Decomposition Analysis of CO2 Emissions from Türkiye’s‎Electricity Generation: Evidence of Structural Change and ‎Decarbonization Challenges (1990–2022)‎

  • Authors

    • Meltem Tari Ozgur Assistant Professor, Lapseki Vocational School, Department of Finance, Banking, and Insurance, Çanakkale Onsekiz Mart University, Çanakkale 17800, Türkiye
    https://doi.org/10.14419/tsb4y750

    Received date: October 28, 2025

    Accepted date: November 11, 2025

    Published date: November 19, 2025

  • Electricity Generation; CO2 Emissions; LMDI Decomposition; Fossil Fuels; Renewables; Türkiye
  • Abstract

    This study investigates the driving forces behind changes in carbon dioxide emissions from Türkiye’s electricity generation sector over the ‎period 1990–2022 by applying the Logarithmic Mean Divisia Index (LMDI) decomposition method. The analysis disaggregates total emissions into four main effects, carbon intensity, thermal efficiency, fossil share, and total generation, to identify how each component has ‎shaped the evolution of emissions across distinct development phases. The results indicate that the expansion of total electricity generation ‎has been the dominant driver of emission growth, reflecting Türkiye’s rapidly rising electricity demand driven by industrialization, urbanization, and economic growth. Improvements in thermal efficiency and carbon intensity contributed modestly to emission mitigation in the early ‎years but proved insufficient to counterbalance the growing scale of electricity production. After 2010, the influence of carbon intensity ‎became particularly pronounced due to the increasing reliance on coal within the fossil fuel mix. In contrast, the gradual rise of renewables, ‎especially wind, solar, and geothermal, began to exert a moderating effect by reducing the overall share of fossil fuels in total generation. ‎These findings highlight a critical structural transition in Türkiye’s power sector: the coexistence of expanding electricity demand and a ‎slowly diversifying energy mix. Achieving sustained emission reductions will require accelerating renewable deployment, improving power ‎plant efficiency, and reducing dependence on coal. Strengthening policy instruments, such as renewable incentives, carbon pricing, and grid ‎modernization, will be essential to align the electricity sector with Türkiye’s 2053 net-zero target‎.

