Historical survey on metaheuristics algorithms

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Metaheuristic algorithms have been an interesting and widely used area for scientists, researchers and academicians because of their specific and significant characteristics and capabilities in solving optimization problems. Metaheuristic algorithms are developed base on inspiration of some real world phenomenon in nature or on the behavior of living being (animal, insects, organic living beings). On the past many metaheuristic algorithms have been introduced and applied on various problems of various domains including real world optimization problems. This paper is aimed to provide a historical Survey on metaheuristic algorithms, it will provide a list of metaheuristic based algorithms ordered according to the foundation year, with the name of Authors and the algorithm abbreviations.

     


  • Keywords


    Metaheuristic; Swarm Intelligence; History; Natural Inspired Algorithm; Optimization Algorithms; Classifications

  • References


      [1] S. Almufti, R. Asaad and B. Salim, "Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems", Sciencepubco.com, 2019. [Online]. Available: https://www.sciencepubco.com/index.php/ijet/article/view/28473. [Accessed: 26- May- 2019].

      [2] S. Almufti, "U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem", Hdl.handle.net, 2018. [Online].

      [3] S. Almufti, “Using Swarm Intelligence for solving NPHard Problems,” Academic Journal of Nawroz University, vol. 6, no. 3, pp. 46–50, 2017. https://doi.org/10.25007/ajnu.v6n3a78.

      [4] S. Almufti and A. Shaban, "U-Turning Ant Colony Algorithm for Solving Symmetric Traveling Salesman Problem", Academic Journal of Nawroz University, vol. 7, no. 4, pp. 45-49, 2018. https://doi.org/10.25007/ajnu.v6n4a270.

      [5] F. Glover, "Future paths for integer programming and links to artificial intelligence", Computers & Operations Research, vol. 13, no. 5, pp. 533-549, 1986. Available: 10.1016/0305-0548(86)90048-1. https://doi.org/10.1016/0305-0548(86)90048-1.

      [6] F. Glover and M. Laguna, Tabu search. Boston, Mass.: Kluwer academic, 1998. https://doi.org/10.1007/978-1-4615-6089-0.

      [7] C. Blum and A. Roli, "Metaheuristics in combinatorial optimization", ACM Computing Surveys, vol. 35, no. 3, pp. 268-308, 2003. Available: 10.1145/937503.937505. https://doi.org/10.1145/937503.937505.

      [8] G. Dhiman and V. Kumar, "Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications", Advances in Engineering Software, vol. 114, pp. 48-70, 2017. Available: 10.1016/j.advengsoft.2017.05.014. https://doi.org/10.1016/j.advengsoft.2017.05.014.

      [9] A.Auger. "Convergence results for the (1,λ)-SA-ES using the theory of φ-irreducible Markov chains", Theoretical Computer Science, 334 (1-3), pp 35–69, 2005

      [10] D. E. Goldberg. “Genetic Algorithms in Search, Optimization, and Machine Learning”, ADDISON-WESLEY PUBLISHING COMPANY, 1989

      [11] S. Kirkpatrick, D. Gelatt Jr., and M. P. Vecchi, "Optimization by simulated annealing", Science, 220(4598), pp 671–680, 1983 https://doi.org/10.1126/science.220.4598.671.

      [12] Farmer, N. Packard and A. Perelson, "The immune system, adaptation, and machine learning", Physica D: Nonlinear Phenomena, vol. 22, no. 1-3, pp. 187-204, 1986. Available: 10.1016/0167-2789(86)90240-x. https://doi.org/10.1016/0167-2789(86)90240-X.

      [13] F. Glover. "Future Paths for Integer Programming and Links to Artificial Intelligence", Computers and Operations Research, 13 (5), pp 533–549, 1986. https://doi.org/10.1016/0305-0548(86)90048-1.

      [14] R. Eberhart, J. Kennedy. “A New Optimizer Using Particle Swarm Theory”, In proceedings of the Sixth International Symposium on Machine and Human Science, pp. 39-43, 1995

      [15] R. Storn, K. Price. "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces", Journal of Global Optimization, 11(4), pp 341–359, 1997 https://doi.org/10.1023/A:1008202821328.

      [16] Z. W. Geem, J. H. Kim, G. V. Loganathan. "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), pp 60-68, 2001 https://doi.org/10.1177/003754970107600201.

      [17] K.M. Passino. "Biomimicry of bacterial foraging for distributed optimization and control", IEEE control systems, 22(3), pp 52-67, 2002 https://doi.org/10.1109/MCS.2002.1004010.

      [18] X. S. Yang, S. Deb. “Cuckoo Search via Lévy flights”, In proceedings of 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, pp 210-214, 2009 https://doi.org/10.1109/NABIC.2009.5393690.

      [19] R. Hooke, T. A. Jeeves. "Direct search" solution of numerical and statistical problems", Journal of the Association for Computing Machinery (ACM). 8 (2), pp 212–229, 1961 https://doi.org/10.1145/321062.321069.

      [20] D. B. Fogel, L. J. Fogel. “An introduction to evolutionary programming”, In Proceedings of European Conference on Artificial Evolution, pp 21-33, 1995 https://doi.org/10.1007/3-540-61108-8_28.

      [21] F. Glover. “Heuristics for Integer Programming Using Surrogate Constraints”, Decision Sciences, 8, pp 156-166, 1977 https://doi.org/10.1111/j.1540-5915.1977.tb01074.x.

      [22] Bishop, J.M., “Stochastic Searching Networks”, Proc. 1st IEE Conf. on Artificial Neural Networks, London, pp 329–331, 1989

      [23] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts - Towards Memetic Algorithms. 1989.

      [24] A.Colorni, M. Dorigo, V. Maniezzo. “Distributed Optimization by Ant Colonies”, In the proceedings of the First European Conference on Artificial Life, Paris, France, Elsevier Publishing, 134-142, , 1991

      [25] G. Dueck. "New Optimization Heuristics The Great Deluge Algorithm and the Record-to-Record Travel", Journal of Computational Physics, 104(1), pp 86-92, 1993 https://doi.org/10.1006/jcph.1993.1010.

