Detection and analysis of human hemoglobin HB and HBO2 with new Nano-sensor based on chiral metamaterials

Authors

  • Mezache Zinelabiddine University Constantine 1
  • Chemseddine ZARA University of Brothers’ Mentouri Constantine 1
  • Fateh LARIOUI University of Brothers’ Mentouri Constantine 1
  • Fatiha Benabdelaziz University of Brothers’ Mentouri Constantine 1

DOI:

https://doi.org/10.14419/ijpr.v5i2.7780

Published:

2017-06-27

Keywords:

Chiral Metamaterials, Nano-Sensor, Human Hemoglobin.

Abstract

This article is devoted to the simulation COMSOL Multiphysics of ultra-sensitive nano-sensor based on chiral Metamaterials, which allows us to follow hemolysis with good accuracy. Where we will study the reflected wave in human hemoglobin oxygenated and deoxygenated to determine its concentration. In this paper we also present the numerical results and the equations of variations obtained by Matlab.

References

[1] Akyurtlu, A., & Werner, D. H. (2004). A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials. IEEE Transactions on Antennas and Propaga-tion, 52(9), 2267-2276. https://doi.org/10.1109/TAP.2004.834153.

[2] Wang, X., Werner, D. H., Li, L. W., & Gan, Y. B. (2007). Inte-raction of electromagnetic waves with 3-D arbitrarily shaped homogeneous chiral targets in the presence of a lossy half space. IEEE Transactions on Antennas and Propagation, 55(12), 3647-3655. https://doi.org/10.1109/TAP.2007.910336.

[3] Kwon, D. H., Werner, P. L., & Werner, D. H. (2008). Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation.Optics express, 16(16), 11802-11807. https://doi.org/10.1364/OE.16.011802.

[4] Wang, B., Zhou, J., Koschny, T., Kafesaki, M., Soukoulis, C. M. (2009). Chiral Metamaterials: simulations and experiments. Journal of Optics A: Pure and Applied Optics, 11(11), 114003. https://doi.org/10.1088/1464-4258/11/11/114003.

[5] Li, Z., Zhao, R., Koschny, T., Kafesaki, M., Alici, K. B., Colak, E., Soukoulis, C. M. (2010). Chiral metamaterials with negative refractive index based on four “U†split ring resonators. Applied Physics Letters, 97(8), 081901. https://doi.org/10.1063/1.3457448.

[6] Soukoulis, C. M., Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic Metamaterials. Nature Photonics, 5(9), 523-530. https://doi.org/10.1038/nphoton.2011.154.

[7] Zhernovaya, O., Sydoruk, O., Tuchin, V., & Douplik, A. (2011). The refractive index of human hemoglobin in the visible range. Physics in medicine and biology, 56(13), 4013. https://doi.org/10.1088/0031-9155/56/13/017.

[8] Sydoruk, O., Zhernovaya, O., Tuchin, V., & Douplik, A. (2012). Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis. Journal of biomedical optics, 17(11), 115002-115002. https://doi.org/10.1117/1.JBO.17.11.115002.

[9] Jang, Y., Jang, J., & Park, Y. (2012). Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. Optics express, 20(9), 9673-9681. https://doi.org/10.1364/OE.20.009673.

[10] Park, Y., Yamauchi, T., Choi, W., Dasari, R., & Feld, M. S. (2009). Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Optics let-ters, 34(23), 3668-3670. https://doi.org/10.1364/OL.34.003668.

[11] Friebel, M., & Meinke, M. (2006). Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. Applied optics, 45(12), 2838-2842. https://doi.org/10.1364/AO.45.002838.

View Full Article: