A Multi-Criteria Decision-Making Approach for EvaluatingBusiness Excellence ‎Frameworks for The Indian Automotive Sector: A Qualitative Assessment

  • Authors

    • Eugene J Research Scholar ‎ Faculty of Management, SRM Institute of Science and Technology, Kattankulathur, ‎ Chengalpattu District, Tamil Nadu – 603203, India
    • Dr. Arivazhagan, R. Associate Professor Faculty of Management, SRM Institute of Science and Technology, Kattankulathur, ‎ Chengalpattu District, Tamil Nadu – 603203, India
    https://doi.org/10.14419/70zg8n40

    Received date: December 3, 2025

    Accepted date: December 8, 2025

    Published date: December 12, 2025

  • Business Excellence Frameworks; Industry 4.0 and Quality 4.0; Automotive Supplier ‎Development; EFQM; MBNQA; Deming Prize; Multi-Criteria Decision-Making (MCDM); ‎TOPSIS; COPRAS; Digital Transformation; Extended Business Excellence Framework ‎‎(EBEF)‎.
  • Abstract

    The Indian automotive component sector is undergoing rapid transformation. It is driven by ‎intensified global competition, stringent OEM expectations, and the accelerated adoption of ‎Industry 4.0 technologies. Classical Business Excellence Frameworks (BEFs)—such as ‎EFQM, the Malcolm Baldrige National Quality Award (MBNQA), and the Deming Prize—‎have traditionally supported excellence initiatives; however, their suitability within today’s ‎digitally evolving and culturally complex Indian manufacturing context remains unclear. Based ‎on these gaps, an Extended Business Excellence Framework (EBEF) was developed, ‎integrating digital transformation, information standardization, sustainability, and enhanced ‎PDCA cycles. This study evaluates these various BEFs using qualitative practitioner insights ‎and structured Multi-Criteria Decision-Making (MCDM) methods. Semi-structured interviews ‎with 15 senior automotive leaders identified six major evaluation criteria: ease of ‎implementation, cultural adaptability, effectiveness, efficiency, speed and cost . Using real-‎number TOPSIS and COPRAS analyses, the EBEF consistently outperformed classical BEFs, ‎with sensitivity and volatility analysis confirming its robustness. The findings offer a ‎contemporary, industry-aligned excellence model capable of supporting Indian automotive ‎suppliers in transitioning to Quality 4.0 environments‎.

  • References

    1. Amasaka, K. (2018). New JIT: A new management technology principle at Toyota. Journal of Intelligent Manufacturing, 29(1), 1–15.
    2. Antony, J. (2014). Readiness factors for the Lean Six Sigma journey in the higher education sector. International Journal of Productivity and Performance Management, 63(2), 257–264. https://doi.org/10.1108/IJPPM-04-2013-0077.
    3. Bhamu, J., & Sangwan, K.S. (2014). Lean manufacturing: A comprehensive review. International Journal of Operations & Production Management, 34(7), 876–940. https://doi.org/10.1108/IJOPM-08-2012-0315.
    4. Bogan, C., & English, M. (1994). Benchmarking for best practices. McGraw-Hill.
    5. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa.
    6. Bunney, H., & Dale, B. (1997). The implementation of the EFQM Excellence Model. The TQM Magazine, 9(4), 235–240. https://doi.org/10.1108/09544789710168966.
    7. Chiarini, A. (2017). Industry 4.0, quality management and TQM: A conceptual model. The TQM Journal, 29(6), 1–15.
    8. Conti, T. (1996). Self-assessment and continuous improvement. Total Quality Management, 7(4), 375–381.
    9. Dahlgaard-Park, A.N. (2011). The evolution patterns of quality management: Some reflections. Total Quality Management & Business Excellence, 22(7), 587–603. https://doi.org/10.1080/14783363.2011.578481.
    10. Deming, W.E. (1986). Out of the crisis. MIT Press.
    11. EFQM Foundation. (2020). EFQM Model 2020. Brussels: EFQM.
    12. Eugene, J., & Arivazhagan, R. (2024). Development of Integrated Business Excellence Model to Align with Digital Innovation for Indian Auto Component Industries at Chennai. Educational Administration: Theory and Practice, 30(6), 1–22.
    13. Frank, A.G., Dalenogare, L.S., & Ayala, N.F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004.
    14. Garvin, D.A. (1991). How the Baldrige Award really works. Harvard Business Review, 69(6), 80–93.
    15. Gotzamani, K., & Tsiotras, G. (2002). The true motives behind ISO 9000 certification. International Journal of Quality & Reliability Management, 19(2), 151–169. https://doi.org/10.1108/02656710210413499.
    16. Hwang, C.L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer. https://doi.org/10.1007/978-3-642-48318-9
    17. JUSE – Union of Japanese Scientists and Engineers. (2020). Deming Prize Guide. Tokyo: JUSE.
    18. Kagermann, H. (2013). Recommendations for implementing Industry 4.0. Forschungsunion, Germany.
    19. Kanji, G.K. (2001). Business excellence: Make it happen. Total Quality Management, 12(4), 417–427. https://doi.org/10.1080/09544120120025311
    20. Kaye, M., & Anderson, R. (1999). Continuous improvement: The ten essential criteria. International Journal of Quality & Reliability Management, 16(5), 485–506. https://doi.org/10.1108/02656719910249801.
    21. Khan, A., & Turowski, K. (2016). A survey of Industry 4.0 enabling technologies and sustainability. Procedia CIRP, 51, 486–491.
    22. Kumar, M., Antony, J., & Tiwari, M.K. (2011). Six Sigma implementation framework for SMEs. International Journal of Production Research, 49(4), 1–23. https://doi.org/10.1080/00207543.2011.563836.
    23. Kvale, S. (1996). InterViews: An introduction to qualitative research interviewing. Sage.
    24. Lasi, H., et al. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242. https://doi.org/10.1007/s12599-014-0334-4
    25. Lee, J., Bagheri, B., & Kao, H. (2015). A cyber–physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.
    26. Lean Enterprise Institute. (2009). Lean Transformation Model. Cambridge, MA: LEI.
    27. Liu, Y., & Gao, J. (2009). Lean production in automotive supply chains. International Journal of Production Economics, 117(2), 115–128.
    28. Lozano, R. (2007). Sustainability and organisational learning. Journal of Cleaner Production, 15, 499–509. https://doi.org/10.1016/j.jclepro.2007.01.002.
    29. Marr, B. (2015). Data-driven continuous improvement. IT Professional, 17(6), 12–16.
    30. Moeuf, A., et al. (2018). The industrial management of SMEs in the era of Industry 4.0. Computers in Industry, 99, 157–171.
    31. Mohammad, M., & Mann, R. (2010). ISO 9001:2008 and organisational performance – a review of empirical evidence. Total Quality Management & Business Excellence, 21(3), 301–322.
    32. Neely, A. (2007). Business Performance Measurement: Theory and Practice. Cambridge University Press. https://doi.org/10.1017/CBO9780511488481
    33. NIST – National Institute of Standards and Technology. (2021). Baldrige Excellence Framework. Gaithersburg, MD: NIST.
    34. Oakland, J.S., & Tanner, S. (2007). A framework for business excellence. Total Quality Management, 18(1), 87–108. https://doi.org/10.1080/14783360601042890
    35. Olson, D. (1996). Introduction to Multicriteria Optimization. Springer.
    36. Opricovic, S., & Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1
    37. Palinkas, L.A., et al. (2015). Purposeful sampling for qualitative data collection. Administration and Policy in Mental Health, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y.
    38. Parida, A., & Kumar, U. (2006). Maintenance performance measurement. Journal of Quality in Maintenance Engineering, 12(3), 239–251. https://doi.org/10.1108/13552510610685084
    39. Pérez-Lara, M., et al. (2021). Quality 4.0: A systematic literature review. The TQM Journal, 33(6), 1633–1654.
    40. Poyhonen, M. (2003). Qualitative MCDM models. European Journal of Operational Research, 145(3), 1–13.
    41. Psomas, E., & Antony, J. (2015). The effectiveness of the ISO 9001 quality management system and its influential critical factors in Greek companies. International Journal of Production Research, 53(7), 2089–2099. https://doi.org/10.1080/00207543.2014.965353.
    42. Pyzdek, T., & Keller, P. (2014). The Six Sigma handbook. McGraw-Hill.
    43. Rajesh, R., & Ravi, V. (2015). Supplier selection in manufacturing using MCDM. Expert Systems with Applications, 42(15–16), 1–13.
    44. Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5), 77–90. https://doi.org/10.3991/ijim.v11i5.7072
    45. Sader, M., Husti, I., & Daroczi, M. (2021). Quality 4.0: A systematic literature review. The TQM Journal, 33(6), 1633–1654. https://doi.org/10.1080/14783363.2021.1944082.
    46. Schoeman, B. (2022). Integrating digital maturity and business excellence. The TQM Journal, 34(7), 1–18.
    47. Shah, R., & Ward, P.T. (2007). Defining and developing measures of lean production. Journal of Operations Management, 25(4), 785–805. https://doi.org/10.1016/j.jom.2007.01.019.
    48. Sila, I., & Ebrahimpour, M. (2005). Critical factors of TQM success. Quality Management Journal, 12(1), 1–21.
    49. Singh, K., & Khanduja, D. (2018). Excellence models in developing economies. The TQM Journal, 30(4), 1–15.
    50. Sony, M. (2020). Industry 4.0 and lean management. International Journal of Production Research, 58(5), 1–15.
    51. Sony, M., & Naik, S. (2020). The evolution from TQM to Quality 4.0. Quality Management Journal, 27(3), 160–177.
    52. Tari, J. (2005). Components of successful total quality management. International Journal of Production Research, 43(23), 5057–5080.
    53. Triantaphyllou, E. (2000). Multi-Criteria Decision Making. Springer. https://doi.org/10.1007/978-1-4757-3157-6
    54. Victor, N., & Achebo, J. (2020). Industry 4.0 adoption challenges. Procedia Manufacturing, 51, 1233–1240.
    55. Zavadskas, E.K., & Kaklauskas, A. (1996). COPRAS: A method of complex proportional evaluation. LithTech.
    56. Zavadskas, E.K., & Kaklauskas, A. (2000). COPRAS method. Journal of Civil Engineering and Management, 6(2), 57–60.
    57. Zavadskas, E.K., Turskis, Z., & Kildiene, S. (2014). State of art surveys of MCDM techniques. Technological and Economic Development of Economy, 20(1), 165–179. https://doi.org/10.3846/20294913.2014.892037.
    58. Zink, K.J. (2008). EFQM and business excellence models. The TQM Journal, 20(3), 1–12.
  • Downloads

  • How to Cite

    J, E., & R. , D. A. . (2025). A Multi-Criteria Decision-Making Approach for EvaluatingBusiness Excellence ‎Frameworks for The Indian Automotive Sector: A Qualitative Assessment. International Journal of Accounting and Economics Studies, 12(8), 313-326. https://doi.org/10.14419/70zg8n40