      [26] H. Murase, A. Wadano. “Photosynthetic Algorithm for Machine Learning and TSP”, IFAC Proceedings Volumes, 31(12), pp 19-24, 1998 https://doi.org/10.1016/S1474-6670(17)36035-4.

      [27] L.N. de Castro, F.J. von Zuben. "The clonal selection algorithm with engineering applications", In Proceedings of the Genetic and Evolutionary Computation Conference, Las Vegas, Nevada, USA, pp 36-39, 2000

      [28] H.A. Abbass. "MBO: Marriage in honey bees optimization - A haplometrosis polygynous swarming approach" In proceedings of the IEEE Congress on Evolutionary Computation, Vol. 1, pp 207-214, 2001

      [29] É. D. Taillard, S. Voss. “Popmusic — Partial Optimization Metaheuristic under Special Intensification Conditions”, Essays and Surveys in Metaheuristics, Operations Research/Computer Science Interfaces Series, 15, pp 613-629, 2001 https://doi.org/10.1007/978-1-4615-1507-4_27.

      [30] H. Kim, B. Ahn. "A new evolutionary algorithm based on sheep flocks heredity model", In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and signal Processing, PACRIM, vol. 2, pp 514-517, 2001

      [31] X. L. Li, Z. J. Shao, J. X. Qian. “An optimizing method based on autonomous animals: Fish-swarm Algorithm,” System Engineering Theory and Practice, vol. 22(11), pp.32-38, 2002

      [32] S.D. Muller, J. Marchetto, S. Airaghi, P. Kournoutsakos. “Optimization based on bacterial chemotaxis”, IEEE Transactions on Evolutionary Computation, 6(1), pp 16-29, 2002 https://doi.org/10.1109/4235.985689.

      [33] C. Ferreira. "Gene expression programming in problem solving." In proceedings of Soft computing and industry, pp. 635-653, 2002 https://doi.org/10.1007/978-1-4471-0123-9_54.

      [34] Xiao-Feng Xie, Wen-Jun Zhang, Zhi-Lian Yang, “Social cognitive optimization for nonlinear programming problems”, Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, China, pp 779-783, 2002.

      [35] K. M. Passino, ―Biomimicry of bacterial foraging for distributed optimization and control, ‖ IEEE Control Syst., vol. 22, no. 3, pp. 52–67, Jun. 2002. https://doi.org/10.1109/MCS.2002.1004010.

      [36] M. Eusuff, K.E. Lansey. "Optimization of water distribution network design using the shuffled frog leaping algorithm", Journal of Water Resources Planning and Management, 129(3), pp 210–225, 2003 https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210).

      [37] B. Webster, P.J. Bernhard. "A local search optimization algorithm based on natural principles of gravitation", In Proceedings of the international conference on information and knowledge engineering (IKE’03), pp 255–261, 2003.

      [38] S.H. Jung. "Queen-bee evolution for genetic algorithms", Electronics letters, 39(6), pp 575-576, 2003 https://doi.org/10.1049/el:20030383.

      [39] Ray, Tapabrata, and Kim Meow Liew, "Society and civilization: An optimization algorithm based on the simulation of social behavior", IEEE Transactions on Evolutionary Computation, 7(4), pp 386-396, 2003 https://doi.org/10.1109/TEVC.2003.814902.

      [40] X. Li and J. Qian, ―Studies on Artificial Fish Swarm Optimization Algorithm based on Decomposition and Coordination Techniques [J], ‖ J. Circuits Syst., vol. 1, pp. 1–6, 2003.

      [41] P. Pinto, T. A. Runkler, J. M. Sousa. “Wasp swarm optimization of logistic systems”, Adaptive and Natural Computing Algorithms, pp 264-267, 2005 https://doi.org/10.1007/3-211-27389-1_63.

      [42] O. K. Erol, I. Eksin. "A new optimization method: big bang–big crunch", Advances in Engineering Software, 37(2), pp 106-111, 2006 https://doi.org/10.1016/j.advengsoft.2005.04.005.

      [43] Shu-Chuan Chu, Pei-Wei Tsai, Jeng-Shyang Pan. “Cat Swarm Optimisation”, In Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, pp 854-858, 2006.

      [44] N. Hansen, Sibylle, D. Müller, P. Koumoutsakos. “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)”, Evolutionary Computation, 11(1), pp 1-18, 2006 https://doi.org/10.1162/106365603321828970.

      [45] A.R. Mehrabian, C. Lucas. "A novel numerical optimization algorithm inspired from weed colonization", Ecological informatics, 1(4), pp 355-366, 2006 https://doi.org/10.1016/j.ecoinf.2006.07.003.

      [46] Karci, B. Alatas. “Thinking Capability of Saplings Growing Up Algorithm”, In the proceedings of International Conference on Intelligent Data Engineering and Automated Learning, pp 386-393, 2006 https://doi.org/10.1007/11875581_47.

      [47] H Du, X Wu, J Zhuang, "Small-world optimization algorithm for function optimization", Advances in Natural Computation, pp 264-273, 2006 https://doi.org/10.1007/11881223_33.

      [48] A.R. Mehrabian and C. Lucas,A novel numerical optimization algorithm inspired from weed colonization,‖ Ecol. Inform., vol. 1, no. 4, pp. 355–366, 2006 https://doi.org/10.1016/j.ecoinf.2006.07.003.

      [49] S. He, Q. H. Wu, and J. R. Saunders,A novel group search optimizer inspired by animal behavioural ecology,‖ in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 2006, pp. 1272–1278.

      [50] D. Karaboga, B. Basturk. “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”, Journal of Global Optimization, 39(3) pp 459–471, 2007 https://doi.org/10.1007/s10898-007-9149-x.

      [51] R. A. Formato. "Central force optimization: a new metaheuristic with applications in applied electromagnetics", Progress In Electromagnetics Research, 77, 425-491, 2007 https://doi.org/10.2528/PIER07082403.

      [52] S. Su, J. Wang, W. Fan, X. Yin. “Good Lattice Swarm Algorithm for Constrained Engineering Design Optimization”, In proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, pp 6421-6424, 2007 https://doi.org/10.1109/WICOM.2007.1575.

