Exploring Knowledge Management Drivers in AIPowered ‎CRM: A Conceptual Framework for Marketing ‎Practitioners

  • Authors

    • Prabhjeet Kaur Mittal School of Business, Lovely Professional University, Phagwara, Punjab, India
    • Lokesh Jasrai Mittal School of Business, Lovely Professional University, Phagwara, Punjab, India
    https://doi.org/10.14419/4asp7v79

    Received date: October 31, 2025

    Accepted date: November 21, 2025

    Published date: December 4, 2025

  • Knowledge Management; Artificial Intelligence; Customer Relationship Management; Online ‎Communities; Organisational Culture and Learning Behav-iour
  • Abstract

    Purpose: This study investigates the knowledge management (KM) drivers of Artificial ‎Intelligence-powered Customer Relationship Management (AI-CRM) systems. It explores ‎how organisational culture, learning processes, and individual characteristics affect ‎knowledge seekers and marketer’s conduct in acquiring or using knowledge and marketing ‎practices.‎

    Design/methodology/approach: The study used KM, Social Cognitive Theory, and the ‎Technology Acceptance Model. This study provides a conceptual framework for KM and AI-‎CRM. Data were collected from a sample of 302 marketing professionals (94% response rate) ‎across the IT, retail, healthcare, education, and e-commerce sectors in India using a structured ‎questionnaire. A purposive sampling approach was used, and Partial Least Squares Structural ‎Equation Modelling (PLS-SEM) was used to examine the direct and moderating effects.‎

    Findings: The results indicate that learning mechanisms and individual characteristics have ‎significant impacts on marketing KM practices in AI-CRM environments. In contrast, ‎organisational culture alone cannot directly influence KM, but it can when moderated by ‎individual characteristics. These results indicate that factors related to structured training and ‎individual adaptability, rather than cultural factors, play a more decisive role in promoting AI-‎CRM adoption.‎

    Research limitations/implications: This study has several limitations, including its cross-‎sectional design, geographic setting (North India), and reliance on self-reports. Future ‎research should consider longitudinal designs and include more industries and regions to ‎improve generalizability.‎

    Practical implications: Managers and policymakers should focus on targeted training, ‎experiential learning, mentorship schemes, and the creation of psychologically safe spaces for ‎knowledge sharing. Investments in technological and human capacity are key to fully ‎exploiting AI-CRM results.‎

    Originality/value: This study contributes to the existing literature on AI-CRM by generalizing ‎the (Jamil et al., 2025; Nonaka et al., 2000) SECI model to AI-enabled customer relationship ‎management environments, which in turn integrates the knowledge creation process with ‎generative automation. The study empirically validated the PLS SEM framework, providing ‎substantive evidence to support marketers’ decision-making in emerging markets. The study ‎also emphasizes the role of individual readiness as a moderating construct in increasing the ‎effectiveness of AI adoption‎.