  • References

    1. Akbostancı, E., Tunç, G. İ., & Türüt-Aşık, S. (2011). CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Applied Energy, 88(6), 2273–2278. https://doi.org/10.1016/j.rser.2017.06.066.
    2. Akbostancı, E., Tunç, G. İ., & Türüt-Aşık, S. (2018). Drivers of fuel-based carbon dioxide emissions: The case of Turkey. Renewable and Sustainable Energy Reviews, 81(July 2016), 2599–2608. https://doi.org/10.1016/j.rser.2017.06.066.
    3. Alcántara, V., Padilla, E., & Del Río, P. (2022). The driving factors of CO2 emissions from electricity generation in Spain: A decomposition analysis. Energy Sources, Part B: Economics, Planning, and Policy, 17(1). https://doi.org/10.1080/15567249.2021.2014604.
    4. Ang, B. W. (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7), 867–871. https://doi.org/10.1016/j.enpol.2003.10.010
    5. Ang, B. W. (2015). LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233–238. https://doi.org/10.1016/j.enpol.2015.07.007.
    6. Ang, B. W., & Su, B. (2016). Carbon emission intensity in electricity production: A global analysis. Energy Policy, 94, 56–63. https://doi.org/10.1016/j.enpol.2016.03.038.
    7. Ang, B. W., Zhou, P., & Tay, L. P. (2011). Potential for reducing global carbon emissions from electricity production—A benchmarking analysis. Energy Policy, 39(5), 2482–2489. https://doi.org/10.1016/j.enpol.2011.02.013
    8. Barroso, R., Duan, T., Guo, S. (Sarina), & Kowalewski, O. (2024). Board gender diversity reform and corporate carbon emissions. Journal of Corporate Finance, 87, 102616. https://doi.org/10.1016/j.jcorpfin.2024.102616.
    9. Beine, M., & Jeusette, L. (2021). A meta-analysis of the literature on climate change and migration. Journal of Demographic Economics, 87(3), 293–344. https://doi.org/10.1017/dem.2019.22.
    10. Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647.
    11. Cappelli, F., Costantini, V., & Consoli, D. (2021). The trap of climate change-induced “natural” disasters and inequality. Global Environmental Change, 70(December 2020), 102329. https://doi.org/10.1016/j.gloenvcha.2021.102329.
    12. Ember. (2024). Global Electricity Review 2024. https://ember-energy.org/app/uploads/2024/05/Report-Global-Electricity-Review-2024.pdf.
    13. Ember. (2025). Global Electricity Review 2025. In Ember (Issue April). https://archive.ourworldindata.org/20250624-125417/grapher/electricity-as-a-share-of-primary-energy.html.
    14. Farooq, A., Bjørn, A., Hauschild, M., Puttanapong, N., & Gheewala, S. H. (2025). A planetary boundaries-based assessment of waste-to-energy technologies for sustainable waste management in Thailand. Sustainable Production and Consumption, 57, 153–166. https://doi.org/10.1016/j.spc.2025.05.018.
    15. Goh, T., Ang, B. W., & Xu, X. Y. (2018). Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions. Applied Energy, 231(September), 1191–1204. https://doi.org/10.1016/j.apenergy.2018.09.174.
    16. González, F. A. I., London, S., & Santos, M. E. (2021). Disasters and economic growth: evidence for Argentina. Climate and Development, 13(10), 932–943. https://doi.org/10.1080/17565529.2021.1873724.
    17. Hendrix, C. S., & Salehyan, I. (2012). Climate change, rainfall, and social conflict in Africa. Journal of Peace Research, 49(1), 35–50. https://doi.org/10.1177/0022343311426165.
    18. IEA. (2024). CO2 Emissions in 2023. In International Energy Agency (Vol. 24). www.iea.org
    19. IEA. (2025a). Electricity 2025. www.iea.org
    20. IEA. (2025b). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-https://www.iea.org/data-and-statistics/data-product/world-energy-balances#energy-balances-data-browser
    21. IPCC. (2022). Climate Change 2022: Mitigation of Climate Change, Working Group III Contribution to the Sixth Assessment Report (AR6). In Intergovernmental Panel on Climate Change (IPCC) (Vol. 139).
    22. İpek Tunç, G., Türüt-Aşık, S., & Akbostancı, E. (2009). A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 37(11), 4689–4699. https://doi.org/10.1016/j.enpol.2009.06.019.
    23. Karakaya, E., Bostan, A., & Özçağ, M. (2019). Decomposition and decoupling analysis of energy-related carbon emissions in Turkey. Environmental Science and Pollution Research, 26(31), 32080–32091. https://doi.org/10.1007/s11356-019-06359-5
    24. Kim, H., Lee, H., Koo, Y., & Choi, D. G. (2020). Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models. Energy, 197, 117201. https://doi.org/10.1016/j.energy.2020.117201.
    25. Lise, W. (2006). Decomposition of CO2 emissions over 1980–2003 in Turkey. Energy Policy, 34(14), 1841–1852. https://doi.org/10.1016/j.enpol.2004.12.021.
    26. Loftus, P. J., Cohen, A. M., Long, J. C. S., & Jenkins, J. D. (2015). A critical review of global decarbonization scenarios: what do they tell us about feasibility? WIREs Climate Change, 6(1), 93–112. https://doi.org/10.1002/wcc.324.
    27. Malla, S. (2009). CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis. Energy Policy, 37(1), 1–9. https://doi.org/10.1016/j.enpol.2008.08.010.
    28. Mele, M., Gurrieri, A. R., Morelli, G., & Magazzino, C. (2021). Nature and climate change effects on economic growth: an LSTM experiment on renewable energy resources. Environmental Science and Pollution Research, 28(30), 41127–41134. https://doi.org/10.1007/s11356-021-13337-3.
    29. Mohan, P. (2024). Health engagement in national climate commitments of small island developing states: A content analysis of Caribbean nationally determined contributions. The Journal of Climate Change and Health, 18, 100322. https://doi.org/10.1016/j.joclim.2024.100322.
