The study of transparent conducting gallium doped ZnO thin films in order to use in solar cells


  • Mojtaba Mahmoudzadeh Pirvahshi Department of Physics, Saravan Branch, Islamic Azad University, Saravan, Iran





Thin Films, Spray Pyrolysis, Structural, Optical, Electrical, Ga Doped ZnO.


In this study, transparent conducting Ga-doped ZnO thin films were deposited on glass substrate using chemical spray pyrolysis technique. The effect of Ga-doping concentration (0, 1, 2 and 3 at.%) on microstructural, optical and electrical characteristics of layers have been investigated. The studies of X-ray diffraction and optical transmission spectra show these films have a hexagonal wurtzite structure with (002) preferred growth direction, also a high transmission of 85-95% in visible range. Data analysis show that the band gap energies in these films are varying in the range of 3.27-3.33 eV, consistent with the Burstein-Moss shift effect, with Urbach tail widths between 114-160 meV. The 2 wt% Ga sample showed the maximum figure of merit (3×10-2Ω-1), with an electron concentration and sheet resistance of ~1.42×1019 cm-3 and 13 kΩ/square, respectively.




[1] J. Löffler, R. Groenen, J.L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Amorphous silicon solar cells on natively textured ZnO grown by PECVD, Thin Solid Films 392 (2001) 315–319.

[2] Vanita Devi et al 2014 J. Phys.: Conf. Ser. 534 012047.

[3] K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D: Appl. Phys. 34 (2001) 3097–3108.

[4] F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique, J. Alloys Compd. 616 (2014) 312–318.

[5] G. Haacke, J. Appl. Phys. 47 (1976) 4086.

[6] H. Gomez, M. de la L. Olvera, Materials Science and Engineering B 134 (2006) 20.

[7] Mujdat Caglar, Saliha Ilican, Yasemin Caglar, Thin Solid Films 517 (2009) 5023–5028.

[8] D. Dimova-Malinovska_, H. Nichev, O. Angelov, V. Grigorov, M. Kamenova, Superlattices and Microstructures 42 (2007) 123–128.

[9] K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors-a status review; Thin Solid Films 102 (1983) 1.

[10] S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, J. Cryst. Growth 287 (2006) 78.

[11] C. Moditswe et al. / Optik 127 (2016) 8317–8325.

[12] K. Matsubara et al. /thin solid Films 431 – 432 (2003) 369-372.

[13] H. Wei, D. Ding, X. Yan, J. Guo, L. Shao, H. Chen, L. Sun, H.A. Colorado, S. Wei, Z. Guo, Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer, Electrochim. Acta 132 (2014) 58–66.

[14] T. Prasada Rao, M.C. Santhoshkumar, - Applied Surface Science 255 (2009) 4579–4584.

[15] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632

[16] V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson , R. Yakimova, Thin Solid Films 515 (2006) 472–476.

[17] Z. Ben Achour, T. Ktari, B. Ouertani, O. Touayar, B. Bessais b, J. Ben Brahim, Sensors and Actuators A 134 (2007) 447.

[18] K.T. Ramakrishna Reddy, T.B.S. Reddy, I. Forbes, R.W. Miles, Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis, Surf. Coat. Technol. 151–152 (2002) 110–113.

[19] Y. Caglar et al. / Spectrochimica Acta Part A 67 (2007) 1113–1119.

View Full Article: