An approximate solution of the Yang - Mills equation on a spatially flat FRW cosmological background

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, an approximate solution for the Yang - Mills equation in a spatially flat Friedmann-Robertson-Walker universe is obtained. For this purpose, the well known method of solution of non-linear differential equations is used, viz. the homotopy perturbations method. This method has been developed as effective technique for solving different non-linear problems. Here, this method allowed us to obtain approximate solution for the essentially non-linear equation for the SO3 Yang-Mills fields on the curved space-time background of the spatially flat Friedmann-Robertson-Walker universe.


  • Keywords


    Friedmann-Robertson-Walker Universe, Homotopy Perturbation Method, Yang-Mills Equation.

  • References


      [1] A. G. Riess , et al. , ”Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astronomical Journal, Vol.
      116, (1998), 1009. http://dx.doi.org/10.1086/300499

      [2] S. Perlmutter, et al., ”Measurements of Omega and Lambda from 42 High-Redshift Supernovae”, Astrophysical Journal, Vol. 517 (1999), 565.
      http://dx.doi.org/10.1086/307221

      [3] N. Jarosik, C.L. Bennett, et al., ”Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic
      Results”, Astrophysical Journal Supplement Series, 192 (2011), 14. http://dx.doi.org/10.1088/0067-0049/192/2/14.

      [4] Abdel Nasser Tawfik and Eiman Abou El Dahab3, ”Review on Dark Energy Models”, Gravitation and Cosmology, 2019, Vol. 25, No. 2, pp. 103-115.
      http://dx.doi.org/10.1134/S0202289319020154

      [5] D. Huterer and D. L. Shafer, ”Dark energy two decades after: Observables, probes, consistency tests”, Rept. Prog. Phys., 81, 016901 (2018).
      http://dx.doi.org/10.1088/1361-6633/aa997e

      [6] L. Sebastiani, S. Vagnozzi, and R. Myrzakulov, ”Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics”,
      Advances in High Energy Physics, Volume 2017, Article ID 3156915, 43 pages. https://doi.org/10.1155/2017/3156915

      [7] C.N. Yang , R.L. Mills , ”Conservation of isotopic spin and isotopic gauge invariance”, Physical Review, 96, 1 (1954), pp. 191 - 195.
      http://dx.doi.org/10.1103/PhysRev.96.191

      [8] D. V. Gal’tsov, E.A. Davydov, ”Yang-Mills Condensates in Cosmology, International Journal of Modern Physics: Conference Series, 14 (2012) 316-325.
      http://dx.doi.org/10.1142/S201019451200743X

      [9] V. K. Shchigolev, ”Modelling Cosmic Acceleration in Modified Yang-Mills Theory”, Gravitation and Cosmology, Vol. 17, No. 3 (2011) 272-275.
      http://dx.doi.org/10.1134/S0202289311030078

      [10] V. K. Shchigolev, G. N. Orekhova, ”Non-Minimal Cosmological Model in modified Yang-Mills Theory”, Modern Physics Letters A, Vol. 56, No. 2
      (2011) 389-396. http://dx.doi.org/10.1142/S0217732311036462

      [11] V. K. Shchegolev, K. Samaroo, ”Generalized Exact Cosmologies with Interacting Yang-Mills and Nonlinear Scalar Fields”, General Relativity and
      Gravitation, 36(7) (2004), 1661. http://dx.doi.org/10.1023/B:GERG.0000032158.16161.1b

      [12] V. K. Shchigolev, D. N. Bezbatko, ”Exact Cosmological Models with Yang - Mills Fields on Lyra Manifold”, Gravit. Cosmol., 24 (2018), 161.
      https://doi.org/10.1134/S0202289318020135

      [13] J.-H. He, ”Homotopy perturbation technique”, Computer Methods in Applied Mechanics and Engineering, 178 (1999), 257-262.
      http://dx.doi.org/10.1016/S0045-7825(99)00018-3

      [14] J.-H. He, ”A coupling method of homotopy technique and perturbation technique for nonlinear problems”, International Journal of Non-Linear
      Mechanics, 35 (1) (2000), 37-43. http://dx.doi.org/10.1016/S0020-7462(98)00085-7

      [15] L. Cveticanin, ”Homotopy-perturbation method for pure nonlinear differential equation”, Chaos, Solitons & Fractals, vol. 30, No. 5, 1221 - 1230, 2006.
      doi:10.1016/j.chaos.2005.08.180

      [16] V. Shchigolev, ”Homotopy Perturbation Method for Solving a Spatially Flat FRW Cosmological Model”, Universal Journal of Applied Mathematics,
      2(2) (2014), 99-103. http://dx.doi.org/10.13189/ujam.2014.020204

      [17] V. Shchigolev, ”Analytical Computation of the Perihelion Precession in General Relativity via the Homotopy Perturbation Method”, Universal Journal
      of Computational Mathematics, 3(4) (2015), 45-49. http://dx.doi.org/10.13189/ujcmj.2015.030401

      [18] V. K. Shchigolev, ”Calculating Luminosity Distance versus Redshift in FLRW Cosmology via Homotopy Perturbation Method”, Gravitation and
      Cosmology, 23 (2017) 142. http://dx.doi.org/10.1134/S0202289317020098

      [19] V. K. Shchigolev, D.N. Bezbatko ”Studying Gravitational Deflection of Light by Kiselev Black Hole via Homotopy Perturbation Method”, General
      Relativity and Gravitation, (2019) 51:34. http://dx.doi.org/10.1007/s10714-019-2521-6

      [20] Abdul Aziz, Saibal Ray, Farook Rahaman, ”A generalized model for compact stars”, European Physical Journal C, 76 (2016), 248.
      http://dx.doi.org/10.1140/epjc/s10052-016-4090-0

      [21] F. Rahaman, S. Ray, A. Aziz, S. R. Chowdhury, D. Deb, Exact Radiation Model For Perfect Fluid Under Maximum Entropy Principle, Online available
      from arXiv:1504.05838 (2015)

      [22] A. Aziz, S. Ray, F. Rahaman, M. Khlopov and B. K. Guha, ”Constraining values of bag constant for strange star candidates”, International Journal of
      Modern Physics D, http://dx.doi.org/10.1142/S0218271819410062


 

View

Download

Article ID: 29775
 
DOI: 10.14419/ijpr.v7i2.29775




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.