Optical 1-soliton solutions of Triki-Biswas equation by the First Integral Method and the sine-cosine Method

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this paper, the First Integral Method and the Sine-Cosine Method are being used in constructing optical 1-soliton solutions of Triki-Biswas Equation that plays a vital role in the study of soliton dynamics of sub-pico-second optical pulses in mono-mode optical fibers with non-Kerr law nonlinearity and subsequently some soliton and non-soliton solutions are formally obtained.



  • Keywords

    Optical Soliton; Triki-Biswas Equation (TBE); Optical Fibers; Non-Kerr Law Nonlinearity.

  • References

      [1] H. Triki, A. Biswas, Sub-picosecond chirped envelope solitons and conservation laws in mono-mode optical fibers for a new derivative nonlinear Schrodinger’s model, Optik 173 pp. 235-241, 2018.https://doi.org/10.1016/j.ijleo.2018.08.026.

      [2] D. I. Kaup, A. C. Newell, An exact solution for a derivative nonlinear Schrodinger equation, J. Math. Phys. 19 pp. 798-801, 1978. https://doi.org/10.1063/1.523737.

      [3] A. Biswas, Y. Yildrim, E. Yasar, Q. Zhou, S. P. Moshokoa, M. Belic, Sub-picosecond pulses in mono-mode optical fibers with Kaup-Newell equation by a couple of integrationschemes, Optik 167, pp. 121-128, 2018.https://doi.org/10.1016/j.ijleo.2018.04.063.

      [4] H. H. Chen, Y. C. Lee, C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr. 20 pp. 490-492, 1979.https://doi.org/10.1088/0031-8949/20/3-4/026.

      [5] A. S. H. F. Mohammed, H. O. Bakodah, M. Manaja, A. Alshaery, Q. Zhou, A. Biswas, S.Moshokoa, M. R. Belic, Bright optical solitons of Chen-Lee-Liu equation with improved Adomian decomposition method, Optik 181, pp. 964-970, 2019.https://doi.org/10.1016/j.ijleo.2018.12.177.

      [6] J. Xu, E. Fan, Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem without solitons, J. Differ. Equ. 259 , pp.1098-1148, 2015. https://doi.org/10.1016/j.jde.2015.02.046.

      [7] A. Biswas, Y. Yildrim, E. Yasar, Q. Zhou, S. P. Mosokoa, M. R. Belic, Optical soliton solutions to Fokas-Lenells equation using some different methods, Optik 173, pp. 21-31, 2018.https://doi.org/10.1016/j.ijleo.2018.07.098.

      [8] M. Arshed, D. Lu, Mutti-Ur Rehman, I. Ahmed, A. M. Sultan, Optical solitary wave and elliptic function solutions of the Fokas-Lenells equation in the presence of perturbation terms and modulation stability, Phys. Scr. 94(10), Article ID 105202, 2019.https://doi.org/10.1088/1402-4896/ab1791.

      [9] H. Yilmaz, Exact solutions of the Gerdjikov-Ivanov equation using Darboux transformations, J. Nonlinear Math. Phys 22(1), pp. 32-46, 2015.https://doi.org/10.1080/14029251.2015.996438.

      [10] N. Kedkhoda, H. Jfari, Analytical solutions of Gerdjikov-Ivanov equation by using exp⁡(- ϕ(z)) –expansion, Optik 139, pp. 72-76, 2017.https://doi.org/10.1016/j.ijleo.2017.03.078.

      [11] N. A. Kudryashov, First integrals and solutions of the travelling wave reduction for the Triki-Biswas equation, Optik 183, pp. 275-281, 2019.https://doi.org/10.1016/j.ijleo.2019.03.087.

      [12] Y. Yildrim, Sub-pico-second pulses in mono-mode optical fibers with Triki-Biswas model using trial equation architecture, Optik 183, pp. 463-466, 2019.https://doi.org/10.1016/j.ijleo.2019.02.018.

      [13] A. I. Aliyu, A. S. Alshomrani, M. Inc, D. Baleanu, Optical solitons for Triki-Biswas equation by two analytic approaches, AIMS Math. 5(2), pp. 1001-1010, 2020.https://doi.org/10.3934/math.2020069.

      [14] Z.S. Feng, The first integral method to study the Burgers Korteweg-de Vries equation, J. Phys. A, 35 (2), pp. 343 –349, 2002.https://doi.org/10.1088/0305-4470/35/2/312.

      [15] Z.S. Feng, On explicit exact solutions to the compound Burg ers- Korteweg-de Vries equation, Phys. Lett. A. 293, pp. 57 – 66, 2002.https://doi.org/10.1016/S0375-9601(01)00825-8.

      [16] Z. S. Feng, Travelling wave behavior for a generalized Fisher equation, Chaos, Soliton.Fract., 38, pp.481 – 488, 2008.https://doi.org/10.1016/j.chaos.2006.11.031.

      [17] A. E. Achab, A. Bekir, Travelling Wave Solutions to the Generalized Benjamin-Bona-Mahony (BBM)Equation Using the First Integral Method, Int. J. Nonlinear Sci. 19(1), pp. 40-46, 2015.

      [18] ] E. M. E. Zayed, Y. A. Amer, The First Integral Method and its Application for Deriving the Exact Solutions of a Higher-Order Dispersive Cubic-Quintic Nonlinear Schrodinger Equation, Comput. Math. Model 27(1), pp. 80-94, 2016.https://doi.org/10.1007/s10598-015-9305-y.

      [19] S. Subhaschandra Singh, Soliton solutions of a generalized Klein–Gordon equation with power-law nonlinearity via the first integral method, Int. J. Math. Phys. 9(2), pp. 116-121, 2018.https://doi.org/10.26577/ijmph.2018.v9i2.268.

      [20] F. L. Hasan, First Integral Method for Constructing New Exact Solutions of the Important Nonlinear Evolution Equations in Physics,J. Phys.: Conf. Ser. 1530 012109, 2020.https://doi.org/10.1088/1742-6596/1530/1/012109.

      [21] Q. Zhang, M. Xiong, L. Chen, Exact solutions of two nonlinear partial differential equations by the first integral method, Adv. Pure Math., 10(1), pp. 12-20, 2020.https://doi.org/10.4236/apm.2020.101002.

      [22] A. M. Wazwaz, A Sine-Cosine Method for Handling Nonlinear Wave Equations, Math. Comput. Model. 40, pp. 499-508, 2004.https://doi.org/10.1016/j.mcm.2003.12.010.

      [23] S. S. Singh, Bright and Singular Optical 1-soliton Solutions of Lakshmanan-Porsezian-DanielEquationwith Kerr-law Nonlinearity by Sine-Cosine Method, Int. J. Sci. Res. Phys. Appl. Sci. 8(5), pp. 12-16, 2020.




Article ID: 31474
DOI: 10.14419/ijpr.v9i1.31474

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.