Exploring The Influence of Personality Traits and AI MediatorDesign on ‎Dispute Resolution: The Mediating Role ofMediator Function and ‎ModeratingEffect of Dispute Type

  • Authors

    • Pradeep Kumar Bharadwaj Research Scholar, Department of Law, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram
    • Dr. Megha Ojha Associate Professor of Law, Department of Law, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram‎ https://orcid.org/0009-0003-0825-6529
    • Dr. Venkateswara Rao Podile Professor, KL Business School, Koneru Lakshmaiah Education Foundation, Vaddeswaram https://orcid.org/0000-0001-5251-8424
    https://doi.org/10.14419/wcs7e862

    Received date: December 25, 2025

    Accepted date: January 21, 2026

    Published date: January 25, 2026

  • AI Mediator Design; Personality Traits; Dispute Resolution; Mediator Function; Dispute Type ‎Moderation
  • Abstract

    This study investigates the role of individual personality traits and AI mediator design features in ‎influencing dispute resolution effectiveness, with a focus on the mediating role of the mediator's ‎function and the moderating effect of dispute type. Drawing from the Big Five personality ‎framework and human–AI interaction literature, a structural equation model (SEM) was ‎employed using a sample of 300 respondents engaged in simulated dispute resolution scenarios. ‎The analysis revealed that both personality traits (e.g., openness, conscientiousness, and ‎emotional stability) and AI mediator design elements (usability, transparency, perceived fairness, ‎and adaptability) significantly influence dispute resolution outcomes. Importantly, the mediator’s ‎role—defined through neutrality, facilitation, and communication style—was found to mediate ‎these effects. Furthermore, multi-group analysis showed that the strength of this mediation ‎pathway varies depending on the type of dispute, with the strongest effects observed in family ‎and workplace conflicts.‎

    Model fit indices (CFI = 0.962, TLI = 0.950, RMSEA = 0.061, SRMR = 0.041) confirmed a ‎good fit. The results underscore the necessity of designing context-aware, user-centric AI ‎systems and integrating psychological profiles for optimized dispute resolution processes. The ‎study contributes to the growing discourse on AI in legal and organizational contexts and ‎provides a framework for the development of adaptive, ethical, and effective AI mediation tools‎.

