A ½ spin fiber model for the electron

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The Standard Model and Quantum Mechanics studies the quantum world as a collection of probabilistically interacting particles and does not tell us what a single isolated particle like the electron is, thus its intrinsic detailed field mechanics and how these are generating its intrinsic property values like charge, spin, magnetic moment and handedness. We herein are translating these intrinsic physical properties of the electron to a novel 4-dimensional (i.e. three spatial plus one temporal) fiber spinor and showing their possible deeper correlation and interconnection combined under a single energy manifold. From physical quantum emulation observations, mathematical analysis and Wolfram Alpha parametric polar simulations and mathematical 4D animations we calculated a fiber model for the dressed bare mass electromagnetic field of the electron that results to all of its known measured intrinsic properties. Therefore our model is an intrinsic mechanics model for the electron at rest and shows the possibility that the elementary electron although it has no inner sub-particles, it can posses a specific energy flux manifold. Why an electron is actually a ½ spin geometry, twisted photon. The fine structure constant is explained as a topological feature, proportionality constant, embedded inside our proposed fiber model for the electron. Our novel fiber model opens up a new door on theoretical intrinsic mechanics physics of elementary particles beyond the Standard Model.

     


  • Keywords


    Elementary Particle Physic; Electron Manifold and Topology; Intrinsic Properties of Electron; Beyond Standard Model Physics; Fiber Model of Electron.

  • References


      [1] G.E. Uhlenbeck, S. Goudsmit, Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons, Naturwissenschaften. 13 (1925) 953–954. https://doi.org/10.1007/BF01558878.

      [2] G.E. UHLENBECK, S. GOUDSMIT, Spinning Electrons and the Structure of Spectra, Nature. 117 (1926) 264–265. https://doi.org/10.1038/117264a0.

      [3] L.H. THOMAS, the Motion of the Spinning Electron, Nature. 117 (1926) 514. https://doi.org/10.1038/117514a0.

      [4] P. ZEEMAN, the Effect of Magnetisation on the Nature of Light Emitted by a Substance, Nature. 55 (1897) 347. https://doi.org/10.1038/055347a0.

      [5] P. Zeeman, VII. Doublets and triplets in the spectrum produced by external magnetic forces , London, Edinburgh, Dublin Philos. Mag. J. Sci. 44 (1897) 55–60. https://doi.org/10.1080/14786449708621028.

      [6] T. Preston, Radiation Phenomena in a Strong Magnetic Field, in: Sci. Trans. R. Dublin Soc., Royal Dublin Society, Dublin, 1898: pp. 385–389.

      [7] W. Gerlach, O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld, Zeitschrift Für Phys. 9 (1922) 349–352. https://doi.org/10.1007/BF01326983.

      [8] W. Gerlach, O. Stern, Das magnetische Moment des Silberatoms, Zeitschrift Für Phys. 9 (1922) 353–355. https://doi.org/10.1007/BF01326984.

      [9] D.J. Griffiths, Introduction to Quantum Mechanics, in: Prentice Hall, New Jersey, 1995: p. 155.

      [10] A.H. Compton, The size and shape of the electron, Phys. Rev. 14 (1919) 20–43. https://doi.org/10.1103/PhysRev.14.20.

      [11] M.H. Mac Gregor, the Enigmatic Electron, in: Klurer Academic, Boston, 1992: pp. 4–5. https://doi.org/10.1007/978-94-015-8072-4.

      [12] M.H. MacGregor, the Enigmatic Electron: A Doorway to Particle Masses, 2nd ed., El Mac Books, Santa Cruz, CA, 2013.

      [13] V. Andreev, D.G. Ang, D. DeMille, J.M. Doyle, G. Gabrielse, J. Haefner, N.R. Hutzler, Z. Lasner, C. Meisenhelder, B.R. O’Leary, C.D. Panda, A.D. West, E.P. West, X. Wu, A. Collaboration, Improved limit on the electric dipole moment of the electron, Nature. 562 (2018) 355–360. https://doi.org/10.1038/s41586-018-0599-8.

      [14] P. Schattschneider, C. Hébert, H. Franco, B. Jouffrey, Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle, Phys. Rev. B - Condens. Matter Mater. Phys. 72 (2005) 045142. https://doi.org/10.1103/PhysRevB.72.045142.

      [15] H. Daniels, A. Brown, A. Scott, T. Nichells, B. Rand, R. Brydson, Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy, in: Ultramicroscopy, Elsevier, 2003: pp. 523–534. https://doi.org/10.1016/S0304-3991(03)00113-X.

