Quantum Gravity Theory Across Eight Galaxies: Precision Validation in NGC ‎‎925 and NGC 1569

  • Authors

    https://doi.org/10.14419/z6vd0789

    Received date: September 28, 2025

    Accepted date: December 15, 2025

    Published date: December 19, 2025

  • Galaxies: Kinematics and Dynamics; Gravitation: Theory; Dark Matter Alternatives; ‎Quantum Gravity; Rotation Curves; NGC 6503; NGC 925; NGC 1569‎.
  • Abstract

    We present a comprehensive validation of Quantum Gravity Theory (QGT), a dark ‎matter-free framework grounded in graviton-antigraviton interactions, across a sample ‎of eight galaxies spanning five orders of magnitude in stellar mass (8.5×10⁷ to 4.5×10¹⁰ ‎Using high-resolution HI data from the THINGS survey and consistent ‎methodology via the SPARC database, we demonstrate that QGT accurately reproduces ‎rotation curves with residuals of <5.2%, deriving its sole scale parameter directly ‎from baryonic mass distributions without free parameters. The universal scaling relation ‎ = (π/2) ×  ‎ Holds across all galaxies with a mean absolute deviation of 3.9%, ‎validating QGT's predictive power. In direct comparison with Modified Newtonian ‎Dynamics (MOND), QGT achieves statistically superior performance with Bayesian ‎Information Criterion differences ΔBIC > 19. Building on quantum field theory and ‎special relativity, QGT models gravity via graviton-antigraviton condensates, providing ‎a first-principles explanation for flat rotation curves that outperforms both empirical ‎modifications and particle dark matter at galactic scales. These results position QGT as a ‎unified, parameter-free alternative to conventional gravitational paradigms, with ‎implications for cluster dynamics, gravitational lensing, and the quantum foundations of ‎gravity‎.