  • References

    1. Abdelrahman, M., Papamichail, K. N., Hammady, R., Kurt, Y., Abdallah, W., Shixiong Liu, L., & Kapser, S. (2025). Organisational Culture and Knowledge Management Systems Adoption: Examining Employee Usage in Multinational Corporations. Global Journal of Flexible Systems Management, 26(3), 439-467. https://doi.org/10.1007/s40171-025-00448-w.
    2. Adamson, K. A., & Prion, S. (2013). Reliability: Measuring Internal Consistency Using Cronbach's α. Clinical Simulation In Nursing, 9(5), e179-e180. https://doi.org/10.1016/j.ecns.2012.12.001
    3. Aggarwal, V. S., & Kapoor, M. (2020). Multigroup analysis of higher-order model of knowledge variables in the context of global ventures through PLS-SEM. South Asian Journal of Business Studies, 10(1), 128-146. https://doi.org/10.1108/SAJBS-02-2020-0037.
    4. Ajmal, M., Islam, Z., & Islam, A. (2025). Enhancing organizational performance in higher education through knowledge-centered culture and absorptive capacity: the mediating role of the knowledge creation process. The Learning Organization: An International Journal, 32(5), 733-756. https://doi.org/10.1108/TLO-07-2023-0127.
    5. Alaskar, T. H. (2025). Integrated AI and Business Analytics for Sustaining Data-Driven and Technological Innovation: The Mediating Role of Integration Capabilities and Digital Platform. Sustainability, 17(19). https://doi.org/10.3390/su17198749
    6. Allil, K. (2024). Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success. Journal of Marketing Analytics, 12(2), 142-168. https://doi.org/10.1057/s41270-023-00281-z
    7. Allur, N. S., Deevi, D. P., Dondapati, K., Chetlapalli, H., Kodadi, S., & Perumal, T. (2025). Role of knowledge management in the development of effective strategic business planning for organizations. Computational and Mathematical Organization Theory. https://doi.org/10.1007/s10588-025-09397-2.
    8. Alzahrani, S. (2025). Assessing artificial intelligence and advanced analytics adoption: A technological, organizational, and environmental perspective. Edelweiss Applied Science and Technology, 9(7), 312-325. https://doi.org/10.55214/25768484.v9i7.8567.
    9. Aman, F., & Yusof, K. H. (2022). Determinants of KMS adoption in Malaysian organizations: evidence across various industries. Kybernetes, 52(11), 5186-5210. https://doi.org/10.1108/K-02-2022-0292.
    10. Aslan, S., Alyuz, N., Li, B., Durham, L. M., Shi, M., Sharma, S., & Nachman, L. (2025). An early investigation of collaborative problem solving in conversational AI-mediated learning environments. Computers and Education: Artificial Intelligence, 8, 100393. https://doi.org/10.1016/j.caeai.2025.100393.
    11. Bajjou, M. S., & Chafi, A. (2023). Developing and validating a new conceptual model for successful implementation of lean construction: SEM analysis. Engineering, Construction and Architectural Management, 32(3), 1581-1620. https://doi.org/10.1108/ECAM-02-2023-0102
    12. Bashir, H., Meng, F., & Saleem, S. (2025). Knowledge-hiding behavior in multicultural management: the impact of cultural values and the buffering effect of cultural intelligence. Journal of Knowledge Management, 29(6), 1786-1813. https://doi.org/10.1108/JKM-10-2023-0940.
    13. Becerra-Fernandez, I., & Sabherwal, R. (2010). knowledge management: Systems and processes. ME Sharpe. Inc. New York: ME Sharpe, Inc.
    14. Bock, G.-W., Zmud, R. W., Kim, Y.-G., & Lee, J.-N. (2005). Behavioral Intention Formation in Knowledge Sharing: Examining the Roles of Extrinsic Motivators, Social-Psychological Forces, and Organizational Climate. MIS Quarterly, 29(1), 87-111. https://doi.org/10.2307/25148669.
    15. Budur, T., Demirer, H., & Rashid, C. A. (2023). The effects of knowledge sharing on innovative behaviours of academicians; mediating effect of innovative organization culture and quality of work life. Journal of Applied Research in Higher Education, 16(2), 405-426. https://doi.org/10.1108/JARHE-08-2022-0257.
    16. Campbell, C., Sands, S., Ferraro, C., Tsao, H.-Y., & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227-243. https://doi.org/10.1016/j.bushor.2019.12.002.
    17. Ceptureanu, S. I., & Ceptureanu, E. G. (2025). The influence of organisational learning ambidexterity on process innovation performance: the role of KM capability. Knowledge Management Research & Practice, 23(4), 351-371. https://doi.org/10.1080/14778238.2024.2380734.
    18. Chan, Y. E., Krishnamurthy, R., Mann, J., & Sabherwal, R. (2023). Knowledge sharing, knowledge seeking, and emotions: A longitudinal study of hospital restructuring decision making. Knowledge and Process Management, 30(2), 148-162. https://doi.org/10.1002/kpm.1734
    19. Chatterjee, S., Chaudhuri, R., Thrassou, A., & Sakka, G. (2021). Impact of firm's intellectual capital on firm performance: a study of Indian firms and the moderating effects of age and gender. Journal of Intellectual Capital, 23(1), 103-126. https://doi.org/10.1108/JIC-12-2020-0378
    20. Chatterjee, S., Chaudhuri, R., & Vrontis, D. (2022). AI and digitalization in relationship management: Impact of adopting AI-embedded CRM system. Journal of Business Research, 150, 437-450. https://doi.org/10.1016/j.jbusres.2022.06.033.
    21. Chatterjee, S., Ghosh, S. K., & Chaudhuri, R. (2020). Knowledge management in improving business process: an interpretative framework for successful implementation of AI–CRM–KM system in organizations. Business Process Management Journal, 26(6), 1261-1281. https://doi.org/10.1108/BPMJ-05-2019-0183
    22. Chatterjee, S., Ghosh, S. K., Chaudhuri, R., & Chaudhuri, S. (2020). Adoption of AI-integrated CRM system by Indian industry: from security and privacy perspective. Information and Computer Security, 29(1), 1-24. https://doi.org/10.1108/ICS-02-2019-0029.
    23. Chatterjee, S., Nguyen, B., Ghosh, S. K., Bhattacharjee, K. K., & Chaudhuri, S. (2020). Adoption of artificial intelligence integrated CRM system: an empirical study of Indian organizations. The Bottom Line, 33(4), 359-375. https://doi.org/10.1108/BL-08-2020-0057
    24. Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205-219. https://doi.org/10.1016/j.indmarman.2021.07.013.
    25. Chatti, M. A., Lukarov, V., Thüs, H., Muslim, A., Yousef, A. M. F., Wahid, U., Greven, C., Chakrabarti, A., & Schroeder, U. (2014). Learning analytics: Challenges and future research directions. E-learning and Education(10).
    26. Chatti, M. A., Schroeder, U., & Jarke, M. (2012). LaaN: Convergence of Knowledge Management and Technology-Enhanced Learning. IEEE Transactions on Learning Technologies, 5(2), 177-189. https://doi.org/10.1109/TLT.2011.33.
    27. Chaturvedi, A., Yadav, N., & Dasgupta, M. (2025). Tech-Driven Transformation: Unravelling the Role of Artificial Intelligence in Shaping Strategic Decision-Making. International Journal of Human–Computer Interaction, 41(19), 12305-12324. https://doi.org/10.1080/10447318.2025.2456534
    28. Chaudhuri, R., Chatterjee, S., Kraus, S., & Vrontis, D. (2022). Assessing the AI-CRM technology capability for sustaining family businesses in times of crisis: the moderating role of strategic intent. Journal of Family Business Management, 13(1), 46-67. https://doi.org/10.1108/JFBM-12-2021-0153.
    29. Chen, Z. (2024). Responsible AI in Organizational Training: Applications, Implications, and Recommendations for Future Development. Human Resource Development Review, 23(4), 498-521. https://doi.org/10.1177/15344843241273316.
    30. Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2024). Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pacific Journal of Management, 41(2), 745-783. https://doi.org/10.1007/s10490-023-09871-y.
    31. Chia-An Tsai, J., & Kang, T.-C. (2019). Reciprocal intention in knowledge seeking: Examining social exchange theory in an online professional community. International Journal of Information Management, 48, 161-174. https://doi.org/10.1016/j.ijinfomgt.2019.02.008.
    32. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211. https://doi.org/10.2307/249688
    33. Conchado, A., Carot, J. M., & Bas, M. C. (2015). Competencies for knowledge management: development and validation of a scale. Journal of Knowledge Management, 19(4), 836-855. https://doi.org/10.1108/JKM-10-2014-0447
    34. Crossan, M. M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: From intuition to institution. Academy of management review, 24(3), 522-537. https://doi.org/10.2307/259140.
    35. Dabaieh, M., Lashin, M., & Elbably, A. (2017). Going green in architectural education: An urban living lab experiment for a graduation green design studio in Saint Catherine, Egypt. Solar Energy, 144, 356-366. https://doi.org/10.1016/j.solener.2017.01.010.
    36. Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5.
