Investigating The Factors Affecting The Adoption of Solar Energy: A Synthesis of TAM ‎and TPB among Households

  • Authors

    • Shampy Dubey Mittal School of Business, Lovely Professional University, Punjab, India https://orcid.org/0009-0004-7794-7646
    • Kirti Chanakya National Law University, Patna
    • Rupinder Katoch Mittal School of Business, Lovely Professional University, Punjab, India https://orcid.org/0000-0003-3191-7930
    • Muzzamil Rehman Mittal School of Business, Lovely Professional University, Punjab, India
    • Prabhjeet Kaur Mittal School of Business, Lovely Professional University, Punjab, India
    https://doi.org/10.14419/j64ps364

    Received date: November 1, 2025

    Accepted date: November 24, 2025

    Published date: December 4, 2025

  • Solar Energy Adoption; Technology Acceptance Model (TAM); Theory of Planned Behavior ‎‎(TPB); Behavioral Intention, Renewable Energy; Household Adoption
  • Abstract

    The demand of going green with green energy in the global context has risen the significance ‎of household behavioral aspects towards utilization of solar energy. The infrastructural ‎difficulties and behavioral obstacles have influenced the demand of sustainable energy ‎alternatives. Residential areas are adopting solar energy systems as an unconventional energy ‎source. To examine the effects behavioral and technological factors on the adoption of solar ‎energy systems at the household level. In this research, the quantitative method was used and ‎was based on the Technology Acceptance Model (TAM) and the Theory of Planned Behavior ‎‎(TPB). The model aimed at analyzing the extent to which Solar Perceived Usefulness (SPU), ‎Perceived Ease of Use (PEU), Attitude (A), Subjective Norm (SN) and Perceived Behavioral ‎Control (PBC) had significant effects on Behavioral Intention to Adopt Green Energy ‎‎(BIAGE) and Use Behavior (UB) among households. SmartPLS was used to test the structural ‎model utilizing the data which was gathered in households in the state of Bihar. The results of ‎the empirical studies showed that the Attitude, Subjective Norm, and Perceived Behavioral ‎Control had a strong impact on the Behavioral Intention that further influenced the Use ‎Behavior. Furthermore, it was discovered that Perceived Ease of Use and Solar Perceived ‎Usefulness positively and significantly affected Attitude and Behavioral Intention account 36.1 ‎percent. The results support the integrative potentials of TAM and TPB in explaining the ‎behavior intentions of adopting solar energy. Through the research work, a contribution has ‎been made to the extant discourse on the energy shifts to sustainability, with the social ‎influence, attitudinal positivity and perception and control of behavior all playing a composite ‎role toward establishing the intent towards household adoption‎.

  • References

    1. Baum, C. M., & Gross, C. (2016). Sustainability policy as if people mattered: developing a framework for environmentally significant behavioral change. Journal of Bioeconomics, 19(1), 53–95. https://doi.org/10.1007/s10818-016-9238-3.
    2. Elkhatat, A., & Al-Muhtaseb, S. (2024). Climate Change and Energy Security: A Comparative Analysis of the Role of Energy Policies in Advancing Environmental Sustainability. Energies, 17(13), 3179. https://doi.org/10.3390/en17133179.
    3. Raihan, A., Sarker, T., & Zimon, G. (2024). An Investigation on the Prospects, Challenges and Policy Consequences of Renewable Energy Technol-ogy Development for India’s Environmental Sustainability. WSEAS Transactions on Environment and Development, 20, 365–390. https://doi.org/10.37394/232015.2024.20.35.
    4. Sovacool, B. K., Newell, P., Carley, S., & Fanzo, J. (2022). Equity, technological innovation and sustainable behaviour in a low-carbon future. Nature Human Behaviour, 6(3), 326–337. https://doi.org/10.1038/s41562-021-01257-8.
    5. Tao, D. (2009). Intention to use and actual use of electronic information resources: further exploring Technology Acceptance Model (TAM). PubMed, 2009, 629. https://pubmed.ncbi.nlm.nih.gov/20351931.
    6. Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412.
    7. Yadav, P., Davies, P. J., & Sarkodie, S. A. (2019). The prospects of decentralised solar energy home systems in rural communities: User experience, determinants, and impact of free solar power on the energy poverty cycle. Energy Strategy Reviews, 26, 100424. https://doi.org/10.1016/j.esr.2019.100424.
    8. Zaidan, E., Cochrane, L., & Belal, M. (2025). Adapting to change and transforming crisis into opportunity - Behavioral and policy shifts in sustainable practices post-pandemic. Heliyon, 11(10). https://doi.org/10.1016/j.heliyon.2025.e42046.
    9. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook . Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7.
    10. Wall, W. P., Khalid, B., Urbański, M., & Kot, M. (2021). Factors influencing consumer’s adoption of renewable energy. Energies, 14(17). https://doi.org/10.3390/en14175420.
    11. Karakaya, E., & Sriwannawit, P. (2015). Barriers to the adoption of photovoltaic systems: The state of the art. Renewable and Sustainable Energy Re-views, 49, 60–66. https://doi.org/10.1016/j.rser.2015.04.058.