  • References

    1. Abbott, R. et al. (LIGO Collaboration). (2021). Test of General Relativity with GWTC-3. arXiv.2112.06861. https://doi.org/10.48550/arXiv.2112.06861
    2. Abbott, R., Abe, H., Acernese, F., et al. (2023). Constraints on the cosmic expansion history from GWTC-3. Astrophysical Journal, 949(1), 76. https://doi.org/10.3847/1538-4357/ac74bb.
    3. Addazi, A., et al. (2022). Quantum gravity phenomenology at the dawn of the multi-messenger era. Progress in Particle and Nuclear Physics, 125, 103948. https://doi.org/10.1016/j.ppnp.2022.103948
    4. Arkani-Hamed, N., Georgi, H., & Schwartz, M. D. (2003). Effective field theory for massive gravitons and gravity in theory space. Annals of Physics 305(1), 96–118. https://doi.org/10.1016/S0003-4916(03)00068-X
    5. Athanassoula, E. (1992). The existence and shapes of dust lanes in galactic bars. Monthly Notices of the Royal Astronomical Society, 259(2), 345-364. https://doi.org/10.1093/mnras/259.2.345.
    6. Begeman, K. G. (2006). HI rotation curves of spiral galaxies. PhD Thesis, University of Groningen, Groningen.
    7. Bell, E. F., & de Jong, R. S. (2001). Stellar Mass-to-Light Ratios and the Tully-Fisher Relation. Astrophysical Journal, 550, 212-229. https://doi.org/10.1086/319728.
    8. Berezhiani, L., & Khoury, J. (2015). Theory of dark matter superfluidity. Physical Review D, 92(10), 103510. https://doi.org/10.1103/PhysRevD.92.103510.
    9. Bondi, H. (1957). Negative mass in general relativity. Reviews of Modern Physics, 29(3), 423–428. https://doi.org/10.1103/RevModPhys.29.423.
    10. Bullock, J. S., & Boylan-Kolchin, M. (2017). Small-scale challenges to the ΛCDM paradigm. Annual Review of Astronomy and Astrophysics. 55, 343-387. https://doi.org/10.1146/annurev-astro-091916-055313.
    11. Caldwell, R. R. (2002). A phantom menace? Physics Letters B, 545(1–2), 23–29. https://doi.org/10.1016/S0370-2693(02)02589-3.
    12. Chemin, L., de Blok, W. J. G., & Mamon, G. A. (2011). Improved modelling of the mass distribution of disk galaxies by the Einasto halo model. As-tronomical Journal, 142, 109. https://doi.org/10.1088/0004-6256/142/4/109.
    13. Churazov, E., Vikhlinin, A., Zhuravleva, I., Schekochihin, A. (2012). X-ray surface brightness and gas density fluctuations in the Coma cluster. Monthly Notices of the Royal Astronomical Society, 421(2), 1123–1135. https://doi.org/10.1111/j.1365-2966.2011.20372.x.
    14. de Blok, W. J. G., Walter, F., Brinks, E., et al. (2008). High-resolution rotation curves and galaxy mass models from THINGS. Astronomical Journal, 136(6), 2648–2719. https://doi.org/10.1088/0004-6256/136/6/2648
    15. Dirac, P. A. M. (1930). A theory of electrons and protons. Proceedings of the Royal Society A, 126(801), 360–365. https://doi.org/10.1098/rspa.1930.0013.
    16. Gentile, G., Famaey, B., & de Blok, W. J. G. (2011). THINGS about MOND: A test of kinematic scaling relations in 26 dwarf-disk galaxies. Astron-omy & Astrophysics, 527, A76. https://doi.org/10.1051/0004-6361/201015283.
    17. Hubble Heritage Team. (2011). NGC 2841: A Flocculent Spiral Galaxy. STScI/AURA Image Release
    18. Iorio, G., Fraternali, F., Nipoti, C., Di Teodoro, E. M., Read, J. I., & Battaglia, G. (2017). LITTLE THINGS in 3D: Robust determination of the cir-cular velocity of dwarf irregular galaxies. Monthly Notices of the Royal Astronomical Society, 466(4), 4159–4192. https://doi.org/10.1093/mnras/stw3285.
    19. JUNO Collaboration. (2025). First measurement of reactor neutrino oscillations at JUNO. arXiv preprint arXiv:2511.14593. https://arxiv.org/abs/2511.14593.
    20. Karachentsev, I. D., Makarov, D. I., & Kaisina, E. I. (2013). Updated Nearby Galaxy Catalog. Astronomical Journal, 145(4), 101. https://doi.org/10.1088/0004-6256/145/4/101.
    21. Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. https://doi.org/10.1080/01621459.1995.10476572
    22. Khelashvili, M., Rudakovskyi, A., & Hossenfelder, S. (2024). SPARC galaxies prefer dark matter over MOND. arXiv preprint arXiv:2401.10202. https://arxiv.org/abs/2401.10202.
    23. Lelli, F., McGaugh, S. S., & Schombert, J. M. (2016). SPARC: Mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. The Astronomical Journal, 152(6), 157. https://doi.org/10.3847/0004-6256/152/6/157.
    24. Leroy, A. K., Walter, F., Brinks, E., et al. (2008). The star formation efficiency in nearby galaxies: Measuring where gas forms stars effectively. As-tronomical Journal, 136(6), 2782. https://doi.org/10.1088/0004-6256/136/6/2782