    37. De Keyser, A., Antonetti, P., Rouziou, M., Béal, M., Wang, Z.-H., Grégoire, Y., & Lussier, B. (2025). Understanding the B2B customer experience and journey: A convergence-based lens. Journal of Business Research, 198, 115481. https://doi.org/10.1016/j.jbusres.2025.115481.
    38. Dehkordi, Saleh S., Radević, I., Černe, M., & Bortoluzzi, G. (2025). A self-determination approach towards capitalising on autonomy and innovative work behaviour in task performance. Creativity and Innovation Management, 34(4), 978-990. https://doi.org/10.1111/caim.70014.
    39. Devedzic, V. (2001). Knowledge modeling – State of the art. Integrated Computer-Aided Engineering, 8(3), 257-281. https://doi.org/10.3233/ICA-2001-8307.
    40. Donate, M. J., & Guadamillas, F. (2011). Organizational factors to support knowledge management and innovation. Journal of Knowledge Management, 15(6), 890-914. https://doi.org/10.1108/13673271111179271.
    41. Forsgren, E., & Byström, K. (2018). Multiple social media in the workplace: Contradictions and congruencies. Information Systems Journal, 28(3), 442-464. https://doi.org/10.1111/isj.12156.
    42. Frambach, R. T., & Schillewaert, N. (2002). Organizational innovation adoption: a multi-level framework of determinants and opportunities for future research. Journal of Business Research, 55(2), 163-176. https://doi.org/10.1016/S0148-2963(00)00152-1
    43. Gaczek, P., Leszczyński, G., Wei, Y., & Sun, H. (2025). The Bright Side of AI in Marketing Decisions: Collaboration with Algorithms Prevents Managers from Violating Ethical Norms. Journal of Business Ethics. https://doi.org/10.1007/s10551-025-06083-w.
    44. Ginsberg, A., & Venkatraman, N. (1985). Contingency Perspectives of Organizational Strategy: A Critical Review of the Empirical Research. Academy of Management Review, 10(3), 421-434. https://doi.org/10.5465/amr.1985.4278950.
    45. Guan, Y. (2021). Application of Artificial Intelligence Technology in Social Training. 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, https://doi.org/10.1145/3495018.3495501.
    46. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2010). Multivariate Data Analysis: Pearson Education. Upper Saddle River, New Jersey.
    47. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203.
    48. Hair, J. J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method. European Business Review, 28(1), 63-76. https://doi.org/10.1108/EBR-09-2015-0094.
    49. Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132. https://doi.org/10.1016/j.ijin.2022.08.005.
    50. Han, S., Zhang, D., Zhang, H., & Lin, S. (2025). Artificial Intelligence Technology, Organizational Learning Capability, and Corporate Innovation Performance: Evidence from Chinese Specialized, Refined, Unique, and Innovative Enterprises. Sustainability, 17(6). https://doi.org/10.3390/su17062510.
    51. Hanaysha, J. R., & Al-Shaikh, M. E. (2022). An examination of customer relationship management dimensions and employee-based brand equity: A study on ride-hailing industry in Saudi Arabia. Research in Transportation Business & Management, 43, 100719. https://doi.org/10.1016/j.rtbm.2021.100719.
    52. Harlow, H. D. (2018). Developing a knowledge management strategy for data analytics and intellectual capital. Meditari Accountancy Research, 26(3), 400-419. https://doi.org/10.1108/MEDAR-09-2017-0217.
    53. Heng, Q., & Lange, K. (2024). Bootstrap estimation of the proportion of outliers in robust regression. Statistics and Computing, 35(1), 3. https://doi.org/10.1007/s11222-024-10526-1.
    54. Heredia, A., & Viggiani, E. (2025). Research and Collaborative Working and Sharing Online. In D. Baker & L. Ellis (Eds.), Encyclopedia of Libraries, Librarianship, and Information Science (First Edition) (pp. 155-167). Academic Press. https://doi.org/10.1016/B978-0-323-95689-5.00111-5.
    55. Hu, X., Gao, H., Agafari, T., Zhang, M. Q., & Cong, R. (2025). How and when artificial intelligence adoption promotes employee knowledge sharing? The role of paradoxical leadership and technophilia [Original Research]. Frontiers in Psychology, Volume 16 - 2025. https://doi.org/10.3389/fpsyg.2025.1573587.
    56. Hughes, L., Davies, F., Li, K., Gunaratnege, S. M., Malik, T., & Dwivedi, Y. K. (2026). Beyond the hype: Organisational adoption of Generative AI through the lens of the TOE framework–A mixed methods perspective. International Journal of Information Management, 86, 102982. https://doi.org/10.1016/j.ijinfomgt.2025.102982.