    12. Kyere, F., Dongying, S., Bampoe, G. D., Kumah, N. Y. G., & Asante, D. (2024). Decoding the shift: Assessing household energy transition and un-ravelling the reasons for resistance or adoption of solar photovoltaic. Technological Forecasting and Social Change, 198, 123030. https://doi.org/10.1016/j.techfore.2023.123030.
    13. Qureshi, T. M., Ullah, K., & Arentsen, M. J. (2017). Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan. Re-newable and Sustainable Energy Reviews, 78, 754–763. https://doi.org/10.1016/j.rser.2017.04.020.
    14. Muwanga, R., Namugenyi, I., Wabukala, B. M., Tibesigwa, W., & Katutsi, P. V. (2024). Examining social-cultural norms affecting the adoption of solar energy technologies at the household level. Cleaner Energy Systems, 9, 100164. https://doi.org/10.1016/j.cles.2024.100164.
    15. Poier, S. (2021). Towards a psychology of solar energy: Analyzing the effects of the Big Five personality traits on household solar energy adoption in Germany. Energy Research & Social Science, 77, 102087. https://doi.org/10.1016/j.erss.2021.102087
    16. Mperejekumana, P., Shen, L., Zhong, S., Gaballah, M. S., & Muhirwa, F. (2024). Exploring the potential of decentralized renewable energy conver-sion systems on water, energy, and food security in africa. Energy Conversion and Management, 315, 118757. https://doi.org/10.1016/j.enconman.2024.118757.
    17. Bazmi, A. A., & Zahedi, G. (2011). Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A re-view. Renewable and Sustainable Energy Reviews, 15(8), 3480–3500. https://doi.org/10.1016/j.rser.2011.05.003.
    18. Omer, A. M. (2007). Renewable energy resources for electricity generation in Sudan. Renewable and Sustainable Energy Reviews, 11(7), 1481–1497. https://doi.org/10.1016/j.rser.2005.12.001
    19. Awais, M., Fatima, T., & Awan, T. M. (2022). Assessing behavioral intentions of solar energy usage through value-belief-norm theory. Management of Environmental Quality: An International Journal, 33(6), 1329–1343. https://doi.org/10.1108/MEQ-09-2021-0227.
    20. Ukoba, K., Yoro, K. O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T. C. (2024). Adaptation of solar energy in the Global South: Prospects, chal-lenges and opportunities. Heliyon, 10(7), 2405–8440. ASSET/09FC09A2-1E92-408B-B64C-FE3480B15AB9/MAIN.ASSETS/GR9.JPG https://doi.org/10.1016/j.heliyon.2024.e28009.
    21. Kapoor, K. K., & Dwivedi, Y. K. (2020). Sustainable consumption from the consumer’s perspective: Antecedents of solar innovation adoption. Re-sources, Conservation and Recycling, 152, 104501. https://doi.org/10.1016/j.resconrec.2019.104501
    22. Spaargaren, G. (2003). Sustainable consumption: A theoretical and environmental policy perspective. Society and Natural Resources, 16(8), 687–701. REQUESTEDJOURNAL:JOURNAL:USNR20;WGROUP:STRING:PUBLICATION https://doi.org/10.1080/08941920309192.
    23. De Pascali, P., & Bagaini, A. (2018). Energy Transition and Urban Planning for Local Development. A Critical Review of the Evolution of Integrated Spatial and Energy Planning. Energies, 12(1), 35. https://doi.org/10.3390/en12010035.
    24. Esfandi, S., Tayebi, S., Byrne, J., Taminiau, J., Giyahchi, G., & Alavi, S. A. (2024). Smart Cities and Urban Energy Planning: An Advanced Review of Promises and Challenges. Smart Cities, 7(1), 414–444. https://doi.org/10.3390/smartcities7010016.
    25. Zhou, K., & Yang, S. (2016). Understanding household energy consumption behavior: The contribution of energy big data analytics. Renewable and Sustainable Energy Reviews, 56, 810–819. https://doi.org/10.1016/j.rser.2015.12.001.
    26. Elmustapha, H., Hoppe, T., & Bressers, H. (2018). Understanding Stakeholders’ Views and the Influence of the Socio-Cultural Dimension on the Adoption of Solar Energy Technology in Lebanon. Sustainability, 10(2), 364. https://doi.org/10.3390/su10020364.
    27. Maqbool, R., & Akubo, S. A. (2022). Solar energy for sustainability in Africa: The challenges of socio-economic factors and technical complexities. In International Journal of Energy Research (Vol. 46, Issue 12, pp. 16336–16354). John Wiley and Sons Ltd. https://doi.org/10.1002/er.8425.
    28. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Infor-mation Systems, 13(3), 319–339. https://doi.org/10.2307/249008
    29. Conner, M. (2001). Health Behaviors. International Encyclopedia of the Social & Behavioral Sciences, 6506–6512. https://doi.org/10.1016/B0-08-043076-7/03871-7.
    30. Fazal, S. A., Hayat, N., & Al Mamun, A. (2023). Renewable Energy and Sustainable Development—Investigating Intention and Consumption among Low-Income Households in an Emerging Economy. Sustainability, 15(21), 15387. https://doi.org/10.3390/su152115387
    31. Katoch, R., & A Rana. (2023). Online spiritual meets (OSMs) and user behavior–A divine application of technology during COVID-19 https://www.sciencedirect.com/science/article/pii/S074756322200334X. https://doi.org/10.1016/j.chb.2022.107514
    32. Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42(2), 317–327. https://doi.org/10.1016/j.im.2003.12.013.
    33. Saadé, R. G. (2007). Dimensions of Perceived Usefulness: Toward Enhanced Assessment. Decision Sciences Journal of Innovative Education, 5(2), 289–310. https://doi.org/10.1111/j.1540-4609.2007.00142.x.
    34. Asif, M. H., Zhongfu, T., Dilanchiev, A., Irfan, M., Eyvazov, E., & Ahmad, B. (2023). Determining the influencing factors of consumers’ attitude to-ward renewable energy adoption in developing countries: a roadmap toward environmental sustainability and green energy technologies. Environmen-tal Science and Pollution Research, 30(16), 47861–47872. https://doi.org/10.1007/s11356-023-25662-w
    35. Baharoon, D. A., Rahman, H. A., & Fadhl, S. O. (2016). Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector. Renewable and Sustainable Energy Reviews, 60, 498–515. https://doi.org/10.1016/j.rser.2015.12.110.
    36. Elmustapha, H., Hoppe, T., & H Bressers. (2018). Consumer renewable energy technology adoption decision-making; comparing models on per-ceived attributes and attitudinal constructs in the case of solar water. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/pii/S0959652617323478. https://doi.org/10.1016/j.jclepro.2017.10.131.
    37. Faiers, A., & Neame, C. (2006). Consumer attitudes towards domestic solar power systems. Energy Policy, 34(14), 1797–1806. https://doi.org/10.1016/j.enpol.2005.01.001.
    38. Kim, H., Park, E., Kwon, S. J., Ohm, J. Y., & Chang, H. J. (2014). An integrated adoption model of solar energy technologies in South Korea. Re-newable Energy, 66, 523–531. https://doi.org/10.1016/j.renene.2013.12.022
    39. Muwanga, R., Ssekakubo, J., Nalweyiso, G., Aarakit, S., & Kusasira, S. (2024). Do all forms of public attitudes matter for behavioural intentions to adopt solar energy technologies (SET) amongst households? Technological Sustainability, 3(1), 96–112. https://doi.org/10.1108/TECHS-08-2023-0031
    40. Zulu, S., Zulu, E., & Chabala, M. (2022). Factors influencing households’ intention to adopt solar energy solutions in Zambia: insights from the theory of planned behaviour. Smart and Sustainable Built Environment, 11(4), 951–971. https://doi.org/10.1108/SASBE-01-2021-0008.
    41. Gao, R., Zhang, H., Gong, C., & Wu, Z. (2022). The role of farmers’ green values in creation of green innovative intention and green technology adoption behavior: Evidence from farmers grain green production. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.980570.
    42. Wang, X., Wang, Z., & Li, Y. (2022). Internet Use on Closing Intention–Behavior Gap in Green Consumption—A Mediation and Moderation Theo-retical Model. International Journal of Environmental Research and Public Health, 20(1), 365. https://doi.org/10.3390/ijerph20010365.
    43. Dadhich, M., Rathore, S., Gyamfi, B. A., Ajibade, S. S. M., & Agozie, D. Q. (2023). Quantifying the Dynamic Factors Influencing New-Age Users’ Adoption of 5G Using TAM and UTAUT Models in Emerging Country: A Multistage PLS-SEM Approach. Education Research International, 2023. https://doi.org/10.1155/2023/5452563.
    44. HARC. (2024). Understanding the Impacts and Barriers of Solar Adoption - Houston Advanced Research Center : Houston Advanced Research Cen-ter. https://harcresearch.org/news/understanding-the-impacts-and-barriers-of-solar-adoption-a-path-to-equitable-energy-transition/.
    45. Kim, Y. J., Chun, J. U., & Song, J. (2009). Investigating the role of attitude in technology acceptance from an attitude strength perspective. Interna-tional Journal of Information Management, 29(1), 67. https://doi.org/10.1016/j.ijinfomgt.2008.01.011.
    46. Au, A. K., & Enderwick, P. (2000). A cognitive model on attitude towards technology adoption. Journal of Managerial Psychology, 15(4), 266. https://doi.org/10.1108/02683940010330957
    47. Edison, S. W., & Geissler, G. L. (2003). Measuring attitudes towards general technology: Antecedents, hypotheses and scale development. Journal of Targeting Measurement and Analysis for Marketing, 12(2), 137. https://doi.org/10.1057/palgrave.jt.5740104
    48. Tavares, J., Goulão, A. P. B. A., & Oliveira, T. (2017). Electronic Health Record Portals adoption: Empirical model based on UTAUT2. Informatics for Health and Social Care, 43(2), 109. https://doi.org/10.1080/17538157.2017.1363759
    49. Liobikienė, G., Dagiliūtė, R., & Juknys, R. (2021). The determinants of renewable energy usage intentions using theory of planned behaviour ap-proach. Renewable Energy, 170, 587–594. https://doi.org/10.1016/j.renene.2021.01.152
    50. Ajzen. (1991). The theory of planned behavior. Elsevier. https://www.sciencedirect.com/science/article/pii/074959789190020T.