      [53] E. Atashpaz-Gargari, C. Lucas. "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", In Proceedings of the IEEE Congress on Evolutionary Computation, 2007 https://doi.org/10.1109/CEC.2007.4425083.

      [54] A.Mucherino, O. Seref. "Monkey search: a novel metaheuristic search for global optimization", Data Mining, Systems Analysis and Optimization in Biomedicine, 953(1) , 2007 https://doi.org/10.1063/1.2817338.

      [55] Borji, “A new global optimization algorithm inspired by parliamentary political competitions”, In Proceedings of the Mexican International Conference on Artificial Intelligence, pp 61-71, 2007 https://doi.org/10.1007/978-3-540-76631-5_7.

      [56] P. Rabanal, I. Rodríguez, F. Rubio. "Using river formation dynamics to design heuristic algorithms", In the proceedings of the International Conference on Unconventional Computation, pp 163-177, 2007. https://doi.org/10.1007/978-3-540-73554-0_16.

      [57] J. P. Pedroso. “Simple meta-heuristics using the simplex algorithm for non-linear programming”, Technical Report DCC-2007-06, DCC, FC, Universidade do Porto, 2007

      [58] Y. Chu, H. Mi, H. Liao. “A Fast Bacterial Swarming Algorithm for high-dimensional function optimization”, In Proceedings of IEEE World Congress on Computational Intelligence, Hong Kong, pp 3135-3140, 2008

      [59] D. Simon. "Biogeography-based optimization", IEEE Transactions on Evolutionary Computation, 12(6), pp 702-713, 2008 https://doi.org/10.1109/TEVC.2008.919004.

      [60] J. A. B. Filho , F. B. L. Neto, A. J. C. C. Lins, A. I. S. Nascimento, M. P. Lima, “A novel search algorithm based on fish school behavior”, In proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp 2646-2651, 2008

      [61] W. Cai, W. Yang, X. Chen. “A Global Optimization Algorithm Based on Plant Growth Theory: Plant Growth Optimization”, Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, pp 1194-1199, 2008 https://doi.org/10.1109/ICICTA.2008.416.

      [62] T. C. Havens, C. J. Spain, N. G. Salmon, J. M. Keller. "Roach infestation optimization", In proceedings of the IEEE Swarm Intelligence Symposium, SIS 2008, pp 1-7, 2008 https://doi.org/10.1109/SIS.2008.4668317.

      [63] P. Cortés, J. M. García, J. Muñuzuri, L. Onieva. "Viral systems: A new bio-inspired optimisation approach", Computers & Operations Research, 35(9), pp 2840-2860, 2008 https://doi.org/10.1016/j.cor.2006.12.018.

      [64] T. Chen. “A simulative bionic intelligent optimization algorithm: Artificial searching swarm algorithm and its performance analysis”. In Proceedings of the IEEE International Joint Conference on Computational Sciences and Optimization, CSO 2009, Vol. 2, pp 864-866, 2009 https://doi.org/10.1109/CSO.2009.183.

      [65] S. Das, A. Chowdhury, A. Abraham. “A Bacterial Evolutionary Algorithm for automatic data clustering”, In Proceedings of IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp 2403-2410, 2009 https://doi.org/10.1109/CEC.2009.4983241.

      [66] S. Iordache. "Consultant-guided search: a new metaheuristic for combinatorial optimization problems", In Proceedings of the 12th annual conference on Genetic and evolutionary computation, Portland, OR, USA, pp. 225-232, 2009 https://doi.org/10.1145/1830483.1830526.

      [67] S. Kadioglu, M. Sellmann. “Dialectic Search”, In Proceedings of International Conference on Principles and Practice of Constraint Programming, pp 486-500, 2009 https://doi.org/10.1007/978-3-642-04244-7_39.

      [68] Y. Shiqin, J. Jianjun, Y. Guangxing. “A Dolphin Partner Optimization”, In proc of 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, pp 124-128, 2009 https://doi.org/10.1109/GCIS.2009.464.

      [69] X. Yang. "Firefly algorithms for multimodal optimization." Stochastic algorithms: foundations and applications. Springer Berlin Heidelberg, pp 169-178, 2009 https://doi.org/10.1007/978-3-642-04944-6_14.

      [70] K. N. Krishnanand, D. Ghose. "Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions", Swarm intelligence, 3(2), pp 87-124, 2009 https://doi.org/10.1007/s11721-008-0021-5.

      [71] S. He, Q.H. Wu, J.R. Saunders. "Group search optimizer: an optimization algorithm inspired by animal searching behavior", IEEE Transactions on evolutionary computation, 13(5), pp 973-990, 2009 https://doi.org/10.1109/TEVC.2009.2011992.

      [72] L.M. Zhang, C. Dahlmann, Y. Zhang. "Human-inspired algorithms for continuous function optimization", In proceeding of the IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, Vol. 1, pp 318-321, 2009 https://doi.org/10.1109/ICICISYS.2009.5357838.

      [73] R. Oftadeh, M. J. Mahjoob. “A new meta-heuristic optimization algorithm: Hunting Search”, In proceeding of the Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009 https://doi.org/10.1109/ICSCCW.2009.5379451.

      [74] H. Shah-Hosseini. "The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm", International Journal of Bio-Inspired Computation, 1(1/2), pp 71-79, 2009 https://doi.org/10.1504/IJBIC.2009.022775.

      [75] A.H. Kashan. "League Championship Algorithm: A New Algorithm for Numerical Function Optimization", In proceedings of International Conference of Soft Computing and Pattern Recognition, Malacca, Malaysia, pp 43-48, 2009 https://doi.org/10.1109/SoCPaR.2009.21.

      [76] S. Chen. “Locust Swarms - A new multi-optima search technique”, In proceeding of the IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp 1745-1752, 2009 https://doi.org/10.1109/CEC.2009.4983152.

      [77] U. Premaratne, J. Samarabandu, T. Sidhu. "A new biologically inspired optimization algorithm" In proceedings of the 2009 international conference on industrial and information systems, pp 279-284, 2009 https://doi.org/10.1109/ICIINFS.2009.5429852.