    57. Iacobucci, D., Román, S., Moon, S., & Rouziès, D. (2025). A Tutorial on What to Do With Skewness, Kurtosis, and Outliers: New Insights to Help Scholars Conduct and Defend Their Research. Psychology & Marketing, 42(5), 1398-1414. https://doi.org/10.1002/mar.22187
    58. Intezari, A., & Gressel, S. (2017). Information and reformation in KM systems: big data and strategic decision-making. Journal of Knowledge Management, 21(1), 71-91. https://doi.org/10.1108/JKM-07-2015-0293.
    59. Ipe, M. (2003). Knowledge sharing in organizations: A conceptual framework. Human resource development review, 2(4), 337-359. https://doi.org/10.1177/1534484303257985
    60. Isabella, G., Severo de Almeida, M. I., Duran, F. M., & Gabler, C. (2025). From static to conversational: The role of landing pages and chatbots in B2B lead generation. Journal of Business Research, 201, 115681. https://doi.org/10.1016/j.jbusres.2025.115681
    61. Jabeen, S. (2025). The Landscape of CRM Research: A Bibliometric Analysis of Key Trends and Future Directions. Journal of Relationship Marketing, 24(4), 358-398. https://doi.org/10.1080/15332667.2025.2462884.
    62. Jalkala, A., & Salminen, R. T. (2010). Practices and functions of customer reference marketing — Leveraging customer references as marketing assets. Industrial Marketing Management, 39(6), 975-985. https://doi.org/10.1016/j.indmarman.2010.06.017.
    63. Jamil, M. A., Bakar, N. A. A., Hussein, S. S., Salehuddin, H., & Yahya, F. (2025, 2025//). A Digital Enterprise Architecture Framework for Supply Chain Transformation: Integrating Knowledge Management and the TOE Framework in the FMCG Industry. Knowledge Management in Organisations, Cham. https://doi.org/10.1007/978-3-031-95898-4_4
    64. Juan, S.-J. (2025). The impact of tacit knowledge acquisition and absorptive capability on individual performance: from the knowledge seeker’s perspective. Journal of Knowledge Management, 29(7), 2213-2237. https://doi.org/10.1108/JKM-08-2024-0986.
    65. Karsikas, E., Meriläinen, M., Koivunen, K., & Kanste, O. (2025). Health and social care managers' self-assessed competence in knowledge management: A descriptive cross-sectional study. Journal of Advanced Nursing, 81(2), 787-797. https://doi.org/10.1111/jan.16237.
    66. Karsoo, Y. K., Abdussalaam, I. I., & Wahab, N. O. (2025). The triad of influences: examining the moderating factors in the knowledge inflow–ambidexterity nexus. Journal of Knowledge Management, 29(7), 2182-2212. https://doi.org/10.1108/JKM-02-2024-0192.
    67. Khatoon, A., Rehman, S. U., Islam, T., & Ashraf, Y. (2022). Knowledge sharing through empowering leadership: the roles of psychological empowerment and learning goal orientation. Global Knowledge, Memory and Communication, 73(4-5), 682-697. https://doi.org/10.1108/GKMC-08-2022-0194.
    68. Kim, B.-J., & Lee, J. (2025). AI adoption, employee depression and knowledge: How corporate social responsibility buffers psychological impact. Journal of Innovation & Knowledge, 10(6), 100815. https://doi.org/10.1016/j.jik.2025.100815.
    69. Kumar, A., & Shankar, A. (2025). Role of generative AI-enabled customer relationship management solutions in achieving agility. Journal of Business & Industrial Marketing, 40(8), 1593-1614. https://doi.org/10.1108/JBIM-06-2024-0433.
    70. Kumar, P. (2024). Artificial intelligence (AI)-augmented knowledge management capability and clinical performance: implications for marketing strategies in health-care sector. Journal of Knowledge Management, 29(2), 415-441. https://doi.org/10.1108/JKM-01-2024-0111.
    71. Ledro, C., Nosella, A., & Dalla Pozza, I. (2023). Integration of AI in CRM: Challenges and guidelines. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100151. https://doi.org/10.1016/j.joitmc.2023.100151.
    72. Lee, C., & Wen-Jung, C. (2005). The Effects of Internal Marketing and Organizational Culture on Knowledge Management in the Information Technology Industry. International Journal of Management, 22(4), 661-672. https://www.proquest.com/scholarly-journals/effects-internal-marketing-organizational-culture/docview/233231524/se-2?accountid=136078.
    73. Leonardi, P., & Neeley, T. (2017). What managers need to know about social tools. Harvard Business Review, 95(6), 118-126.