    51. Adnan, N. (2024). Powering up minds: Exploring consumer responses to home energy efficiency. Energy Reports, 11, 2316. https://doi.org/10.1016/j.egyr.2024.01.048.
    52. Camilleri, M. A., Cricelli, L., Mauriello, R., & Strazzullo, S. (2023). Consumer Perceptions of Sustainable Products: A Systematic Literature Re-view. Sustainability, 15(11), 8923. https://doi.org/10.3390/su15118923
    53. Chauhan, V., & Bhagat, R. (2018). Analysing Green Purchasing Behaviour through Subjective Norms and Perceived Behaviour Control. MAN-THAN Journal of Commerce and Management, 5(1). https://doi.org/10.17492/manthan.v5i01.13044
    54. Nguyen, L. T., Nguyen, H. T., Ngoc, H. N., Dai, L. N., Nguyen, T. T. D., & LE, L. D. (2023). Determinants of green consumer behavior: A case study from Vietnam. Cogent Business & Management, 10(1). https://doi.org/10.1080/23311975.2023.2197673
    55. Wang, C., Ahmad, S. F., Ahmad, A. Y. A. B., Awwad, E. M., Irshad, M., Ali, Y. A., Al‐Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18349.
    56. Xu, Y., Du, J., Khan, M. A. S., Jin, S., Altaf, M., Anwar, F., & Sharif, M. I. (2022). Effects of Subjective Norms and Environmental Mechanism on Green Purchase Behavior: An Extended Model of Theory of Planned Behavior. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.779629.
    57. Zahari, A. R., & Esa, E. (2018). Drivers and inhibitors adopting renewable energy: an empirical study in Malaysia. International Journal of Energy Sector Management, 12(4), 581. https://doi.org/10.1108/IJESM-02-2017-0004
    58. Fang, X., Wang, L., Sun, C., Zheng, X., & Wei, J. (2021). Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China. Energy Policy, 148, 111945. https://doi.org/10.1016/j.enpol.2020.111945.
    59. Li, B., Ding, J., Wang, J., Zhang, B., & Zhang, L. (2021). Key factors affecting the adoption willingness, behavior, and willingness-behavior con-sistency of farmers regarding photovoltaic agriculture in China. Energy Policy, 149, 112101. https://doi.org/10.1016/j.enpol.2020.112101
    60. Lundheim, S. H., Vesely, S., Nayum, A., & Klöckner, C. A. (2021). From vague interest to strong intentions to install solar panels on private homes in the North – An analysis of psychological drivers. Renewable Energy, 165, 455–463. https://doi.org/10.1016/j.renene.2020.11.034.
    61. Hair, J. F., Babin, B. J., & Krey, N. (2017). Covariance-based structural equation modeling in the Journal of Advertising: Review and recommenda-tions. Journal of Advertising, 46(3), 454. https://doi.org/10.1080/00913367.2017.1329496.
    62. Richards, J. A., & Johnson, M. P. (2014). A Case for Theoretical Integration. SAGE Open, 4(2). https://doi.org/10.1177/2158244014534830.
    63. Smith, J., & Doe, J. (2025). Perceived Behavioral Control. https://www.sciencedirect.com/topics/psychology/perceived-behavioral-control.
    64. Wang, X., Xiong, Y., Yang, R., & Yu, P. (2019). Social psychological predictors of adoption intention for solar water heaters in rural China. Social Behavior and Personality an International Journal, 47(12), 1. https://doi.org/10.2224/sbp.8549.
    65. Reed, A. H. (2011). Quest for spiritual community: Reclaiming spiritual guidance for contemporary congregations. Bloomsbury Publishing. http://qut.eblib.com.au/patron/FullRecord.aspx?p=661053.
    66. Fornell, C., & DF Larcker. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
    67. Menon, P., & Sadasivan, A. (2019). A vignette of spiritual intelligence and transformational leadership. International Journal of Innovative Technology and Exploring Engineering, 8(10), 2529–2534. https://doi.org/10.35940/ijitee.J1240.0881019.
    68. James, Sarah., & Lahti, T. (2004). The natural step for communities : how cities and towns can change to sustainable practices. https://books.google.com/books/about/The_Natural_Step_for_Communities.html?id=eXBnB9wBBgYC.
    69. John E. Carroll. (2012). Sustainability and Spirituality. https://books.google.co.in/books?hl=en&lr=&id=_yJm8q5ypZMC&oi=fnd&pg=PR1&dq=Spiritually+inclined+people+actively+engage+in+environmen-tal+initiatives+like+cleanliness+drives+and+tree+planting.&ots=1aXIXih0Bd&sig=n3Ua35pwtw064hGJvZJbsxbnQ_s&redir_esc=y#v=onepage&q&f=false.
    70. Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective . Journal of Management In-formation Systems, 18(1), 185–214. https://doi.org/10.1080/07421222.2001.11045669.
    71. Csutora, M., & Zsóka, Á. (2013). May spirituality lead to reduced ecological footprint? Conceptual framework and empirical analysis. World Review of Entrepreneurship Management and Sustainable Development, 10(1), 88. https://doi.org/10.1504/WREMSD.2014.058056.