    30. Mohlin, K., Camuzeaux, J. R., Muller, A., Schneider, M., & Wagner, G. (2018). Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis. Energy Policy, 116(October 2017), 290–296. https://doi.org/10.1016/j.enpol.2018.02.006.
    31. Ofori, S. A., Hugé, J., Gnansounou, S. C., Ximenes, A. C., Asante, F., Bagbohouna, M., Comte, A., Longépée, E., Lang’at, K. S., Bandeira, S. O., Omollo, D., Onyena, A. P., Sam, K., Hamza, A. J., Zeggaf Tahiri, A., Daf, D. S., Goudiaby, K. D., Olatunji, E. T., Golléty, C., … Dahdouh-Guebas, F. (2025). Leveraging mangroves to advance climate action in Africa: Zooming in on Nationally Determined Contributions (NDCs). Journal of Environmental Management, 392, 126669. https://doi.org/10.1016/j.jenvman.2025.126669.
    32. Oteng-Abayie, E. F., Asaki, F. A., Duodu, E., Mahawiya, S., & Gyamfi, B. A. (2024). Decomposition analysis of electricity generation on carbon dioxide emissions in Ghana. Heliyon, 10(7), e28212. https://doi.org/10.1016/j.heliyon.2024.e28212
    33. Ozdemir, A. C. (2023). Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey. Energy, 273(May 2022), 127264. https://doi.org/10.1016/j.energy.2023.127264.
    34. Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., … Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 8(4), 325–332. https://doi.org/10.1038/s41558-018-0091-3.
    35. Romanello, M., Walawender, M., Hsu, S.-C., Moskeland, A., Palmeiro-Silva, Y., Scamman, D., Ali, Z., Ameli, N., Angelova, D., Ayeb-Karlsson, S., Basart, S., Beagley, J., Beggs, P. J., Blanco-Villafuerte, L., Cai, W., Callaghan, M., Campbell-Lendrum, D., Chambers, J. D., Chicmana-Zapata, V., … Costello, A. (2024). The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. The Lancet, 404(10465), 1847–1896. https://doi.org/10.1016/S0140-6736(24)01822-1.
    36. Sahin, H., & Esen, H. (2022). The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey. Renewable Energy, 192, 859–869. https://doi.org/10.1016/j.renene.2022.03.141.
    37. Salehyan, I. (2014). Climate change and conflict: Making sense of disparate findings. Political Geography, 43, 1–5. https://doi.org/10.1016/j.polgeo.2014.10.004.
    38. Talukder, B., Ganguli, N., Matthew, R., VanLoon, G. W., Hipel, K. W., & Orbinski, J. (2022). Climate change-accelerated ocean biodiversity loss & associated planetary health impacts. The Journal of Climate Change and Health, 6, 100114. https://doi.org/10.1016/j.joclim.2022.100114.
    39. Tawiah, V., & Alessa, N. (2025). Even climate change is not fair: the impact of climate change on economic outcomes. International Journal of Climate Change Strategies and Management, 17(1), 46–67. https://doi.org/10.1108/IJCCSM-01-2024-0008.
    40. van Sluisveld, M. A. E., Harmsen, J. H. M., Bauer, N., McCollum, D. L., Riahi, K., Tavoni, M., Vuuren, D. P. van, Wilson, C., & Zwaan, B. van der. (2015). Comparing future patterns of energy system change in 2 °C scenarios with historically observed rates of change. Global Environmental Change, 35, 436–449. https://doi.org/10.1016/j.gloenvcha.2015.09.019.
    41. Vinichenko, V., Cherp, A., & Jewell, J. (2021). Historical precedents and feasibility of rapid coal and gas decline required for the 1.5°C target. One Earth, 4(10), 1477–1490. https://doi.org/10.1016/j.oneear.2021.09.012
    42. Wang, Z., Wang, T., Zhang, X., Wang, J., Yang, Y., Sun, Y., Guo, X., Wu, Q., Nepovimova, E., Watson, A. E., & Kuca, K. (2024). Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Science of The Total Environment, 937(May), 173377. https://doi.org/10.1016/j.scitotenv.2024.173377.
    43. Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782.
    44. Xu, X. Y., & Ang, B. W. (2013). Index decomposition analysis applied to CO2 emission studies. Ecological Economics, 93, 313–329. https://doi.org/10.1016/j.ecolecon.2013.06.007.
    45. Yadoo, A., & Cruickshank, H. (2012). The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya. Energy Policy, 42, 591–602. https://doi.org/10.1016/j.enpol.2011.12.029.
    46. Yan, M., Yang, F., Liu, L., Guo, D., & Li, C. (2024). Construction of an indicator library for cities’ sustainable development. Chinese Journal of Population Resources and Environment, 22(4), 469–480. https://doi.org/10.1016/j.cjpre.2024.11.010.
    47. Zhang, M., Liu, X., Wang, W., & Zhou, M. (2013). Decomposition analysis of CO2 emissions from electricity generation in China. Energy Policy, 52, 159–165. https://doi.org/10.1016/j.enpol.2012.10.013
    48. Zhang, P., Cai, W., Yao, M., Wang, Z., Yang, L., & Wei, W. (2020). Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. Applied Energy, 275(January), 115425. https://doi.org/10.1016/j.apenergy.2020.115425.
    49. Zheng, J., Mi, Z., Coffman, D., Shan, Y., Guan, D., & Wang, S. (2019). The slowdown in China’s carbon emissions growth in the new phase of economic development. One Earth, 1(2), 240–253. https://doi.org/10.1016/j.oneear.2019.10.007.
    50. Zhou, W., Li, X., Lin, J.-H., Chang, C.-P., & Cai, Y. (2024). Aligning common prosperity with sustainable development goals 3 and 7 through sustainable insurance. Energy Economics, 140, 108033. https://doi.org/10.1016/j.eneco.2024.108033.
  • Downloads

  • How to Cite

    Tari Ozgur, M. (2025). Decomposition Analysis of CO2 Emissions from Türkiye’s‎Electricity Generation: Evidence of Structural Change and ‎Decarbonization Challenges (1990–2022)‎. International Journal of Accounting and Economics Studies, 12(7), 585-594. https://doi.org/10.14419/tsb4y750