      [78] Y. Marinakis, M. Marinaki, and N. Matsatsinis, ―A hybrid bumble bees mating optimization-grasp algorithm for clustering,‖ in Hybrid Artificial Intelligence Systems, Springer, 2009, pp. 549–556. https://doi.org/10.1007/978-3-642-02319-4_66.

      [79] R. Oftadeh and M. J. Mahjoob, ―A new meta-heuristic optimization algorithm: Hunting Search, ‖ in Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth International Conference on, 2009, pp. 1–5. https://doi.org/10.1109/ICSCCW.2009.5379451.

      [80] Xin-She Yang. "A new metaheuristic bat-inspired algorithm", In Proceedings of the Fourth International Workshop on Nature inspired cooperative strategies for optimization (NICSO 2010), Berlin, Heidelberg, pp 65-74, 2010 https://doi.org/10.1007/978-3-642-12538-6_6.

      [81] A.Kaveh, S. Talatahari. "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), pp 267-289, 2010 https://doi.org/10.1007/s00707-009-0270-4.

      [82] X.S. Yang, S. Deb. "Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization." In Proceedings of Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 101-111, 2010 https://doi.org/10.1007/978-3-642-12538-6_9.

      [83] Y. Tan, Y. Zhu. "Fireworks algorithm for optimization"”, In proceedings of International Conference in Swarm Intelligence, pp 355-364, 2010 https://doi.org/10.1007/978-3-642-13495-1_44.

      [84] A.Ahrari, A. A. Atai. "Grenade explosion method - a novel tool for optimization of multimodal functions", Applied Soft Computing, 10(4), pp 1132-1140, 2010 https://doi.org/10.1016/j.asoc.2009.11.032.

      [85] M.A. Eita, M. M. Fahm. "Group counseling optimization: a novel approach", In proceedings of Research and Development in Intelligent Systems XXVI, pp 195-208, 2010 https://doi.org/10.1007/978-1-84882-983-1_14.

      [86] H. Chen, Y. Zhu, K. Hu, X. He. “Hierarchical Swarm Model: A New Approach to Optimization”, Discrete Dynamics in Nature and Society, 2010 https://doi.org/10.1155/2010/379649.

      [87] A.Sharma. “A new optimizing algorithm using reincarnation concept”, In the proceeding of the 11th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), pp. 281-288, 2010 https://doi.org/10.1109/CINTI.2010.5672231.

      [88] Y. Xu, Z. Cui, J. Zeng, "Social emotional optimization algorithm for nonlinear constrained optimization problems." In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, pp 583-590, 2010 https://doi.org/10.1007/978-3-642-17563-3_68.

      [89] R. Hedayatzadeh, F. A. Salmassi, R. Akbari, K. Ziarati. "Termite colony optimization: A novel approach for optimizing continuous problems", In the proceedings of 2010 18th IEEE Iranian Conference on Electrical Engineering, pp. 553-558, 2010 https://doi.org/10.1109/IRANIANCEE.2010.5507009.

      [90] Z. Bayraktar, M. Komurcu, D. H. Werner. "Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics", In proceedings of 2010 IEEE Antennas and Propagation Society International Symposium, pp 1-4, 2012 https://doi.org/10.1109/APS.2010.5562213.

      [91] X.-S. Yang, ―A New Metaheuristic Bat-Inspired Algorithm,‖ in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, Eds. Springer Berlin Heidelberg, 2010, pp. 65–74. https://doi.org/10.1007/978-3-642-12538-6_6.

      [92] Alatas. “ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization”, Expert Systems with Applications, 38(10), pp 13170–13180, 2011 https://doi.org/10.1016/j.eswa.2011.04.126.

      [93] R.S. Parpinelli, H.S. Lopes. "An eco-inspired evolutionary algorithm applied to numerical optimization." In proc. of the Third World Congress on Nature and Biologically Inspired Computing (NaBIC), 2011, Spain, pp 466-471, 2011 https://doi.org/10.1109/NaBIC.2011.6089631.

      [94] H. Shah-Hosseini. "Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation", International Journal of Computational Science and Engineering, 6(1/2), pp 132-140, 2011 https://doi.org/10.1504/IJCSE.2011.041221.

      [95] Duman, M. Uysal, A. F. Alkaya1. “Migrating Birds Optimization: A New Meta-heuristic Approach and Its Application to the Quadratic Assignment Problem”, In proceedings of the European Conference on the Applications of Evolutionary Computation, pp 254-263, 2011 https://doi.org/10.1007/978-3-642-20525-5_26.

      [96] A.Salhi, E. S. Fraga. “Nature-Inspired Optimisation Approaches and the New Plant Propagation Algorithm”, In Proceedings of the The International Conference on Numerical Analysis and Optimization (ICeMATH ’11), Yogyakarta, Indonesia, pp K2-1-K2-8, 2011

      [97] K. Tamura, K. Yasuda, "Spiral Dynamics Inspired Optimization." Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(8), pp 1116-1122, 2011 https://doi.org/10.20965/jaciii.2011.p1116.

      [98] R. V. Rao, V. J. Savsani, D. P. Vakharia. “Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems”, Computer-Aided Design, 43, (3), pp 303–315, 2011 https://doi.org/10.1016/j.cad.2010.12.015.

      [99] T. H. Tran, K. M. Ng. “A water-flow algorithm for flexible flow shop scheduling with intermediate buffers”, Journal of Scheduling, 14(5), pp 483-500, 2011 https://doi.org/10.1007/s10951-010-0205-x.

      [100] H. Shayeghi, J. Dadashpour. “Anarchic Society Optimization Based PID Control of an Automatic Voltage Regulator (AVR) System”, Electrical and Electronic Engineering, 2(4),pp. 199-207, 2012 https://doi.org/10.5923/j.eee.20120204.05.

      [101] J. Li, Z. Cui, Z. Shi. "An improved artificial plant optimization algorithm for coverage problem in WSN", Sensor Letters, 10(8), pp 1874-1878, 2012 https://doi.org/10.1166/sl.2012.2627.

      [102] B.Niu, H. Wang. “Bacterial Colony Optimization”, Discrete Dynamics in Nature and Society, 2012 https://doi.org/10.1155/2012/698057.