    72. Gupta, K., Agrawal, R., & Sharma, V. (2016). Sustainability from the lenses of spirituality: a new perspective. International Journal of Intelligent En-terprise, 3, 297. https://doi.org/10.1504/IJIE.2016.078633.
    73. HUITT, B. (2019). Spiritual Development : Meaning and Purpose. https://www.academia.edu/64982838/Spiritual_Development_Meaning_and_Purpose.
    74. King, R. (2005). Mysticism and spirituality. In Routledge eBooks (p. 318). Informa. https://doi.org/10.4324/9780203412695-24.
    75. Omoyajowo, K., Danjin, M., Omoyajowo, K., Odipe, O. E., Makengo, B. M., May, A., Ogunyebi, A., & Rabie, M. (2023). Exploring the interplay of environmental conservation within spirituality and multicultural perspective: insights from a cross-sectional study. Environment Development and Sustainability, 26(7), 16957. https://doi.org/10.1007/s10668-023-03319-5.
    76. Malik, S. A., & Ayop, A. R. (2020). Solar energy technology: Knowledge, awareness, and acceptance of B40 households in one district of Malaysia towards government initiatives. Technology in Society, 63, 101416. https://doi.org/10.1016/j.techsoc.2020.101416.
    77. Fatoki, O. (2022). Determinants of Intention to Purchase Photovoltaic Panel System: An Integration of Technology Acceptance Model and Theory of Planned Behaviour. International Journal of Energy Economics and Policy, 12(3), 432–440. https://doi.org/10.32479/ijeep.12931.
    78. Peprah, J. A., Brako, S., & Akosah, N. B. (2018). The Awareness Level of Green Procurement at the District Assemblies in Western Region in Gha-na. Journal of Management and Sustainability, 8(1), p46. https://doi.org/10.5539/jms.v8n1p46.
    79. Guven, G., & Sulun, Y. (2017). Pre-service teachers’ knowledge and awareness about renewable energy. In Renewable and Sustainable Energy Re-views (Vol. 80, pp. 663–668). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.286
    80. KA Gafoor. (2012). Considerations in the Measurement of Awareness.NANo ranking found for “Human Rights Documents online.” ERICKA , 2. https://doi.org/10.1163/2210-7975_HRD-9902-0156
    81. Chan, E. S. W., Hon, A. H. Y., Chan, W., & Okumus, F. (2014). What drives employees’ intentions to implement green practices in hotels? The role of knowledge, awareness, concern and ecological behaviour. International Journal of Hospitality Management, 40, 20–28. https://doi.org/10.1016/j.ijhm.2014.03.001.
    82. Rezaei, R., & Ghofranfarid, M. (2018). Rural households’ renewable energy usage intention in Iran: Extending the unified theory of acceptance and use of technology. Renewable Energy, 122, 382–391. https://doi.org/10.1016/j.renene.2018.02.011
    83. Aziz, N., Wahid, N., & MA Sallam. (2018). Factors influencing Malaysian consumers’ intention to purchase green energy: the case of solar pan-elNANo ranking found for “International Journal of Academic Research in Business and Social Sciences.” Global Business and Management Re-search, 8(7). https://doi.org/10.6007/IJARBSS/v8-i7/4413.
    84. Alam, S., Omar, N., & AM Ariffin. (2018). Integrating TPB, TAM and DOI theories: An empirical evidence for the adoption of mobile banking among customers in Klang Valley, MalaysiaQ4International Journal of Business and Management Science; H-Index: 10 SJR: Q4 CORE: NA AJG: NA ABDC: NA FT50: NA. International Journal of Business and Management Science. https://www.researchgate.net/profile/Nor-Asiah-Omar/publication/331501885_Integrating_TPB_TAM_and_DOI_theories_An_empirical_evidence_for_the_adoption_of_mobile_banking_among_customers_in_Klang_valley_Malaysia/links/5fc9ba6b92851c00f84cd511/Integrating-TPB-TAM-and-DOI-theories-An-empirical-evidence-for-the-adoption-of-mobile-banking-among-customers-in-Klang-valley-Malaysia.pdf.
    85. Ashinze, P., Tian, J., Ashinze, P., Nazir, M., & I Shaheen. (2021). A multidimensional model of sustainable renewable energy linking purchase inten-tions, attitude and user behavior in Nigeria. Sustainability. https://www.mdpi.com/2071-1050/13/19/10576. https://doi.org/10.3390/su131910576
    86. Godoe, P., & Johansen, T. S. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European Psychology Students, 3, 38. https://doi.org/10.5334/jeps.aq
    87. Zeng, S., Tanveer, A., Fu, X., Gu, Y., & Irfan, M. (2022). Modeling the influence of critical factors on the adoption of green energy technologies. Re-newable and Sustainable Energy Reviews, 168, 112817. https://doi.org/10.1016/j.rser.2022.112817.
    88. Fares, R. L., & Webber, M. E. (2017). The impacts of storing solar energy in the home to reduce reliance on the utility. Nature Energy, 2(2), 1–10. https://doi.org/10.1038/nenergy.2017.1
    89. Stern, P. C. (2014). Individual and household interactions with energy systems: Toward integrated understanding. Energy Research & Social Science, 1, 41–48. https://doi.org/10.1016/j.erss.2014.03.003.
