Synthesis and characterization of Mn doped ZnS pellets

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Semiconducting nano-phosphor pellets have been fabricated by hydraulic pressure, using ZnS and Mn doped ZnS semiconducting materials, which is synthesized by physical evaporation technique. Structural characterizations of synthesized semiconducting nanophosphor materials and pellets have been done by X-ray diffraction measurement and SEM while optical characterizations are done by UV-Visible absorption measurement. XRD pattern showed that the synthesized ZnS, Mn doped ZnS materials and pellet have cubic structure with preferential orientation along (111) planes. Optical absorption measurements indicated that the absorption decreases with increase of percent of Mn in pellet. The average maximum grain size (25.13 nm), Minimum dislocation density (1.57 1011/cm3), lattice constant (5.398 and minimum band gap (3.2 eV) have been obtained. Suitable explanation is given in this paper.

    Keywords: ZNS, MN, Grain Size, Band Gap and Lattice Constant.


  • References


    1. L.I. Li-ping, Q.I.U. Xiao-qing & L.I. Guang-she, Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures, J. Applied Physics Letters, 87, (2005) pp. 4101-4109.
    2. H. M. Schmidt, H. Weller, Synthesis of ZnS nanoparticles by solid liquid chemicals method, J. Chemical Physics Letter, 129, (1986) pp. 615?618. http://dx.doi.org/10.1016/0009-2614 (86)80410-9.
    3. Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakwa, H. Taniguchi and M. Shimizu, Size-dependent melting behavior of Zn nanowire arrays, Applied Physics Letters., 88(7), (2006) pp. 1909-1917.
    4. L I Berger, Defect Evolution in Silicon Detector Material", Conference on Radiation Effects in Semiconductor Materials, Semiconductor Materials, (1996) pp. 186-190.
    5. J.M. Hwang, Preparation and characterization of ZnS based nano-crystalline particles for polymer light-emitting diodes, Current, Applied Physics, 5 (1), (2005) pp. 31-34. http://dx.doi.org/10.1016/j.cap.2003.11.075.
    6. H. Cho, Highly flexible organic light-emitting diodes based on ZnS/Ag/WO< sub> 3 multilayer transparent electrodes, Organic Electronics, 10 (6) (2009) pp. 1163-1169. http://dx.doi.org/10.1016/j.orgel.2009.06.004.
    7. X.Liu, ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application, Applied Surface Science, 183 (1-2), (2001) pp. 103-110. http://dx.doi.org/10.1016/S0169-4332 (01)00570-0.
    8. V. Dimitrova, J. Tate, Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications, Thin Solid Films, 365 (1), (2000) pp.134-138. http://dx.doi.org/10.1016/S0040-6090 (99)01089-5.
    9. D.W. Wang, The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer, Organic Electronics 12 (1), (2011) pp. 92-97. http://dx.doi.org/10.1016/j.orgel.2010.09.018.
    10. Z. G. Zhao, F. X. Geng, H. T. Cong, J. B. Bai & H. M. Cheng, A simple solution route to controlled synthesis of ZnS submicrospheres, nanosheets and nanorods J.Nanotechnology.,17, (2006)pp. 4731-4739. http://dx.doi.org/10.1088/0957-4484/17/18/034.
    11. L. S Li and A. P Alivisatos, Semiconductor Nano rod Liquid Crystals and Their Assembly on a Substrate, Adv. Mat. 15, (2003) pp. 408-413. http://dx.doi.org/10.1002/adma.200390093.
    12. Q Xiong, G. Chen, J. D Acord, X. Liu, J. J Zengel, H. R Gutierrez, J. M Redwing, L. C Lew Yan Voon, B. Lassen and P. C Eklund, Optical Properties of Rectangular Cross-sectional ZnS Nanowires, Nano Lett., 4, (2004) pp. 1663-1668. http://dx.doi.org/10.1021/nl049169r.
    13. Y. C. Zhu, Y. Bando and Y. Uemura, ZnSZn nanocables and ZnS nanotubes, Chem. Commun., (2003) pp. 836-841. http://dx.doi.org/10.1039/b300249g.
    14. Z. W. Pan, Z. R. Dai and Z.L Wang, Nanobelts of Semiconducting Oxides, Science, 291, (2001) pp. 1947-1952. http://dx.doi.org/10.1126/science.1058120.
    15. S. Ghoshal, L. B Kumbhare, V. K Jain and G. K Dey, A facile synthesis of InSe (M = Cu, Ag) via low temperature pyrolysis of single source molecular precursors, [(R 3 P) 2 Min (SeCOAr) 4] Bull.Mater. Sci. 30, (2007) pp. 173-177. http://dx.doi.org/10.1007/s12034-007-0031-8.
    16. A. B. Panda, G. Glaspell and M. S. El-Shall, Microwave Synthesis of Highly Aligned Ultra Narrow Semiconductor Rods and Wires, J. Am. Chem. Soc., 128 (2006) pp. 2790-2797. http://dx.doi.org/10.1021/ja058148b.
    17. Y. C. Zhang, G. Y. Wang, X. Y. Hu, Q. F. Shi, and Y. Yang, Phase-controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an air-stable single-source molecular precursor,J. Cryst. Growth, 284, (2005) pp. 554-560. http://dx.doi.org/10.1016/j.jcrysgro.2005.07.023.
    18. C. Lu, Z. Cui, Z. Li, B Yang and J Shen, High refractive index thin films of ZnS/polythiourethane, J. Mater. Chem., 13, (2003) pp. 526-531. http://dx.doi.org/10.1039/b208850a.
    19. G. Kedarnath, V. K. Jain, S. Ghoshal, G. K Dey, C. An Ellis and R. T Tiekink, Zinc, Cadmium and Mercury Dithiocarboxylates: Synthesis, Characterization, Structure and Their Transformation to Metal Sulfide Nanoparticles, Eur. J. Inorg. Chem. (2007) pp. 1566-1572. http://dx.doi.org/10.1002/ejic.200601059.
    20. H. Liu, Y. Ni, M. Han, Q. Liu, Z. Xu, and X. Ma, A facile template-free route for synthesis of hollow hexagonal ZnS nano- and submicro-spheres, Nanotechnology, 16, (2005) pp. 2908-2912. http://dx.doi.org/10.1088/0957-4484/16/12/030.
    21. R. Chauhan, A. Kumar and R. P Chaudhary, Characterization of chemically synthesized Mn doped ZnS nanoparticles, Chalcogenide Letter, 9, (2012) pp. 151-156.
    22. C. S Pathak & M. K Mandal, Enhanched photoluminescence properties of Mn+2 doped ZnS nanocrystals, Chalcogenide Letter, 8, (2011) pp. 147-153.
    23. R. N Bhargava, D. Gallagher, X. Hong & A. N. Urmikko, Optical properties of manganese doped nanocrystal of ZnS, Phy.Rev.Lett.,72, (1994) pp. 416-421. http://dx.doi.org/10.1103/PhysRevLett.72.416.

 

View

Download

Article ID: 3315
 
DOI: 10.14419/ijpr.v2i2.3315




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.