    74. Leuba, V., & Piricz, N. (2025, 25-27 Sept. 2025). Critical Literature Review on Leveraging AI for Customer Relationship Management in Healthcare Supply Chains: Benefits, Challenges and Limitations. 2025 IEEE 23rd Jubilee International Symposium on Intelligent Systems and Informatics (SISY), https://doi.org/10.1109/SISY67000.2025.11205373.
    75. Lin, Q., Lin, L., & Ye, D. (2015). Factors influencing knowledge-sharing behaviors and learning effect: A multilevel investigation. Social Behavior and Personality: an international journal, 43(10), 1683-1698. https://doi.org/10.2224/sbp.2015.43.10.1683
    76. Ma, L., Yu, P., Zhang, X., & Hao, F. (2025). How enterprise social media usage contributes to employee resilience: moderating role of individual adaptability. Behaviour & Information Technology, 44(1), 131-149. https://doi.org/10.1080/0144929X.2024.2312452.
    77. Maras, M.-H., Arsovska, J., Wandt, A. S., Knieps, M., & Logie, K. (2022). The SECI model and darknet markets: Knowledge creation in criminal organizations and communities of practice. European Journal of Criminology, 21(2), 165-190. https://doi.org/10.1177/14773708221115167
    78. Marvi, R., Foroudi, P., & Cuomo, M. T. (2024). Past, present and future of AI in marketing and knowledge management. Journal of Knowledge Management, 29(11), 1-31. https://doi.org/10.1108/JKM-07-2023-0634.
    79. Mehta, P., Chakraborty, D., Rana, N. P., Mishra, A., Khorana, S., & Kooli, K. (2025). AI-driven competitive advantage: the role of personality traits and organizational culture in key account management. Journal of Business & Industrial Marketing, 40(2), 543-569. https://doi.org/10.1108/JBIM-03-2024-0205.
    80. Mena, J. A., & Chabowski, B. R. (2015). The role of organizational learning in stakeholder marketing. Journal of the Academy of Marketing Science, 43(4), 429-452. https://doi.org/10.1007/s11747-015-0442-9.
    81. Menzies, J., Sabert, B., Hassan, R., & Mensah, P. K. (2024). Artificial intelligence for international business: Its use, challenges, and suggestions for future research and practice. Thunderbird International Business Review, 66(2), 185-200. https://doi.org/10.1002/tie.22370.
    82. Molina, M. D., & Sundar, S. S. (2022). When AI moderates online content: effects of human collaboration and interactive transparency on user trust. Journal of Computer-Mediated Communication, 27(4), zmac010. https://doi.org/10.1093/jcmc/zmac010.
    83. Moro-Visconti, R. (2024). Chatbots and Generative Artificial Intelligence. In R. Moro-Visconti (Ed.), Artificial Intelligence Valuation: The Impact on Automation, BioTech, ChatBots, FinTech, B2B2C, and Other Industries (pp. 507-568). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-53622-9_8.
    84. Nguyen, T.-M., & Malik, A. (2022). Impact of knowledge sharing on employees' service quality: the moderating role of artificial intelligence. International Marketing Review, 39(3), 482-508. https://doi.org/10.1108/IMR-02-2021-0078.
    85. Nie, T., Lan, M., & Mo, D. (2025). Follow and go beyond: The impact of sustainable leadership on employees' pro-environmental behaviors. Journal of Environmental Psychology, 106, 102745. https://doi.org/10.1016/j.jenvp.2025.102745.
    86. Nonaka, I., Kodama, M., Hirose, A., & Kohlbacher, F. (2014). Dynamic fractal organizations for promoting knowledge-based transformation – A new paradigm for organizational theory. European Management Journal, 32(1), 137-146. https://doi.org/10.1016/j.emj.2013.02.003.
    87. Nonaka, I., & Toyama, R. (2003). The knowledge-creating theory revisited: knowledge creation as a synthesizing process. Knowledge Management Research & Practice, 1(1), 2-10. https://doi.org/10.1057/palgrave.kmrp.8500001.
    88. Nonaka, I., Toyama, R., & Konno, N. (2000). SECI, Ba and Leadership: a Unified Model of Dynamic Knowledge Creation. Long Range Planning, 33(1), 5-34. https://doi.org/10.1016/S0024-6301(99)00115-6.
    89. Olaluwoye, O. T., Lukman, A. F., Alrasheedi, M. A., Nzomo, W. N., & Farghali, R. A. (2025). Robust estimation methods for addressing multicollinearity and outliers in beta regression models. Scientific Reports, 15(1), 11649. https://doi.org/10.1038/s41598-025-85553-7
    90. Ozay, D., Jahanbakht, M., Shoomal, A., & Wang, S. (2024). Artificial Intelligence (AI)-based Customer Relationship Management (CRM): a comprehensive bibliometric and systematic literature review with outlook on future research. Enterprise Information Systems, 18(7), 2351869. https://doi.org/10.1080/17517575.2024.2351869