    90. Dekoninck, H., & Schmuck, D. (2022). The Mobilizing Power of Influencers for Pro-Environmental Behavior Intentions and Political Participation. Environmental Communication, 16(4), 458–472. https://doi.org/10.1080/17524032.2022.2027801
    91. Schmuck, D. (2021). Social Media Influencers and Environmental Communication. The Handbook of International Trends in Environmental Com-munication, 373–387. https://doi.org/10.4324/9780367275204-27.
    92. A Borawska. (2017). The role of public awareness campaigns in sustainable developmentNANo ranking found for “Economic and Environmental Studies.” Economic and Environmental Studies, 17(44), 865–877. https://doi.org/10.25167/ees.2017.44.14.
    93. Akpahou, R., Mensah, L. D., & Quansah, D. A. (2023). Renewable energy in Benin: current situation and future prospects. Clean Energy, 7(5), 952–961. https://doi.org/10.1093/ce/zkad039.
    94. Diaconescu, M., Marinas, L. E., Marinoiu, A. M., Popescu, M. F., & Diaconescu, M. (2024). Towards Renewable Energy Transition: Insights from Bibliometric Analysis on Scholar Discourse to Policy Actions. Energies, 17(18), 4719. https://doi.org/10.3390/en17184719
    95. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. (2017). Solar energy: Potential and future prospects. Renewable and Sustainable Ener-gy Reviews, 82, 894. https://doi.org/10.1016/j.rser.2017.09.094.
    96. Boulanger, S. O. M., Massari, M., Longo, D., Turillazzi, B., & Nucci, C. A. (2021). Designing Collaborative Energy Communities: A European Overview. Energies, 14(24), 8226. https://doi.org/10.3390/en14248226.
    97. Mlinarič M, Kovač N, Barnes J, & Bocken N. (2019). Typology of new clean energy communities. Deliverable D2. https://www.academia.edu/download/96521648/D2_2_newcomers_typology_of_new_clean_energy_communities.pdf.
    98. Avwioroko, A., & C Ibegbulam. (2024). Contribution of consulting firms to renewable energy adoption. International Journal of Physical Sciences Research. https://www.researchgate.net/profile/Afor-Avwioro-ko/publication/387893661_Citation_Avwioroko_A_and_Ibegbulam_C_2024_Contribution_of_Consulting_Firms_to_Renewable_Energy_Adoption/links/6780efc918ad70589ea7ced6/Citation-Avwioroko-A-and-Ibegbulam-C-2024-Contribution-of-Consulting-Firms-to-Renewable-Energy-Adoption.pdf.
    99. Kjeang, A. E., Venkatesh, G., Ståhl, M., & Palm, J. (2017). Energy consulting services in the information age - literature review. Energy, Sustainabil-ity and Society, 7(1), 1–10. https://doi.org/10.1186/s13705-017-0132-1.
    100. Lai, K. H., Cheng, T. C. E., & Tang, A. K. Y. (2010). Green retailing: Factors for success. California Management Review, 52(2), 6–31. https://doi.org/10.1525/cmr.2010.52.2.6.
    101. Bang, H. K., Ellinger, A. E., Hadjimarcou, J., & Traichal, P. A. (2000). Consumer concern, knowledge, belief, and attitude toward renewable energy: An application of the reasoned action theory. Psychology & Marketing, 17(6), 449–468. https://doi.org/10.1002/(SICI)1520-6793(200006)17:6<449::AID-MAR2>3.0.CO;2-8.
    102. Bouaguel, W., & Alsulimani, T. (2022). Understanding the Factors Influencing Consumers’ Intention toward Shifting to Solar Energy Technology for Residential Use in Saudi Arabia Using the Technology Acceptance Model. Sustainability, 14(18), 11356. https://doi.org/10.3390/su141811356.
    103. Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Lucas, A. G., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., … Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471). https://doi.org/10.1126/science.aax3100.
    104. IPCC. (2022). IPCC III: ird Assessment Report. Summary for Policymakers - Google Scholar. https://scholar.google.com/scholar_lookup?title=Summary%20for%20policymakers&author=IPCC&publication_year=2022.
    105. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Springer, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8.
    106. Flaksman, A. S., Mozgovoy, A., Lopatkin, D. S., Dikikh, V. A., Shamsov, I. S., Romanova, J. A., Morkovkin, D., & Bovtrikova, E. (2021). Prospects for the development of alternative energy sources in the world energy. IOP Conference Series Earth and Environmental Science, 723(5), 52040. https://doi.org/10.1088/1755-1315/723/5/052040
    107. Gyimah, J., Nyantakyi, G., & Hayford, I. S. (2024). The effect of renewable energy on carbon emissions through globalization. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26894.
    108. Cole, W. J., Greer, D., Denholm, P., Frazier, A. W., Machen, S., Mai, T., Vincent, N., & Baldwin, S. F. (2021). Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule, 5(7), 1732–1748. https://doi.org/10.1016/j.joule.2021.05.011.