      [16] B. Jouffrey, P. Schattschneider, C. Hébert, The magic angle: A solved mystery, Ultramicroscopy. 102 (2004) 61–66. https://doi.org/10.1016/j.ultramic.2004.08.006.

      [17] M. Bydder, A. Rahal, G.D. Fullerton, G.M. Bydder, The magic angle effect: A source of artifact, determinant of image contrast, and technique for imaging, J. Magn. Reson. Imaging. 25 (2007) 290–300. https://doi.org/10.1002/jmri.20850.

      [18] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift Für Phys. 43 (1927) 172–198. https://doi.org/10.1007/BF01397280.

      [19] M. Schlosshauer, Decoherence, the measurement problem, and interpretations of quantum mechanics, Rev. Mod. Phys. 76 (2005) 1267–1305. https://doi.org/10.1103/RevModPhys.76.1267.

      [20] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, Springer, Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-35775-9.

      [21] E. Markoulakis, A. Konstantaras, J. Chatzakis, R. Iyer, E. Antonidakis, Real time observation of a stationary magneton, Results Phys. 15 (2019) 102793. https://doi.org/10.1016/j.rinp.2019.102793.

      [22] G. Aad, T. Abajyan, B. Abbott, et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 716 (2012) 1–29. https://doi.org/10.1016/j.physletb.2012.08.020.

      [23] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508–509. https://doi.org/10.1103/PhysRevLett.13.508.

      [24] E. Markoulakis, J. Chatzakis, A. Konstantaras, E. Antonidakis, A synthetic macroscopic magnetic unipole, Phys. Scr. 95 (2020) 095811. https://doi.org/10.1088/1402-4896/abaf8f.

      [25] E. Markoulakis, A. Konstantaras, E. Antonidakis, The quantum field of a magnet shown by a nanomagnetic ferrolens, J. Magn. Magn. Mater. 466 (2018) 252–259. https://doi.org/10.1016/j.jmmm.2018.07.012.

      [26] E. Markoulakis, I. Rigakis, J. Chatzakis, A. Konstantaras, E. Antonidakis, Real time visualization of dynamic magnetic fields with a nanomagnetic ferrolens, J. Magn. Magn. Mater. 451 (2018) 741–748. https://doi.org/10.1016/j.jmmm.2017.12.023.

      [27] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, A scanning superconducting quantum interference device with single electron spin sensitivity, Nat. Nanotechnol. 8 (2013) 639–644. https://doi.org/10.1038/nnano.2013.169.

      [28] E. Markoulakis, - Google Drive Supplementary Material, https://tinyurl.com/y8guqn5c(short link), https://drive.google.com/drive/folders/1jLVe5AKSOlsU7VH-r_QJ2tuLwtbFkjpS (long link), (accessed April 27, 2021).

      [29] W. Gilbert, De magnete, Dover Publications, New York, 1958. https://tinyurl.com/y9ljreyt (accessed December 17, 2020).

      [30] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature. 556 (2018) 43–50. https://doi.org/10.1038/nature26160.

      [31] A. Gray, E. Abbena, S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, in: 3rd ed., CRC Press, Boca Raton, FL, 2006: pp. 305–306.

      [32] C. Lăzureanu, Spirals on surfaces of revolution, VisMath, Math. Inst. SASA, Belgrade. (2014). http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=vm&rbr=57 (accessed December 20, 2020).

      [33] A. Sommerfeld, Zur Quantentheorie der Spektrallinien, Ann. Phys. 356 (1916) 125–167. https://doi.org/10.1002/andp.19163561802.

      [34] S. Weinberg, the Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, 2005.

      [35] L.J. Tassie, Magnetic flux lines as relativistic strings, Phys. Lett. B. 46 (1973) 397–398. https://doi.org/10.1016/0370-2693(73)90150-0.

      [36] M. Wilson, Electrons in atomically thin carbon sheets behave like massless particles, Phys. Today. 59 (2006) 21–23. https://doi.org/10.1063/1.2180163.

      [37] S. Chen, Z. Han, M.M. Elahi, K.M.M. Habib, L. Wang, B. Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A.W. Ghosh, C.R. Dean, Electron optics with p-n junctions in ballistic graphene, Science (80-. ). 353 (2016) 1522–1525. https://doi.org/10.1126/science.aaf5481.

      [38] H. Yoon, C. Forsythe, L. Wang, N. Tombros, K. Watanabe, T. Taniguchi, J. Hone, P. Kim, D. Ham, Measurement of collective dynamical mass of Dirac fermions in graphene, Nat. Nanotechnol. 9 (2014) 594–599. https://doi.org/10.1038/nnano.2014.112.


 

View

Download

Article ID: 31874
 
DOI: 10.14419/ijpr.v10i1.31874




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.