    91. Ozay, D., Jahanbakth, M., & Wang, S. (2025). Exploring the Intersection of Big Data and AI With CRM Through Descriptive, Network, and Contextual Methods. IEEE Access, 13, 57223-57240. https://doi.org/10.1109/ACCESS.2025.3554549
    92. Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing, 34(7), 1410-1419. https://doi.org/10.1108/JBIM-10-2018-0295.
    93. Patwary, A. K., Alwi, M. K., Rehman, S. U., Rabiul, M. K., Babatunde, A. Y., & Alam, M. M. D. (2022). Knowledge management practices on innovation performance in the hotel industry: mediated by organizational learning and organizational creativity. Global Knowledge, Memory and Communication, 73(4-5), 662-681. https://doi.org/10.1108/GKMC-05-2022-0104
    94. Peng, C., van Doorn, J., Eggers, F., & Wieringa, J. E. (2022). The effect of required warmth on consumer acceptance of artificial intelligence in service: The moderating role of AI-human collaboration. International Journal of Information Management, 66, 102533. https://doi.org/10.1016/j.ijinfomgt.2022.102533
    95. Procacci, V., Manzo, M., Santolamazza, V., & Beck, T. (2025). Gendered knowledge transfer and innovation in family firms: the strategic role of female successors. VINE Journal of Information and Knowledge Management Systems, 1-20. https://doi.org/10.1108/VJIKMS-07-2025-0297.
    96. Rani, S., & Devi, E. B. (2024). Impact of collective knowledge on individual research competence: exploring the mediating influence of knowledge management processes. European Journal of Innovation Management, 28(8), 3985-4016. https://doi.org/10.1108/EJIM-10-2023-0898.
    97. Redding, G. (2021). Competitive productivity and the challenge of metastasis under rising societal complexity. Cross Cultural & Strategic Management, 28(1), 19-31. https://doi.org/10.1108/CCSM-02-2020-0051.
    98. Rienda-Gómez, J. J., Villena-Martínez, E. I., Sutil-Martín, D. L., & García-Muiña, F. E. (2025). A mediation model for enhancing socioemotional and cognitive skills and facilitating knowledge management through serious board games: advancing intrinsic motivation. Journal of Knowledge Management, 29(11), 83-116. https://doi.org/10.1108/JKM-01-2025-0038.
    99. Rosário, A. T., & Dias, J. C. (2024). Implementing Problem-Based Learning in Marketing Education: A Systematic Review and Analysis. Education Sciences, 14(11). https://doi.org/10.3390/educsci14111139.
    100. Roy, S. K., Tehrani, A. N., Pandit, A., Apostolidis, C., & Ray, S. (2025). AI-capable relationship marketing: Shaping the future of customer relationships. Journal of Business Research, 192, 115309. https://doi.org/10.1016/j.jbusres.2025.115309.
    101. Sakib, M. N., Islam, M., Fahlevi, M., Rahman, M. S., Younus, M., & Rahman, M. M. (2025). Factors influencing users' intention to adopt ChatGPT based on the extended technology acceptance model. Computers in Human Behavior: Artificial Humans, 6, 100204. https://doi.org/10.1016/j.chbah.2025.100204.
    102. Salehzadeh, R., Shukla, V., & Bakhshi, M. (2025). Why do employees hide knowledge? The dark side of CEO’s organizational identification. Management Decision. https://doi.org/10.1108/MD-10-2024-2334
    103. Sheng, M. L., & Saide, S. (2024). A servant perspective of leadership and knowledge co-creation process for IT/IS exploration-exploitation innovation in the B2B enterprise context. Journal of Enterprise Information Management, 37(1), 1-23. https://doi.org/10.1108/JEIM-03-2023-0110.
    104. Sheth, J. N., Jain, V., & Ambika, A. (2024). Designing an empathetic user-centric customer support organisation: practitioners’ perspectives. European Journal of Marketing, 58(4), 845-868. https://doi.org/10.1108/EJM-05-2022-0350
    105. Shi, Y., Chin, T., Yu, S., Carusone, R., & Fait, M. (2025). Measuring organizational knowledge creation: construct development and content validation. Journal of Knowledge Management, 29(9), 3102-3116. https://doi.org/10.1108/JKM-12-2024-1462.
    106. Simba-Herrera, M. S., Robalino-López, A., & Aniscenko, Z. (2025). Driving AI-integrated CRM adoption in emerging markets: the role of attitude and perceived usefulness insights from Ecuadorian organizations. Management Research: The Journal of the Iberoamerican Academy of Management. https://doi.org/10.1108/MRJIAM-03-2025-1708.
    107. Singh, K., Chatterjee, S., Chaudhuri, R., Vrontis, D., & Yildiz, H. (2025). Knowledge Management and Organizational Resilience in MSMEs: The Intervening Role of Innovation Orientation. Strategic Change, n/a(n/a). https://doi.org/10.1002/jsc.2640