      [103] A.Milani, V. Santucci. "Community of scientist optimization: An autonomy oriented approach to distributed optimization", AI Communications, 25(2), pp. 157-172, 2012

      [104] P. Civicioglu. “Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm”, Computers & Geosciences, 46, pp 229–247, 2012 https://doi.org/10.1016/j.cageo.2011.12.011.

      [105] Cuevas, D. Oliva, D. Zaldivar, M. Pérez-Cisneros, H. Sossa. "Circle detection using electro-magnetism optimization", Information Sciences, 182(1), pp 40-55, 2012 https://doi.org/10.1016/j.ins.2010.12.024.

      [106] X. Yang. "Flower pollination algorithm for global optimization." In Proceedings of International Conference on Unconventional Computing and Natural Computation, pp 240-249, 2012 https://doi.org/10.1007/978-3-642-32894-7_27.

      [107] W. T. Pan. "A new fruit fly optimization algorithm: taking the financial distress model as an example", Knowledge-Based Systems, 26, pp 69-74, 2012 https://doi.org/10.1016/j.knosys.2011.07.001.

      [108] A.Mozaffari, A. Fathi, S. Behzadipour. "The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation", International Journal of Bio-Inspired Computation, 4(5), pp 286-301, 2012 https://doi.org/10.1504/IJBIC.2012.049889.

      [109] M. El-Dosuky, A. El-Bassiouny, T. Hamza, M. Rashad. "New hoopoe heuristic optimization", International Journal of Science and Advanced Technology, 2(9), pp 85-90, 2012

      [110] H. Hernández, C. Blum. "Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs", Swarm Intelligence, 6(2), pp 117-150 https://doi.org/10.1007/s11721-012-0067-2.

      [111] A.H. Gandomi, A. H. Alavi. "Krill herd: a new bio-inspired optimization algorithm ", Communications in Nonlinear Science and Numerical Simulation, 17(12), pp 4831-4845, 2012 https://doi.org/10.1016/j.cnsns.2012.05.010.

      [112] Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi. “Mine blast algorithm for optimization of truss structures with discrete variables”, Computers and Structures, (102–103), pp 49–63, 2012 https://doi.org/10.1016/j.compstruc.2012.03.013.

      [113] Kaveh, M. Khayatazad. "A new meta-heuristic method: ray optimization", Computers & Structures, (112), pp 283-294, 2012 https://doi.org/10.1016/j.compstruc.2012.09.003.

      [114] H.D. Purnomo, H.-M. Wee., "Soccer game optimization: an innovative integration of evolutionary algorithm and swarm intelligence algorithm", Meta-Heuristics optimization algorithms in engineering, business, economics, and finance. IGI Global, 2012

      [115] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi. “Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems”, Computers & Structures, 110-111, pp 151-166, 2012 https://doi.org/10.1016/j.compstruc.2012.07.010.

      [116] R. Tang, S. Fong, X. S. Yang, S. Deb. "Wolf search algorithm with ephemeral memory". In proceedings of Seventh International Conference on Digital Information Management, pp 165–172, 2012 https://doi.org/10.1109/ICDIM.2012.6360147.

      [117] H. T. Nguyen, B. Bhanu. “Zombie Survival Optimization: A swarm intelligence algorithm inspired by zombie foraging", In Proceedings of 21st IEEE International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, pp 987-990, 2012

      [118] Cuevas, M. González, D. Zaldivar, M. Pérez-Cisneros, and G. García, ―An algorithm for global optimization inspired by collective animal behavior, ‖ Discrete Dyn. Nat. Soc., vol. 2012, 2012. https://doi.org/10.1155/2012/638275.

      [119] A.Kaveh, N. Farhoudi. ”A new optimization method: Dolphin echolocation”, Advances in Engineering Software, 59, pp.53-70, 2013 https://doi.org/10.1016/j.advengsoft.2013.03.004.

      [120] A.Subramanian, A. S. S. Sekar, K. Subramanian. "A New Engineering Optimization Method: African Wild Dog Algorithm", International Journal of Soft Computing, 8(3), pp 163-170, 2013

      [121] W. Yan, Z. J. Hao. "A novel optimization algorithm based on atmosphere clouds model", International Journal of Computational Intelligence and Applications, 12(01), p.1350002, 2013 https://doi.org/10.1142/S1469026813500028.

      [122] P. Civicioglu. “Backtracking Search Optimization Algorithm for numerical optimization problems”, Applied Mathematics and Computation, 29(15), pp. 8121-8144, 2013 https://doi.org/10.1016/j.amc.2013.02.017.

      [123] A.Hatamlou. "Black hole: A new heuristic optimization approach for data clustering", Information Sciences, 222, pp 175-184, 2013 https://doi.org/10.1016/j.ins.2012.08.023.

      [124] M. Taherdangkoo, M. H. Shirzadi M. Yazdi, M. H. Bagheri. "A robust clustering method based on blind, naked mole-rats (BNMR) algorithm", Swarm and Evolutionary Computation, 10, pp 1-11, 2013 https://doi.org/10.1016/j.swevo.2013.01.001.

      [125] A.S. Eesa, A.M. Abdulazeez, Z. Orman. “Cuttlefish algorithm - a novel bio-inspired optimization algorithm”, International Journal of Scientific and Engineering Research, 4(9), pp. 1978-1986, 2013 https://doi.org/10.1007/978-3-642-37371-8_26.

      [126] Sur, S. Sharma, A. Shukla. "Egyptian vulture optimization algorithm - a new nature inspired meta-heuristics for knapsack problem", In proceedings of the 9th International Conference on Computing and Information Technology (IC2IT), Bangkok, pp. 227-237, 2013

      [127] M. Abdechiri, M.R. Meybodi, H. Bahrami. “Gases Brownian motion optimization: an algorithm for optimization (GBMO)”, Applied Soft Computing, 13(5), pp 2932-2946, 2013 https://doi.org/10.1016/j.asoc.2012.03.068.

      [128] Mo, L. Xu. "Magnetotactic bacteria optimization algorithm for multimodal optimization", In the proceedings of the 2013 IEEE Symposium on Swarm Intelligence (SIS), pp 240-247, 2013 https://doi.org/10.1109/SIS.2013.6615185.

