSCLLMS adaptive methods gives the improved results com-

pared over the other adaptive techniques, verified from the Figure 

4-5 and Table 1. 

 
Fig. 3: Data Flow Chart of VSS-CLLMS 

 

4. Results and Discussion 

 
The focus in this paper is to supress non-physiological noices like 

BW and MA from ECG signal. This artefact cancellation is func-

tional in 4 adaptive algorithms namely LMS, NLMS, CLLMS and 

VSS-CLLMS and those changes have been explained evidently in 

the Figure 4-5 where VSSCLLMS results more trustable outcome. 

The mathematical figures can be clearly seen from Table 1. The 

efficiency of algorithms are calculated using the SNRI, EMSE and 

MSD measures. Among data and error normalization, error nor-

malized filters performs greatly due to broad range of error from 

the first iteration to the last iteration. The leaky filtering algo-

rithms are finely suitable for wireless telecardiology applications 

in remote health care systems.   

 
Fig. 4: Distinctive filtering outcome for BW cancellation by means of data 

normalization adaptive filtering techniques: (a) ECG signal with BW, (b) 
improved wave with LMS technique, (c) improved wave with NLMS 

technique, (d)improved wave with CLLMS technique, (e) improved wave 

with VSSCLLMS technique. 
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Fig. 5: Distinctive filtering outcome for MA cancellation by means of 
data normalization adaptive filtering techniques: (a) ECG signal with MA, 

(b) improved wave with LMS technique, (c) improved wave with NLMS 

technique, (d) improved wave with CLLMS technique, (e) improved wave 
with VSSCLLMS technique. 

 

5. Conclusion 

 In this paper, the artifact reduction from ECG signals using 

Leaky standard adaptive algorithms in time and frequency area 

is researched. The numerous filter constructions based on LMS, 

NLMS, CLLMS and VSS-CLLMS techniques are enhanced for 

ECG noise cancellation. The presented action exploits the 

variations in the load modernize formula and thus drives up the 

speed over the own LLMS based realization. Yet, in time 

domain, leaky filtering procedure occurs due to averaging the 

amplitude of the filtered signal reduces but it superiorly 

smoothens the signal. Reduce in amplitude results in reduced 

SNRI. In both TD and FD, normalization improves conver-

gence and filtering capability. 

In our experiments, during BW elimination, VSSCLLMS 

achieves highest SNRI 13.56 dBs, that for MA elimination -

22.85dBs. 

Table 1: Adaptive algorithms vs Performance measure comparison table. 
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