    109. Feldman, D., Dummit, K., Zuboy, J., Heeter, J., & Xu, K. (2022). Winter 2021/2022 solar industry update. https://www.osti.gov/biblio/1843833.
    110. EIA. (2022). EIA projects that renewable generation will supply 44% of U.S. electricity by 2050 - U.S. Energy Information Administration (EIA). https://www.eia.gov/todayinenergy/detail.php?id=51698.
    111. Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F., & Alkasrawi, M. (2021). Environmental impacts of solar photovoltaic sys-tems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528. https://doi.org/10.1016/j.scitotenv.2020.143528.
    112. Hastik, R., Basso, S., Geitner, C., Haida, C., Poljanec, A., Portaccio, A., Vrščaj, B., & Walzer, C. (2015). Renewable energies and ecosystem service impacts. Renewable and Sustainable Energy Reviews, 48, 608–623. https://doi.org/10.1016/j.rser.2015.04.004
    113. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sus-tainable Energy Reviews, 15(3), 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037.
    114. Sayed, E. T., Wilberforce, T., Elsaid, K., Rabaia, M. K. H., Abdelkareem, M. A., Chae, K. J., & Olabi, A. G. (2021). A critical review on environ-mental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Science of The Total Environment, 766, 144505. https://doi.org/10.1016/j.scitotenv.2020.144505.
    115. Yavari, R., Zaliwciw, D., Cibin, R., & McPhillips, L. (2022). Minimizing environmental impacts of solar farms: a review of current science on land-scape hydrology and guidance on stormwater management. Environmental Research: Infrastructure and Sustainability, 2(3), 032002. https://doi.org/10.1088/2634-4505/ac76dd
    116. Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., & Pavao-Zuckerman, M. A. (2016). The photovoltaic heat island effect: Larger solar power plants increase local temperatures. Scientific Reports, 6(1), 1–7. https://doi.org/10.1038/srep35070
    117. Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of The Total Environment, 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158.
    118. Visser, E., Perold, V., Ralston-Paton, S., Cardenal, A. C., & Ryan, P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facil-ity on birds in the Northern Cape, South Africa. Renewable Energy, 133, 1285–1294. https://doi.org/10.1016/j.renene.2018.08.106
    119. Diffendorfer, J. E., Sergi, B., Lopez, A., Williams, T., Gleason, M., Ancona, Z., & Cole, W. (2024). The interplay of future solar energy, land cover change, and their projected impacts on natural lands and croplands in the US. Science of The Total Environment, 947, 173872. https://doi.org/10.1016/j.scitotenv.2024.173872.
    120. Moore-O’Leary, K. A., Hernandez, R. R., Johnston, D. S., Abella, S. R., Tanner, K. E., Swanson, A. C., Kreitler, J., & Lovich, J. E. (2017). Sustain-ability of utility-scale solar energy – critical ecological concepts. Frontiers in Ecology and the Environment, 15(7), 385–394. https://doi.org/10.1002/fee.1517
    121. Lupp, G., Steinhäußer, R., Starick, A., Gies, M., Bastian, O., & Albrecht, J. (2014). Forcing Germany’s renewable energy targets by increased energy crop production: A challenge for regulation to secure sustainable land use practices. Land Use Policy, 36, 296–306. https://doi.org/10.1016/j.landusepol.2013.08.012
    122. Ponitka, J., & Boettner, S. (2020). Challenges of future energy landscapes in Germany - A nature conservation perspective. Energy, Sustainability and Society, 10(1), 1–11. https://doi.org/10.1186/s13705-020-00250-9
    123. Vincent Ugochukwu Oguanobi, & Oloruntosin Tolulope Joel. (2024). Geoscientific research’s influence on renewable energy policies and ecological balancing. Open Access Research Journal of Multidisciplinary Studies, 7(2), 073–085. https://doi.org/10.53022/oarjms.2024.7.2.0027.
    124. Macknick, J., Beatty, B., & Hill, G. (2013). Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation. https://doi.org/10.2172/1115798.
    125. Walston, L. J., Li, Y., Hartmann, H. M., Macknick, J., Hanson, A., Nootenboom, C., Lonsdorf, E., & Hellmann, J. (2021). Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States. Ecosystem Services, 47, 101227. https://doi.org/10.1016/j.ecoser.2020.101227.
    126. Tölgyesi, C., Bátori, Z., Pascarella, J., Erdős, L., Török, P., Batáry, P., Birkhofer, K., Scherer, L., Michalko, R., Košulič, O., Zaller, J. G., & Gallé, R. (2023). Ecovoltaics: Framework and future research directions to reconcile land-based solar power development with ecosystem conservation. Biolog-ical Conservation, 285, 110242. https://doi.org/10.1016/j.biocon.2023.110242.
    127. RB Kline. (2018). Assessing statistical aspects of test fairness with structural equation modelling. Fairness Issues in Educational, 19(2–3), 204–222. https://doi.org/10.1080/13803611.2013.767624
    128. Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., Khudhair Al-Jiboory, A., Zuhair Sameen, A., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus , 48. https://doi.org/10.1016/j.ref.2024.100545.
    129. Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Barrows, C. W., Belnap, J., Ochoa-Hueso, R., Ravi, S., & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779. https://doi.org/10.1016/j.rser.2013.08.041.