    108. Škerlavaj, M., Štemberger, M. I., Škrinjar, R., & Dimovski, V. (2007). Organizational learning culture—the missing link between business process change and organizational performance. International Journal of Production Economics, 106(2), 346-367. https://doi.org/10.1016/j.ijpe.2006.07.009.
    109. Smithers, T., Tang, M. X., Tomes, N., Buck, P., Clarke, B., Lloyd, G., Poulter, K., Floyd, C., & Hodgkin, E. (1992). Development of a knowledge-based design support system. Knowledge-Based Systems, 5(1), 31-40. https://doi.org/10.1016/0950-7051(92)90022-8.
    110. Soliman, M., Hayeemad, M., Nuh, R., & Phetkaew, C. (2025). Investigating factors affecting purchase intention of halal cosmetics products among Millennial consumers: findings from PLS-SEM approach. Journal of Islamic Marketing. https://doi.org/10.1108/JIMA-06-2024-0264.
    111. Thomas, A., & Gupta, V. (2021). The role of motivation theories in knowledge sharing: an integrative theoretical reviews and future research agenda. Kybernetes, 51(1), 116-140.
    112. Truong, N. V. T., & Toan, T. C. (2025). Artificial intelligence in customer relationship management: bibliometric analysis. International Journal of Electronic Customer Relationship Management, 15(3), 174-198. https://doi.org/10.1504/IJECRM.2025.148918.
    113. Veeravalli, S., Venkatraman, V., & Hariharan, M. (2019). Why do people seek knowledge? Tracing factors that affect knowledge seeking intention. VINE Journal of Information and Knowledge Management Systems, 50(2), 271-290. https://doi.org/10.1108/VJIKMS-04-2019-0059
    114. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. https://doi.org/10.2307/30036540.
    115. Visser, W. (1992). Designers' activities examined at three levels: organization, strategies and problem-solving processes. Knowledge-Based Systems, 5(1), 92-104. https://doi.org/10.1016/0950-7051(92)90027-D.
    116. Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411.
    117. Wang, J., Yang, J., & Xue, Y. (2017). Subjective well-being, knowledge sharing and individual innovation behavior: The moderating role of absorptive capacity. Leadership & Organization Development Journal, 38(8), 1110-1127. https://doi.org/10.1108/LODJ-10-2015-0235.
    118. Wang, K., Quan, H., Chang, H., & Tian, Y. (2025). Research on the impact of external knowledge acquisition and internal knowledge sharing on service innovation of tourism enterprises. Journal of Knowledge Management, 29(9), 2821-2842. https://doi.org/10.1108/JKM-12-2023-1289
    119. Wei, Y., Wang, M. S., & Liu, J. (2025). Generational imprints: A contingency approach to corruption and entrepreneurship. Strategic Entrepreneurship Journal, 19(3), 529-560. https://doi.org/10.1002/sej.1548.
    120. Wiig, K. M. (2012). Knowledge management: an emerging discipline rooted in a long history. In Knowledge horizons (pp. 3-26). Routledge. https://doi.org/10.1016/B978-0-7506-7247-4.50004-5.
    121. Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management. Academy of management Review, 14(3), 361-384. https://doi.org/10.2307/258173
    122. Xia, Q., Chiu, T. K. F., & Chai, C. S. (2023). The moderating effects of gender and need satisfaction on self-regulated learning through Artificial Intelligence (AI). Education and Information Technologies, 28(7), 8691-8713. https://doi.org/10.1007/s10639-022-11547-x.
    123. Yuan, L., Yu, H., Zhang, W., & Guan, Y. (2025). Flipping the switch: how artificial intelligence learning companions in flipped classrooms enhance students’ computational thinking. Educational technology research and development. https://doi.org/10.1007/s11423-025-10566-y.
    124. Zahra, S. A., & George, G. (2002). Absorptive capacity: A review, reconceptualization, and extension. Academy of management review, 27(2), 185-203. https://doi.org/10.5465/amr.2002.6587995
    125. Zhang, W., Zhang, W., Daim, T., & Yalçın, H. (2025). AI challenges conventional knowledge management: light the way for reframing SECI model and Ba theory. Journal of Knowledge Management, 29(5), 1618-1654. https://doi.org/10.1108/JKM-02-2024-0203.
  • Downloads

  • How to Cite

    Kaur, P., & Jasrai, L. (2025). Exploring Knowledge Management Drivers in AIPowered ‎CRM: A Conceptual Framework for Marketing ‎Practitioners. International Journal of Accounting and Economics Studies, 12(8), 109-121. https://doi.org/10.14419/4asp7v79