      [129] Y. Gheraibia, A. Moussaoui. “Penguins search optimization algorithm (PeSOA)”, In proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp 222-231, 2013 https://doi.org/10.1007/978-3-642-38577-3_23.

      [130] Erik Cuevas,Miguel Cienfuegos, Daniel Zaldívar , Marco Pérez-Cisneros, “A swarm optimization algorithm inspired in the behavior of the social-spider”, Expert Systems with Applications, 40(16), pp 6374-6384, 2013 https://doi.org/10.1016/j.eswa.2013.05.041.

      [131] M. Neshat, G. Sepidnam, M. Sargolzaei, "Swallow swarm optimization algorithm: a new method to optimization", Neural Computing and Applications, 23(2), pp 429-454, 2013 https://doi.org/10.1007/s00521-012-0939-9.

      [132] X. X. Li, J. Zhang, M. Yin. “Animal migration optimization: an optimization algorithm inspired by animal migration behavior”, Neural Computing and Applications, 24(7), pp 1867–1877, 2014 https://doi.org/10.1007/s00521-013-1433-8.

      [133] M. T. Adham, P. J. Bentley. “An Artificial Ecosystem Algorithm applied to static and Dynamic Travelling Salesman Problems”, In Proceedings of the IEEE International Conference on Evolvable Systems, Orlando, FL, USA, pp 149-156, 2014 https://doi.org/10.1109/ICES.2014.7008734.

      [134] A.Askarzadeh. "Bird mating optimizer: an optimization algorithm inspired by bird mating strategies", Communications in Nonlinear Science and Numerical Simulation, 19(4), pp1213-1228, 2014 https://doi.org/10.1016/j.cnsns.2013.08.027.

      [135] X. Meng, Y. Liu, X. Gao, H. Zhang. “A New Bio-inspired Algorithm: Chicken Swarm Optimization”, In Proceedings of ICSI 2014, vol 8794, pp 86-94, 2014 https://doi.org/10.1007/978-3-319-11857-4_10.

      [136] C. Obagbuwa, A. O. Adewumi. "An Improved Cockroach Swarm Optimization", The Scientific World Journal, 2014 https://doi.org/10.1155/2014/375358.

      [137] A.Kaveh, V. R. Mahdavi. "Colliding bodies optimization: a novel meta-heuristic method", Computers & Structures, 139, pp 18-27, 2014 https://doi.org/10.1016/j.compstruc.2014.04.005.

      [138] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, J. A. Portilla-Figueras. "The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems", The Scientific World Journal, 2014 https://doi.org/10.1155/2014/739768.

      [139] N. Ghorbani, E. Babaei. “Exchange market algorithm.” Applied Soft Computing, 19, pp 177–187, 2014 https://doi.org/10.1016/j.asoc.2014.02.006.

      [140] M. Ghaemi, M. R. F. Derakhshi. “Forest Optimization Algorithm”,_ _Expert Systems with Applications, 41(15), 6676–6687, 2014 https://doi.org/10.1016/j.eswa.2014.05.009.

      [141] E. Osaba, F. Diaz, E. Onieva. “Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts”, Applied Intelligence. 41(1), pp 145-166, 2014 https://doi.org/10.1007/s10489-013-0512-y.

      [142] J.M.L. Melvix. "Greedy Politics Optimization: Metaheuristic inspired by political strategies adopted during state assembly elections", In proceedings of the IEEE International Advance Computing Conference (IACC), pp 1157-1162, 2014

      [143] S. Mirjalili, S. M. Mirjalili, A. Lewis. "Grey wolf optimizer." Advances in Engineering Software, 69, pp 46-61, 2014 https://doi.org/10.1016/j.advengsoft.2013.12.007.

      [144] A.Hatamlou. "Heart: a novel optimization algorithm for cluster analysis", Progress in Artificial Intelligence, 2(2), pp 167-173, 2014 https://doi.org/10.1007/s13748-014-0046-5.

      [145] H. Gandomi. “Interior search algorithm (ISA): a novel approach for global optimization”, ISA transactions, 53(4), pp 1168-1183, 2014 https://doi.org/10.1016/j.isatra.2014.03.018.

      [146] V. V. Melo. “Kaizen Programming", In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO), pp 895-902, 2014 https://doi.org/10.1145/2576768.2598264.

      [147] M. Hajiaghaei-Keshteli, M. Aminnayeri. “Solving the integrated scheduling of production rail transportation problem by Keshtel algorithm”, Applied Soft Computing, 25, pp 184–203, 2014 https://doi.org/10.1016/j.asoc.2014.09.034.

      [148] A.Brabazon, W. Cui, M. O’Neill. “The raven roosting optimisation algorithm”, Soft Computing, 20(2), pp 525–545, 2014 https://doi.org/10.1007/s00500-014-1520-5.

      [149] Felipe, E. Goldbarg, M. Goldbarg. "Scientific algorithms for the Car Renter Salesman Problem." In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp. 873-879, 2014 https://doi.org/10.1109/CEC.2014.6900556.

      [150] O. Abedinia, N. Amjady, A. Ghasemi. "A new metaheuristic algorithm based on shark smell optimization", Complexity, 2014 https://doi.org/10.1002/cplx.21634.

      [151] Jagdish Chand Bansal, Harish Sharma, Shimpi Singh Jadon, Maurice Clerc, “Spider monkey optimization algorithm for numerical optimization", Memetic Computing, 6(1), pp 31-47, 2014 https://doi.org/10.1007/s12293-013-0128-0.

      [152] F. Merrikh-Bayat, “A Numerical Optimization Algorithm Inspired by the Strawberry Plant’, arXiv preprint arXiv:1407.7399, 2014

      [153] M.Y. Cheng, D. Prayogo. “Symbiotic organisms search: a new metaheuristic optimization algorithm”, Computers & Structures, 139, pp 98-112, 2014 https://doi.org/10.1016/j.compstruc.2014.03.007.

      [154] J.P. Arnaout. "Worm Optimization: A novel optimization algorithm inspired by C. Elegans". In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, pp 2499-2505, 2014

      [155] S. Mirjalili. "The ant lion optimizer", Advances in Engineering Software, 83, pp 80-98, 2015 https://doi.org/10.1016/j.advengsoft.2015.01.010.