  • References

    1. Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509–514. https://doi.org/10.1126/science.aaa1465
    2. Ahn, H. S., & Picard, R. W. (2005). Affective-cognitive learning and decision making: The role of emotions. Proceedings of the IEEE Intelligent Transportation Systems, 967–972.
    3. Allen, N. J., & Meyer, J. P. (1996). Affective, continuance, and normative commitment to the organization: An examination of construct validity. Journal of Vocational Behavior, 49(3), 252–276. https://doi.org/10.1006/jvbe.1996.0043
    4. Amabile, T. M. (1996). Creativity in context. Westview Press.
    5. Anderson, M. C., & Ross, W. H. (2003). Questions and questioning: Research perspectives. In R. M. Sorrentino & S. Y. Douglas (Eds.), Handbook of Communication and Social Interaction Skills (pp. 315–344). Routledge.
    6. Appelbaum, S. H., & Shapiro, B. T. (1998). The management of multicultural group conflict. Team Performance Management, 4(5), 211–234. https://doi.org/10.1108/13527599810234173
    7. Arvanitis, A., & Karampatzakis, D. (2021). Trust in AI: A psychological perspective. AI & Society, 36, 509–521. https://doi.org/10.1007/s00146-020-01012-z.
    8. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research. Journal of Personality and So-cial Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173.
    9. Barry, B., & Friedman, R. A. (1998). Bargainer characteristics in distributive and integrative negotiation. Journal of Personality and Social Psy-chology, 74(2), 345–359. https://doi.org/10.1037/0022-3514.74.2.345.
    10. Beale, R., & Wood, A. (2015). Measuring users’ emotional responses to AI systems. International Journal of Human-Computer Studies, 84, 1–13.
    11. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making, and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295–307. https://doi.org/10.1093/cercor/10.3.295.
    12. Ben-Ner, A., & Putterman, L. (2001). Trusting and trustworthiness. Journal of Economic Behavior & Organization, 43(3), 371–394.
    13. Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on Fairness, Accountability and Transparency, 149–159.
    14. Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). ‘It’s reducing a human being to a percentage’: Citizens’ views of automated decision-making. CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3173951.
    15. Broekens, J., Jacobs, E., & Jonker, C. M. (2013). A reinforcement learning model of emotion regulation. Biological Psychology, 92(3), 417–428.
    16. Brett, J. M. (2007). Negotiating globally: How to negotiate deals, resolve disputes, and make decisions across cultural boundaries (2nd ed.). Jossey-Bass.
    17. Buss, D. M. (1991). Evolutionary personality psychology. Annual Review of Psychology, 42, 459–491. https://doi.org/10.1146/annurev.ps.42.020191.002331.
    18. Buss, D. M., & Plomin, R. (2014). Temperament: Early-developing personality traits. Routledge.
    19. Carnevale, P. J., & Probst, T. M. (1998). Social values and social conflict in creative problem solving and categorization. Journal of Personality and Social Psychology, 74(5), 1300–1309. https://doi.org/10.1037/0022-3514.74.5.1300.
    20. Carver, C. S., & Scheier, M. F. (2014). Perspectives on personality (7th ed.). Pearson.
    21. Charkhabi, M., Abarghuei, M. A., & Hayati, D. (2013). The relation of personality traits and conflict resolution styles. Procedia - Social and Behav-ioral Sciences, 84, 550–554. https://doi.org/10.1016/j.sbspro.2013.06.600.
    22. Cialdini, R. B. (2001). Influence: Science and practice (4th ed.). Allyn & Bacon.
    23. Colson, E. (2021). Online Dispute Resolution for Business: B2B, E-commerce, Consumer, Employment, Insurance, and Other Commercial Con-flicts. American Bar Association.
    24. Costa, P. T., & McCrae, R. R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Psychological Assessment Resources.
    25. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008.
    26. De Dreu, C. K. W., & Van Vianen, A. E. M. (2001). Personality in teams: Its relationship to social cohesion, task cohesion, and team performance. European Journal of Work and Organizational Psychology, 10(2), 97–120. https://doi.org/10.1080/13594320143000573.
    27. Deutsch, M., & Coleman, P. T. (Eds.). (2011). The handbook of conflict resolution: Theory and practice (2nd ed.). Jossey-Bass.
    28. Donohue, W. A. (1981). Analyzing negotiation tactics: Development of a negotiation interact coding system. Human Communication Research, 7(3), 273–287. https://doi.org/10.1111/j.1468-2958.1981.tb00571.x
    29. Eisenhardt, K. M. (1989). Agency theory: An assessment and review. Academy of Management Review, 14(1), 57–74. https://doi.org/10.2307/258191
    30. Fehr, R., Gelfand, M. J., & Nag, M. (2010). The road to forgiveness: A meta-analytic synthesis of its situational and dispositional correlates. Psy-chological Bulletin, 136(5), 894–914. https://doi.org/10.1037/a0019993.
    31. Fiske, S. T., & Taylor, S. E. (2013). Social cognition: From brains to culture (2nd ed.). Sage. https://doi.org/10.4135/9781529681451
    32. Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 48(1), 26–34. https://doi.org/10.1037/0003-066X.48.1.26.
    33. Goleman, D. (1995). Emotional intelligence: Why it can matter more than IQ. Bantam Books.
    34. Gratch, J., & Marsella, S. (2005). Evaluating a computational model of emotion. Autonomous Agents and Multi-Agent Systems, 11(1), 23–43. https://doi.org/10.1007/s10458-005-1081-1
    35. Gunkel, D. J. (2018). Robot rights. MIT Press. https://doi.org/10.7551/mitpress/11444.001.0001.
    36. John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 102–138). Guilford Press.
    37. Jung, C. G. (1971). Psychological types (Vol. 6). Princeton University Press.
    38. Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.
    39. Kotsialos, A., & Papageorgiou, M. (2001). AI tools in online traffic management: A review. Transportation Research Part C: Emerging Technolo-gies, 9(6), 403–424.
    40. Kumar, S., & Sharma, R. (2021). Artificial intelligence in dispute resolution: A conceptual framework. Journal of Business Research, 124, 403–412.
    41. Langer, E. J. (1989). Mindfulness. Addison-Wesley.
    42. LeBaron, M. (2003). Bridging cultural conflicts: A new approach for a changing world. Jossey-Bass.
    43. Lewicki, R. J., Barry, B., & Saunders, D. M. (2015). Negotiation (7th ed.). McGraw-Hill Education.
    44. Mayer, J. D., Salovey, P., & Caruso, D. R. (2004). Emotional intelligence: Theory, findings, and implications. Psychological Inquiry, 15(3), 197–215.
    45. Parkes, D. C., & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267–272. https://doi.org/10.1207/s15327965pli1503_02
    46. Picard, R. W. (1997). Affective computing. MIT Press. https://doi.org/10.7551/mitpress/1140.001.0001.
    47. Shell, G. R. (2006). Bargaining for advantage: Negotiation strategies for reasonable people. Penguin.
    48. Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. Yale University Press.
    49. Van den Bos, K., Lind, E. A., & Wilke, H. A. M. (2001). The psychology of procedural and distributive justice viewed from the perspective of fairness heuristic theory. Justice in the Workplace, 2, 49–66.
    50. Van der Aalst, W. M. P. (2016). Process mining: Data science in action (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-49851-4.
  • Downloads

  • How to Cite

    Bharadwaj , P. K., Ojha, D. M. ., & Podile, D. V. R. (2026). Exploring The Influence of Personality Traits and AI MediatorDesign on ‎Dispute Resolution: The Mediating Role ofMediator Function and ‎ModeratingEffect of Dispute Type. International Journal of Accounting and Economics Studies, 13(1), 463-470. https://doi.org/10.14419/wcs7e862