Hybrid AI Approaches for Stock Market Prediction: Evidence from The Moroccan Stock Exchange

  • Authors

    • Abdelhamid Boulaksili Abdelmalek Essaâdi University, TETOUAN, Economic Studies, Digital Analysis and Artificial Intelligence Laboratory
    • Elmehdi, Jeddou Hassan First University of Settat, National School of Commerce, Research Laboratory in Strategy and Management of Organizations (LASMO). Morocco
    • Mohamed Anis Tamiri Hassan II University of Casablanca – Faculty of Law, Economics & Social Sciences Ain Sebâa, Morocco
    • Amine Hmid Hassan II University of Casablanca – Faculty of Law, Economics & Social Sciences Ain Sebâa, Morocco
    • El Hajel Yousra University Mohammed V, Rabat, Morocco
    • Taha Mawi Research Laboratory in Economics, Management and Business Administration (LAREGMA), Faculty of Economics and Management, Hassan First University of Settat, Morocco
    • Soufiane Nabil University Sultan Moulay Slimane, Beni Mellal, Morocco
    https://doi.org/10.14419/eymr1715

    Received date: October 18, 2025

    Accepted date: December 13, 2025

    Published date: December 23, 2025

  • Stock market prediction, Artificial intelligence (AI), Gradient boosting (XGBoost, LightGBM), Moroccan Stock Exchange (MASI), Probabilistic forecasting
  • Abstract

    The prediction of stock market dynamics remains a central challenge in financial economics due to the complexity and volatility of financial time series. Traditional econometric approaches, while useful, struggle to capture nonlinear patterns and long-term dependencies inherent in stock market behavior. Recent advances in artificial intelligence (AI), particularly in deep learning and ensemble learning, offer promising alternatives for improving predictive accuracy and robustness.

    This study revisits the Moroccan stock market, building upon prior research that tested neural network architectures such as MLP, RNN, CNN, and LSTM. Using daily data from the MASI index and seven sectoral indices from 2017 to 2024, we propose a hybrid methodology combining the Temporal Fusion Transformer (TFT) with gradient boosting models (XGBoost and LightGBM) in a stacking ensemble.

    The results demonstrate that hybrid models outperform standalone deep learning architectures, offering more reliable forecasts and improved economic backtesting performance. Our findings highlight the potential of probabilistic AI models to enhance financial decision-making and risk management in emerging markets.