    25. McGaugh, S S. (2005) The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies. Astrophysical Journal, 632(2), pp. 859-871. https://doi.org/10.1086/432968.
    26. Milgrom, M. (1983). A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, 270, 365–370. https://doi.org/10.1086/161130.
    27. Moffat, J. W. (2006). Scalar-tensor-vector gravity theory. Journal of Cosmology and Astroparticle Physics, 2006(03), 004. https://doi.org/10.1088/1475-7516/2006/03/004
    28. Navarro, J. F., Frenk, C. S., & White, S. D. M. (1996). The structure of cold dark matter halos. Astrophysical Journal, 462, 563-575. https://doi.org/10.1086/177173
    29. Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F., & Kennicutt, R. C. Jr. (2011). Dark and luminous matter in THINGS dwarf galaxies. Astronomi-cal Journal, 141(6), 193. https://doi.org/10.1088/0004-6256/141/6/193
    30. Oh, S.-H., Hunter, D. A., Brinks, E., et al. (2015). High-resolution mass models of dwarf galaxies from LITTLE THINGS. Astronomical Journal, 149(6), 180. https://doi.org/10.1088/0004-6256/149/6/180.
    31. Pikovski, I., Zych, M., Costa, F. et al. (2015). Universal decoherence due to gravitational time dilation. Nature Phys 11, 668–672. https://doi.org/10.1038/nphys3366
    32. Planck Collaboration. (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201832909
    33. Polchinski, J. (1998). String Theory. Vols. I & II. Cambridge University Press, Cambridge. ISBN: 9780521672276 (Vol.1) 9780521672283 (Vol. II). https://doi.org/10.1017/CBO9780511816079
    34. Reuter, M., & Saueressig, F. (2012). Quantum Einstein gravity. New Journal of Physics, 14(5), 055022. https://doi.org/10.1088/1367-2630/14/5/055022.
    35. Rovelli, C. (2010). Quantum gravity. Cambridge University Press. https://doi.org/10.1017/CBO9780511755804
    36. Rubin, V. C., Ford, W. K., Jr., & Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophysical Journal, 238, 471-487. https://doi.org/10.1086/158003
    37. Sánchez-Cruces, M., Sardaneta, M. M., Fuentes-Carrera, I., & Rosado, M. (2022). A kinematical study of the dwarf irregular galaxy NGC 1569 and its supernova remnants. Monthly Notices of the Royal Astronomical Society, 513(2), 1755–1773. https://doi.org/10.1093/mnras/stac985.
    38. Sanders, R. H. (1997). A stratified framework for scalar-tensor theories of modified dynamics. Astrophysical Journal, 480(2) 492-502. https://doi.org/10.1086/303980.
    39. Stefas, S., & Zoupanos, G. (2025). On the unification of conformal and fuzzy gravities with SO (10) GUT. European Physical Journal Plus, 140, 1183. https://doi.org/10.1140/epjp/s13360-025-07050-0.
    40. Stil, J. M., & Israel, F. P. (2002). HI distribution and kinematics of NGC 1569. Astronomy & Astrophysics, 392(2), 473–487. https://doi.org/10.1051/0004-6361:20020953
    41. Verlinde, E. (2017). Emergent gravity and the dark universe. SciPost Physics, 2(3), 016. https://doi.org/10.21468/SciPostPhys.2.3.016.
    42. Vikhlinin, A., et al. (2006). Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass–temperature relation. Astrophysical Jour-nal, 640(2), 691–709. https://doi.org/10.1086/500288
    43. Walter, F., Brinks, E., de Blok, W. J. G., et al. (2008). THINGS: The HI Nearby Galaxy Survey. Astronomical Journal, 136(6), 2563–2647. https://doi.org/10.1088/0004-6256/136/6/2563
    44. Wong, W. H., Wong, W. T., Wong, W. K., & Wong, L. M. (2014). Discovery of antigraviton verified by the rotation curve of NGC 6503. Interna-tional Journal of Advanced Astronomy, 2(1), 1–7. https://doi.org/10.14419/ijaa.v2i1.2244
    45. Wong, W. T., & Wong, W. K. (2025a). Evaluating the applicability of Quantum Gravity Theory (QGT): A comparative analysis of NGC 2903, NGC 3198 and DDO 154. International Journal of Advanced Astronomy, 13(2), 1–8. https://doi.org/10.14419/005r6560.
    46. Wong, W.K., & Wong, W.T. (2025b) Quantum Gravity Resolves Galaxy Rotation Without Dark Matter: Precision Fits in NGC 2841 and DDO 53. International Journal of Quantum Foundations, 11(4), 515-526. https://ijqf.org/archives/7591
  • Downloads

  • How to Cite

    WONG, W. T., & WONG, W.-K. (2025). Quantum Gravity Theory Across Eight Galaxies: Precision Validation in NGC ‎‎925 and NGC 1569. International Journal of Physical Research, 13(2), 25-36. https://doi.org/10.14419/z6vd0789