      [156] S. U. Ali, G. Tezel, E. Yel. “Artificial algae algorithm (AAA) for nonlinear global optimization”, Applied Soft Computing, 31, pp 153-157, 2013 https://doi.org/10.1016/j.asoc.2015.03.003.

      [157] Y. Shi. "An optimization algorithm based on brainstorming process", Emerging Research on Swarm Intelligence and Algorithm Optimization, pp 1-35, 2015 https://doi.org/10.4018/978-1-4666-6328-2.ch001.

      [158] Oguz FINDIK. “Bull optimization algorithm based on genetic operators for continuous optimization problems”, Turkish Journal of Electrical Engineering & Computer Sciences, 23, pp 2225-2239, 2015 https://doi.org/10.3906/elk-1307-123.

      [159] G. Wang, S. Deb, L. S. Coelho, “Elephant Herding Optimization”, In proc of the 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, pp 1-5, 2015 https://doi.org/10.1109/ISCBI.2015.8.

      [160] S. Deb, S. Fong, Z. Tian. "Elephant Search Algorithm for optimization problems", In Proc. of the 10th IEEE International Conference on Digital Information Management (ICDIM), pp 249-255, 2015 https://doi.org/10.1109/ICDIM.2015.7381893.

      [161] H. Beiranvand, E. Rokrok. "General Relativity Search Algorithm: A Global Optimization Approach", International Journal of Computational Intelligence and Applications, 14(3), 2015 https://doi.org/10.1142/S1469026815500170.

      [162] Tang, S. Dong, Y. Jiang, H. Li, Y. Huang. "ITGO: Invasive tumor growth optimization algorithm", Applied Soft Computing, (36), pp. 670-698, 2015 https://doi.org/10.1016/j.asoc.2015.07.045.

      [163] Javidy, A. Hatamlou, S. Mirjalili. "Ions motion algorithm for solving optimization problems", Applied Soft Computing, 32(1), pp 72-79, 2015 https://doi.org/10.1016/j.asoc.2015.03.035.

      [164] Chen, Y. Tsai, I. Liu, C. Lai, Y. Yeh, S. Kuo, Y. Chou. "A Novel Metaheuristic: Jaguar Algorithm with Learning Behavior." In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1595-1600, 2015 https://doi.org/10.1109/SMC.2015.282.

      [165] H. Shareef, A.A. Ibrahim, A.H. Mutlag. "Lightning search algorithm", Applied Soft Computing, 36(1), pp 315-333, 2015 https://doi.org/10.1016/j.asoc.2015.07.028.

      [166] G. Wang, S. Deb, Z. Cui. "Monarch butterfly optimization",, Neural Computing and Applications, pp 1-20, 2015.

      [167] S. Mirjalili. "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowledge-Based Systems, 89, 228-249, 2015 https://doi.org/10.1016/j.knosys.2015.07.006.

      [168] S. Mirjalili, S. M. Mirjalili, A. Hatamlou. “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization.” Neural Computing & Applications, 27(2), pp 1-19, 2015 https://doi.org/10.1007/s00521-015-1870-7.

      [169] A.H. Kashan. “A new metaheuristic for optimization: optics inspired optimization(OIO)”, Computers & Operations Research, 55, pp.99-125, 2015 https://doi.org/10.1016/j.cor.2014.10.011.

      [170] X. Hea, S. Zhang, J. Wang. “A Novel Algorithm Inspired by Plant Root Growth with Self-similarity Propagation”, In proceedings of the 1st International Conference on Industrial Networks and Intelligent Systems (INISCom), pp 157-162, 2015 https://doi.org/10.4108/icst.iniscom.2015.258407.

      [171] Merrikh-Bayat. "The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature", Applied Soft Computing, (33), pp 292-303, 2015 https://doi.org/10.1016/j.asoc.2015.04.048.

      [172] H. Salimi, “Stochastic fractal search: a powerful metaheuristic algorithm”, Knowledge-Based Systems, 75, pp1-18, 2015 https://doi.org/10.1016/j.knosys.2014.07.025.

      [173] Dogan, T. Olmez. "A new metaheuristic for numerical function optimization: Vortex Search Algorithm", Information Sciences, 293, pp 125-145, 2015 https://doi.org/10.1016/j.ins.2014.08.053.

      [174] Y. J. Zheng. “Water wave optimization: a new nature-inspired metaheuristic”, Computers & Operations Research, 55, pp 1-11, 2015 https://doi.org/10.1016/j.cor.2014.10.008.

      [175] B. Odili, M. N. M. Kahar. "Solving the Traveling Salesman's Problem Using the African Buffalo Optimization". Computational intelligence and neuroscience, vol. 2016, Article ID 1510256, 12 pages, 2016 https://doi.org/10.1155/2016/1510256.

      [176] Xian-Bing Meng, X.Z. Gao, Lihua Lu, Yu Liu & Hengzhen Zhang. “A new bio-inspired optimisation algorithm: Bird Swarm Algorithm”, Journal of Experimental & Theoretical Artificial Intelligence, 28(4), pp 673-687, 2016 https://doi.org/10.1080/0952813X.2015.1042530.

      [177] M. K. Ibrahim, R. S. Ali. "Novel Optimization Algorithm Inspired by Camel Traveling Behavior", Iraq J. Electrical and Electronic Engineering, 12(2), 167-178, 2016 https://doi.org/10.33762/eeej.2016.118375.

      [178] X. Feng, M. Ma, H. Yu. "Crystal Energy Optimization Algorithm", Computational Intelligence, 32(2), pp 284—322, 2016 https://doi.org/10.1111/coin.12053.

      [179] S. Mirjalili. "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Computing and Applications, 27(4), pp 1053-1073, 2016 https://doi.org/10.1007/s00521-015-1920-1.

      [180] N. Razmjooy, M. Khalilpour, M. Ramezani. "A New Meta-Heuristic Optimization Algorithm Inspired by FIFA World Cup Competitions: Theory and Its Application in PID Designing for AVR System", Journal of Control, Automation and Electrical Systems, 27(4), 1-22, 2016 https://doi.org/10.1007/s40313-016-0242-6.