    130. Randle-Boggis, R. J., White, P. C. L., Cruz, J., Parker, G., Montag, H., Scurlock, J. M. O., & Armstrong, A. (2020). Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach. Renewable and Sustainable Energy Reviews, 125, 109775. https://doi.org/10.1016/j.rser.2020.109775.
    131. Schorr, A. (2023). The Technology Acceptance Model (TAM) and its Importance for Digitalization Research: A Review [Review of The Technology Acceptance Model (TAM) and its Importance for Digitalization Research: A Review]. Sciendo eBooks, 55. Sciendo. https://doi.org/10.2478/9788366675896-005.
    132. Shareef, M. A., Kumar, V., Kumar, U., & Hasin, A. A. (2013). Application of Behavioral Theory in Predicting Consumers Adoption Behavior. Jour-nal of Information Technology Research, 6(4), 36. https://doi.org/10.4018/jitr.2013100103.
    133. Ajzen, I., & Fishbein, M. (1973). Attitudinal and normative variables as predictors of specific behavior. Journal of Personality and Social Psychology, 27(1), 41–57. https://doi.org/10.1037/h0034440.
    134. Montano, D., & D Kasprzyk. (2015). Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Books.Google.Com. https://books.google.com/books?hl=en&lr=&id=9BQWCgAAQBAJ&oi=fnd&pg=PA95&dq=Theory+of+reasoned+action,+theory+of+planned+behavior,+and+the+integrated+behavioral+model&ots=efLb1iwNe-&sig=SifLM3SBzBX7vKV02pgMj1Jn5jo
    135. Fatima, N., Li, Y., Li, X., Abbas, W., Jabeen, G., Zahra, T., Işık, C., Ahmed, N., Ahmad, M., & Yasir, A. (2022). Households’ Perception and Envi-ronmentally Friendly Technology Adoption: Implications for Energy Efficiency. Frontiers in Energy Research, 10, 830286. https://doi.org/10.3389/fenrg.2022.830286.
    136. Bhattacherjee, A., & Lin, C. P. (2015). A unified model of IT continuance: Three complementary perspectives and crossover effects. European Journal of Information Systems, 24(4), 364–373. https://doi.org/10.1057/ejis.2013.36.
    137. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarter-ly: Management Information Systems, 27(3), 425–478. https://doi.org/10.2307/30036540.
    138. Mitter, H., Larcher, M., Schönhart, M., Stöttinger, M., & Schmid, E. (2019). Exploring Farmers’ Climate Change Perceptions and Adaptation Inten-tions: Empirical Evidence from Austria. Environmental Management, 63(6), 804–821. https://doi.org/10.1007/s00267-019-01158-7.
    139. Dezdar, S. (2017). Green information technology adoption: Influencing factors and extension of theory of planned behavior. Social Responsibility Journal, 13(2), 292–306. https://doi.org/10.1108/SRJ-05-2016-0064.
    140. Kumar, A., King, T., & Ranta, M. (2024). Corporate governance characteristics and involvement in ESG activities: Current trends and research direc-tions. Corporate Governance (Bingley), 24(8), 175–209. https://doi.org/10.1108/CG-09-2023-0397
    141. IEA, “World Energy Outlook 2023 – Analysis - IEA.” Available: https://www.iea.org/reports/world-energy-outlook-2023.
    142. UNDP, “UNITED NATIONS DEVELOPMENT PROGRAMME,” 2022.
    143. Energetica India. (2025). Bihar unveils renewable energy policy 2025, targets 24 GW of RE and 6.1 GWh of ESS by 2030. Energetica India Maga-zine. Retrieved from https://www.energetica-india.net/news/bihar-unveils-renewable-energy-policy-2025-targets-24-gw-of-re-and-6-1-gwh-of-ess-by-2030 Energetica India.
    144. Mongabay-India. (2021, December 20). To boost its slow progress on clean energy, Bihar looks at floating and rooftop solar alternatives. Mongabay-India. Retrieved from https://india.mongabay.com/2021/12/to-boost-its-slow-progress-on-clean-energy-bihar-looks-at-floating-and-rooftop-solar-alternatives/.
    145. Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 211–218. https://doi.org/10.17705/1jais.00126.
    146. Sachdeva, C., Dubey, S., Gangwar, V.P., Bansal, R., Aziz, A.L., Propheto, A., 2025. Technology adoption and energy conservation: A bibliometric and systematic literature review approach. Taylor & Francis 11. https://doi.org/10.1080/27658511.2025.2551988
    147. Sniehotta, F. F., Presseau, J., & Araújo-Soares, V. (2014). Time to retire the theory of planned behaviour. Health Psychology Review, 9(2), 113–135. https://doi.org/10.1080/17437199.2015.1022902.
    148. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202.
  • Downloads

  • How to Cite

    Dubey, S., Kirti, Katoch, R., Rehman , M. ., & Kaur , P. . (2025). Investigating The Factors Affecting The Adoption of Solar Energy: A Synthesis of TAM ‎and TPB among Households. International Journal of Accounting and Economics Studies, 12(8), 96-108. https://doi.org/10.14419/j64ps364