A bivariate Pareto type I models

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    In this paper two new bivariate Pareto Type I distributions are introduced. The first distribution is based on copula, and the second distribution is based on mixture of and copula. Maximum likelihood and Bayesian estimations are used to estimate the parameters of the proposed distribution. A Monte Carlo Simulation study is carried out to study the behavior of the proposed distributions. A real data set is analyzed to illustrate the performance and flexibility of the proposed distributions.

  • Keywords

    : Bivariate Pareto Type I; Gaussian Copula; Maximum Likelihood Estimation; Bayesian Estimation.

  • References

      [1] H. T. Davis, M. L. Feldstein, The generalized Pareto law as a model for progressively censored survival data. Biometrika, 66 (1979) 299–306. https://doi.org/10.1093/biomet/66.2.299.

      [2] D. R. Cox, D. Oakes, Analysis of survival data (Vol. 21). book, CRC Press. 1984.

      [3] A. C. Cohen, B. J. Whitten, Parameter estimation in reliability and life span models. book, M. Dekker. 1988. Retrieved from http://www.jstor.org/stable/2335662.

      [4] N. Bhattacharya, A property of the Pareto distribution. Vilfredo Pareto: Critical Assessments of Leading Economists, 4 (264) (1999).

      [5] A. Howlader, Bayesian prediction and estimation from Pareto distribution of the first kind, International Journal of Statistical Sciences, 6 (2007) 137-150.

      [6] P. Setiya,V. Kumer, M.K. Pande, Bayesian estimation of scale parameter of Pareto Type-I distribution by two different methods, Thailand Statistician, 14(1) (2016) 47-62.

      [7] M. A. Mahmoud, K. S Sultan, M. E. Moshref, Inference based on order statistics from the generalized Pareto distribution and application. Communications in Statistics - Simulation and Computation, 34(2) (2005) 267–282. https://doi.org/10.1081/SAC-200055643.

      [8] A. Sklar, Fonctions de R{é}partition {à} n Dimensions et Leurs Marges. Publications de L’Institut de Statistique de L’Universit{é} de Paris, 8 (1959) 229–231.

      [9] T. R. Clemen, R. L. Winkler, Aggregation point estimates: a flexible modelling approach. Management Science. (1993). https://doi.org/10.1287/mnsc.39.4.501.

      [10] F. Longin, B. Solnik, Is the correlation in international equity returns constant: 1960-1990? Journal of International Money and Finance, 14(1) (1995) 3–26. https://doi.org/10.1016/0261-5606(94)00001-H.

      [11] D. X. Li, On default correlation. The Journal of Fixed Income, 9(4) (2000) 43–54. https://doi.org/10.3905/jfi.2000.319253.

      [12] A. J. Patton, Modelling Time-Varying Exchange Rate Dependence By Andrew J . Patton June 2001.

      [13] H. Joe, Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94(2) (2005) 401–419. https://doi.org/10.1016/j.jmva.2004.06.003.

      [14] D. Lopez-Paz, J. M. Hernández-Lobato, Z. Ghahramani, Gaussian Process Vine Copulas for Multivariate Dependence. Journal of Machine Learning Research. (2013). Retrieved from http://arxiv.org/abs/1302.3979.

      [15] F. R. Board, D. H. Oh, A. J. Patton, Divisions of research & statistics and monetary affairs modelling dependence in High dimensions with factor copulas,(2015).

      [16] S. A. Adham, S. G. Walker, A multivariate gompertz-type distribution. Journal of Applied Statistics, 28(8) (2001).1051–1065.

      [17] D. Kundu, A. K. Dey, Estimating the parameters of the Marshall Olkin bivariate Weibull distribution by EM algorithm. Computational Statistics & Data Analysis, 53(4) (2009) 956–965. https://doi.org/10.1016/j.csda.2008.11.009.

      [18] B. Diakarya, Sampling a survival and conditional class of Archimedean rocesses, 5(1) (2013) 53–60.

      [19] P. G. Sankaran, D. Kundu, A bivariate Pareto model. Statistics, 48(2) (2014) 241–255. https://doi.org/10.1080/02331888.2012.719521.

      [20] J. A. Achcar, F. A. Moala, M. H.Tarumoto, L. F. Coladello, A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates. Pesquisa Operacional, 35(1) (2015)165–186.

      [21] X. Dou, S. Kuriki, G. D. Lin, D. Richards, EM algorithms for estimating the Bernstein copula. Computational Statistics and Data Analysis, 93 (2016) 228–245. https://doi.org/10.1016/j.csda.2014.01.009.

      [22] B. Mandelbrot, On the theory of word frequencies and on related Markovian models of discourse. Structure of Language and Its Mathematical Aspects, 12 (1961) 190–219. https://doi.org/10.1090/psapm/012/9970.

      [23] H. C. Yeh, Three general multivariate semi-Pareto distributions and their characterizations. Journal of Multivariate Analysis, 98(6) (2007) 1305–1319. https://doi.org/10.1016/j.jmva.2006.08.002.

      [24] A. Q. Flores, Copula functions and bivariate distributions for survival analysis :An application to political survival. Wilf Department of Politics, New York University, (2008) 1–27.

      [25] S. G. Walker, D. A. Stephens, Miscellanea. A multivariate family of distributions on (0,8) Biometrika, 86(3) (1999) 703–709. https://doi.org/10.1093/biomet/86.3.703.

      [26] R. d S. Silva, H. F. Lopes, Copula, marginal distributions and model selection: A Bayesian note. Statistics and Computing, 18(3) (2008) 313–320. https://doi.org/10.1007/s11222-008-9058-y.

      [27] M. K. Abd -Elaal, M. R. Mahmoud, M. M. EL-Gohary, L. A. Baharith, Univariate and bivariate Burr type X distributions based on mixtures and copula. International Journal of Mathematics and Statistics, 17(1) (2016) 113–127.

      [28] R. A. Johnson, D. W. Wichern, others. Applied multivariate statistical analysis (Vol. 4). book, Prentice hall Englewood Cliffs, NJ. 1992.




Article ID: 7638
DOI: 10.14419/ijasp.v5i1.7638

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.