  • References

    1. Adefemi Ayodele. (2023). A comparative study of ensemble learning techniques for imbalanced classification problems. World Journal of Ad-vanced Research and Reviews, 19(2), 1633‑1643. https://doi.org/10.30574/wjarr.2023.19.1.1202
    2. Bansal, M., Goyal, A., & Choudhary, A. (2022). Stock Market Prediction with High Accuracy using Machine Learning Techniques. Procedia Computer Science, 215, 247‑265. https://doi.org/10.1016/j.procs.2022.12.028
    3. Caetano, R., Oliveira, J. M., & Ramos, P. (2025). Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables. Mathematics, 13(5), 814. https://doi.org/10.3390/math13050814
    4. Chen, T., & Guestrin, C. (2016). XGBoost : A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785‑794. https://doi.org/10.1145/2939672.2939785
    5. Dai, Z., Zhou, H., Dong, X., & Kang, J. (2020). Forecasting Stock Market Volatility : A Combination Approach. Discrete Dynamics in Nature and Society, 2020, 1‑9. https://doi.org/10.1155/2020/1428628
    6. EL MASSAADI, M., BOUDRAINE, H., & AIT LEMQEDDEM, H. (2024). Utilisation des modèles de l’IA dans la prédiction des cours boursiers : Cas du marché boursier marocain. https://doi.org/10.5281/ZENODO.14213228
    7. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Oper-ational Research, 270(2), 654‑669. https://doi.org/10.1016/j.ejor.2017.11.054
    8. Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102(477), 359‑378. https://doi.org/10.1198/016214506000001437
    9. González-Sopeña, J. M., Pakrashi, V., & Ghosh, B. (2021). An overview of performance evaluation metrics for short-term statistical wind power forecasting. Renewable and Sustainable Energy Reviews, 138, 110515. https://doi.org/10.1016/j.rser.2020.110515
    10. Hasbrouck, J. (2007). Empirical Market Microstructure : The Institutions, Economics, and Econometrics of Securities Trading (Oxford University Press).
    11. Jain, R., & Vanzara, R. (2023). Emerging Trends in AI-Based Stock Market Prediction : A Comprehensive and Systematic Review. The 4th Inter-national Electronic Conference on Applied Sciences, 254. https://doi.org/10.3390/ASEC2023-15965
    12. Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., & Ngo, D. C. L. (2014). Text mining for market prediction : A systematic review. Expert Systems with Applications, 41(16), 7653‑7670. https://doi.org/10.1016/j.eswa.2014.06.009
    13. Kumar, P., Hota, L., Tikkiwal, V. A., & Kumar, A. (2024). Analysing Forecasting of Stock Prices : An Explainable AI Approach. Procedia Com-puter Science, 235, 2009‑2016. https://doi.org/10.1016/j.procs.2024.04.190
    14. Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. Interna-tional Journal of Forecasting, 37(4), 1748‑1764. https://doi.org/10.1016/j.ijforecast.2021.03.012
    15. Lin, C. Y., & Lobo Marques, J. A. (2024). Stock market prediction using artificial intelligence : A systematic review of systematic reviews. Social Sciences & Humanities Open, 9, 100864. https://doi.org/10.1016/j.ssaho.2024.100864
    16. M, Iyyappan, Ahmad, S., Jha, S., Alam, A., Yaseen, M., & Abdeljaber, H. A. M. (2022). A Novel AI-Based Stock Market Prediction Using Ma-chine Learning Algorithm. Scientific Programming, 2022, 1‑11. https://doi.org/10.1155/2022/4808088
    17. Mutinda, J. K., & Langat, A. K. (2024). Stock price prediction using combined GARCH-AI models. Scientific African, 26, e02374. https://doi.org/10.1016/j.sciaf.2024.e02374
    18. Nuseir, M. T., Akour, I., Alshurideh, M. T., Al Kurdi, B., Alzoubi, H. M., & AlHamad, A. Q. M. (2024). Stock Market Price Prediction Using Ma-chine Learning Techniques. In H. M. Alzoubi, M. T. Alshurideh, & T. M. Ghazal (Éds.), Cyber Security Impact on Digitalization and Business Intel-ligence (Vol. 117, p. 323‑334). Springer International Publishing. https://doi.org/10.1007/978-3-031-31801-6_20
    19. Pulok Sarker, Adnan Sayed, Abu Bakar Siddique, Avijit Saha Apu, Syeda Anika Tasnim, & Mahmud, R. (2024). A Comparative Review on Stock Market Prediction Using Artificial Intelligence. Malaysian Journal of Science and Advanced Technology, 383‑404. https://doi.org/10.56532/mjsat.v4i4.316
    20. Rhoda Adura Adeleye, Tula Sunday Tubokirifuruar, Binaebi Gloria Bello, Ndubuisi Leonard Ndubuisi, Onyeka Franca Asuzu, & Oluwaseyi Rita Owolabi. (2024). MACHINE LEARNING FOR STOCK MARKET FORECASTING : A REVIEW OF MODELS AND ACCURACY. Finance & Accounting Research Journal, 6(2), 112‑124. https://doi.org/10.51594/farj.v6i2.783
    21. Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., & Cuenca-Jiménez, P.-M. (2023). A review on sentiment analysis from social media platforms. Expert Systems with Applications, 223, 119862. https://doi.org/10.1016/j.eswa.2023.119862
    22. Shaban, W. M., Ashraf, E., & Slama, A. E. (2024). SMP-DL : A novel stock market prediction approach based on deep learning for effective trend forecasting. Neural Computing and Applications, 36(4), 1849‑1873. https://doi.org/10.1007/s00521-023-09179-4
    23. Shamim, M., & Siddiqui, A. (2024). Modelling Stock Market Volatility using Asymmetric GARCH Models : Evidence from BRICS stock markets. Global Business and Economics Review, 30(1), 10059551. https://doi.org/10.1504/GBER.2024.10059551
    24. Tamiri, M. A. . ., Cherkaoui , M. ., Idrissi , N. ., Redouane , K. ., Fikri , Y. ., & Nassiri , A. . (2025). The Effectiveness of Internal Control Tested by The Characteristics ‎of The Company and Its Manager: A Study Carried Out on A Sample of Moroccan Companies Listed on The Casablanca Stock Ex‎change. International Journal of Accounting and Economics Studies, 12(7), 19-26. https://doi.org/10.14419/t5xv8662
    25. Tetlock, P. C. (2007). Giving Content to Investor Sentiment : The Role of Media in the Stock Market. The Journal of Finance, 62(3), 1139‑1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x
    26. Zhang, G., Wan, C., Xue, S., & Xie, L. (2023). A global-local hybrid strategy with adaptive space reduction search method for structural health monitoring. Applied Mathematical Modelling, 121, 231‑251. https://doi.org/10.1016/j.apm.2023.04.025
  • Downloads

  • How to Cite

    Boulaksili , A. ., Jeddou , E. ., Tamiri , M. A. ., Hmid , A. ., Yousra , E. H. ., Mawi , T. ., & Nabil , S. . (2025). Hybrid AI Approaches for Stock Market Prediction: Evidence from The Moroccan Stock Exchange. International Journal of Accounting and Economics Studies, 12(8), 789-801. https://doi.org/10.14419/eymr1715