Theoretical investigation of acoustic wave velocity of aluminum phosphide under pressure

  • Authors

    • Salah Daoud Bordj Bou Arreridj University
    • Abdelhakim Latreche Bordj Bou Arreridj University
    • Pawan Kumar Saini Department of Physics, Government College, Hansi, Haryana,125033,
    2019-05-05
    https://doi.org/10.14419/ijpr.v7i1.23681
  • Alp Semiconductor, Bulk and Surface Acoustic Wave Velocities, Newton-Raphson's Iterative Method, High Pressure.
  • The bulk and surface acoustic wave velocities of Aluminum phosphide (AlP) semiconducting material under pressure up to 9.5 GPa were studied. The structural parameters and the elastic constants used in this work are taken from our previous paper published in J. Optoelec-tron. Adv. M. 16, 207 (2014). The results obtained at zero-pressure are analyzed and compared with other data of the literature. In addition, the acoustic Grüneisen parameter and the Vickers and Knoop microhardness are predicted and analyzed in detail. Our calculated results are in good agreement with the experimental and other theoretical data of literature.

     

     

     

  • References

    1. [1] R. Yang, C. Zhu, Q. Wei, and D. Zhang, "First-principles study on phases of AlP ", Solid State Communications, Vol. 267, (2017), pp. 23-28. https://doi.org/10.1016/j.ssc.2017.09.008.

      [2] S. Aouadi, P. Rodriguez-Hernandez, K. Kassali, and A. Muñoz, " Lattice dynamics properties of zinc-blende and nickel arsenide phases of AlP ", Physics Letters A, Vol. 372, No. 32, (2008), pp. 5340 -5345. https://doi.org/10.1016/j.physleta.2008.06.010.

      [3] S. Lakel, F. Okbi, M. Ibrir, and K. Almi, "Pressure effects on the elastic and lattice dynamics properties of AlP from first principles calculations", AIP Conference Proceedings. Vol. 1653, No. 1, (2015), pp. 020065 (7 pages). https://doi.org/10.1063/1.4914256.

      [4] M. Ameri, A. Bentouaf, M. D. Aici, R. Khenata, F. Boufadi, and A. Touia, "Structural and Electronic Properties Calculations of AlxIn1–xP Alloy", Materials Sciences and Application, Vol. 2, No. 32, (2011), pp. 729-738. https://doi.org/10.4236/msa.2011.27101.

      [5] A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, and Y. Al-Douri, "FP-APW + lo calculations of the elastic properties in zinc-blende III-P compounds under pressure effects", Computational Materials Science. Vol. 45, No. 2, (2009), pp. 474-479. https://doi.org/10.1016/j.commatsci.2008.11.013.

      [6] S. Ehsanfar, F. Kanjouri, H. Tashakori, and A. Esmailian, " First-principles study of structural, electronic, mechanical, thermal, and phonon properties of III-Phosphides (BP, AlP, GaP, and InP) ", Journal of Electronic Materials, Vol. 46, No. 10, (2017), pp. 6214-6223. https://doi.org/10.1007/s11664-017-5640-4.

      [7] S. Daoud, N. Bioud, and N. Lebga, " Structural, elastic, piezoelectric and electronic properties of (B3) AlP compound under pressure ", Journal of Optoelectronics and Advanced Materials, Vol. 16, No. 1-2, (2014), pp. 207 - 214.

      [8] D. Singh, G. Mishra, R. Kumar, and R.R. Yadav, "Temperature dependence of elastic and ultrasonic properties of sodium borohydride ", Communications in Physics, Vol. 27, No. 2, (2017), pp. 151-164. https://doi.org/10.15625/0868-3166/27/2/9615.

      [9] H. Ma, J. Zhang, B. Zhao, Q. Wei, and Y. Yang, "First-principles study on mechanical and elastic properties of BxAl1-xP alloys", AIP Advances Vol. 7, No. 6, (2017), pp. 065007 (12 pages). https://doi.org/10.1063/1.4985254.

      [10] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, England, (2005). ISBN 0-470-09032-4. https://doi.org/10.1002/0470090340.

      [11] N. Lebga, S. Daoud, X-W. Sun, N. Bioud, and A. Latreche, "Mechanical and thermophysical properties of cubic rock-salt AlN under high pressure", Journal of Electronic Materials, Vol. 47, No. 7, (2018), pp. 3430-3439. https://doi.org/10.1007/s11664-018-6169-x.

      [12] S. Daoud,"Sound velocities and thermal properties of BeX (X=S, Se and Te) alkaline-earth chalcogenides", International Journal of Scientific World, Vol. 5, No.1, (2017), pp. 9-12. https://doi.org/10.14419/ijsw.v5i1.6929.

      [13] Z. Tian, L. Sun, J. Wang, and J. Wang, "Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO5", Journal of the European Ceramic Society Vol. 35, No. 6, (2015), pp. 1923-1932. https://doi.org/10.1016/j.jeurceramsoc.2015.01.001.

      [14] B. Liu, X. Chen, H. Cai, M. Mohammad Ali, X. Tian, X., L.Tao, Y.Yang, and T. Ren, "Surface acoustic wave devices for sensor applications", Journal of Semiconductors, Vol. 37, No. 2, (2016), pp. 021001 (9 pages). https://doi.org/10.1088/1674-4926/37/2/021001.

      [15] N. Bouarissa, and Y. Atik, ‎" Elastic constants and acoustic wave velocities in Cd1-xZnxTe mixed crystals", Modern Physics Letters B, Vol. 22, No. 12, (2008), pp. 1221-1229. https://doi.org/10.1142/S0217984908015371.

      [16] S. Daoud, andN. Bouarissa, "Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure ", Theoretical Chemistry Accounts, Vol. 138, No. 4, (2019), pp. 49 (10 pages). https://doi.org/10.1007/s00214-019-2439-9.

  • Downloads

  • How to Cite

    Daoud, S., Latreche, A., & Kumar Saini, P. (2019). Theoretical investigation of acoustic wave velocity of aluminum phosphide under pressure. International Journal of Physical Research, 7(1), 3-6. https://doi.org/10.14419/ijpr.v7i1.23681