      [181] A.E. Xavier, V. L. Xavier. "Flying elephants: a general method for solving non-differentiable problems", Journal of Heuristics, 22(4), pp 649-664, 2016 https://doi.org/10.1007/s10732-014-9268-8.

      [182] M. Yazdani, F. Jolai. "Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm", Journal of Computational Design and Engineering, 3(1), pp 24-36, 2016 https://doi.org/10.1016/j.jcde.2015.06.003.

      [183] Y. Labbi, D. B. Attous, H. A. Gabbar, B. Mahdad, A. Zidan. “A new rooted tree optimization algorithm for economic dispatch with valve-point effect”, International Journal of Electrical Power & Energy Systems, 79, pp 298-311, 2016 https://doi.org/10.1016/j.ijepes.2016.01.028.

      [184] A.Ebrahimi, E. Khamehchi, “Sperm Whale Algorithm: an Effective Metaheuristic Algorithm for Production Optimization Problems”, Journal of Natural Gas Science & Engineering, 29, pp 211-222, 2016 https://doi.org/10.1016/j.jngse.2016.01.001.

      [185] M. D. Li, H. Zhao, X. W. Weng, T. Han. “A novel nature-inspired algorithm for optimization: Virus colony search”, Advances in Engineering Software, 92, pp 65-88, 2016 https://doi.org/10.1016/j.advengsoft.2015.11.004.

      [186] Y. C. Liang, J. R. C. Juarez. “A novel metaheuristic for continuous optimization problems: Virus optimization algorithm”, Engineering Optimization, 48(1), pp 73-93, 2016 https://doi.org/10.1080/0305215X.2014.994868.

      [187] A.Kaveh, T. Bakhshpoori. "Water Evaporation Optimization: A novel physically inspired optimization algorithm", Computers & Structures, 167, pp 69-85, 2016 https://doi.org/10.1016/j.compstruc.2016.01.008.

      [188] S. Mirjalili, A. Lewisa. "The Whale Optimization Algorithm", Advances in Engineering Software, 95, pp 51-67, 2016 https://doi.org/10.1016/j.advengsoft.2016.01.008.

      [189] S. Saremi, S. Mirjalili, A. Lewis. “Grasshopper Optimisation Algorithm: Theory and application”,_ _Advances in Engineering Software, 105, pp 30-47, 2017 https://doi.org/10.1016/j.advengsoft.2017.01.004.

      [190] Raouf, Hezam, "Sperm motility algorithm: a novel metaheuristic approach for global optimisation", International Journal of Operational Research (IJOR), 28(2), 2017 https://doi.org/10.1504/IJOR.2017.10002079.

      [191] H. Shayanfar and F. Gharehchopogh, "Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems", Applied Soft Computing, vol. 71, pp. 728-746, 2018. Available: 10.1016/j.asoc.2018.07.033. https://doi.org/10.1016/j.asoc.2018.07.033.

      [192] S. Shadravan, H. Naji and V. Bardsiri, "The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems", Engineering Applications of Artificial Intelligence, vol. 80, pp. 20-34, 2019. Available: 10.1016/j.engappai.2019.01.001. https://doi.org/10.1016/j.engappai.2019.01.001.

      [193] H. Wang et al., "Heterogeneous pigeon-inspired optimization", Science China Information Sciences, vol. 62, no. 7, 2019. Available: 10.1007/s11432-018-9713-7. https://doi.org/10.1007/s11432-018-9713-7.

      [194] R. Asaad and N. Abdulnabi, "Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems", Academic Journal of Nawroz University, vol. 7, no. 3, pp. 1-6, 2018. https://doi.org/10.25007/ajnu.v7n3a193.

      [195] A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja and H. Chen, "Harris hawks optimization: Algorithm and applications", Future Generation Computer Systems, vol. 97, pp. 849-872, 2019. Available: 10.1016/j.future.2019.02.028. https://doi.org/10.1016/j.future.2019.02.028.

      [196] T. Biyanto et al., "Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms", IOP Conference Series: Materials Science and Engineering, vol. 267, p. 012036, 2017. Available: 10.1088/1757-899x/267/1/012036 [Accessed 1 November 2019]. https://doi.org/10.1088/1757-899X/267/1/012036.

      [197] W. Ahmad, W. Jacqueline; N. Ajit (2017). "Hydrological Cycle Algorithm for Continuous Optimization Problems". Journal of Optimization. 2017: 1–25. https://doi.org/10.1155/2017/3828420.

      [198] Harifi, Sasan; Khalilian, Madjid; Mohammadzadeh, Javad; Ebrahimnejad, Sadoullah (2019). "Emperor Penguins Colony: A new metaheuristic algorithm for optimization". Evolutionary Intelligence. 12 (2): 211–226. https://doi.org/10.1007/s12065-019-00212-x.

      [199] R. Balamurugan; A.M. Natarajan; K. Premalatha (2015). "Stellar-Mass Black Hole Optimization for Biclustering Microarray Gene Expression Data". Applied Artificial Intelligence an International Journal. 29 (4): 353–381. https://doi.org/10.1080/08839514.2015.1016391.

      [200] Metaheuristic | Wikiwand", Wikiwand, 2019. [Online]. Available: https://www.wikiwand.com/en/Metaheuristic#/citenoterobbins52stochastic21. [Accessed: 02- Nov- 2019].

      [201] S. Almufti, R. Marqas, and V. Ashqi, (2019). Taxonomy of bio-inspired optimization algorithms. Journal of Advanced Computer Science & Technology, 8(2), 23. https://doi.org/10.14419/jacst.v8i2.29402.

      [202] S. Almufti, R. Marqas, and R. Asaad, (2019). Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP). Journal of Advanced Computer Science & Technology, 8(2), 32. https://doi.org/10.14419/jacst.v8i2.29403.

      S. Almufti, A. Zebari, and H. Omer, (2019). A comparative study of particle swarm optimization and genetic algorithm. Journal of Advanced Computer Science & Technology, 8(2), 40-45. https://doi.org/10.14419/jacst.v8i2.29402

 

View

Download

Article ID: 29497
 
DOI: 10.14419/ijsw.v7i1.29497




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.