Assessing The Impact of Covid-19 on Financial Distress: A Comparative Study Across Diverse Industries in Malaysia

  • Authors

    • Kamaruzzaman Muhammad Faculty of Accountancy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Malaysia
    • Erlane K Ghani Faculty of Accountancy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Malaysia
    • Marshita Binti Hashim Faculty of Accountancy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Malaysia
    • Elvira Luthan Fakultas Economi & Bisnis, Universitas Andalas, Padang, West Sumatra, Indonesia
    https://doi.org/10.14419/9gk2yd72

    Received date: September 9, 2025

    Accepted date: October 18, 2025

    Published date: October 22, 2025

  • Bankruptcy, financial crisis, accounting, Covid-19, Altman Z-score
  • Abstract

    This study examines the impact of the COVID-19 pandemic on financial distress across nine industries in Malaysia, using the Altman Z-score as the primary measure of financial health. A content analysis was conducted on the annual reports of 80 companies from 2018 to 2021, with a focus on 2021 to capture the extended effects of the pandemic. ANOVA was used to identify significant differences in mean Z-scores between industries, followed by post hoc tests to determine which sectors exhibited the most significant variation. Paired-samples t-tests were used to examine intra-industry changes over time. The average Z-score across all companies was 5.81, indicating generally low bankruptcy risk. However, sectoral differences were evident. The healthcare industry emerged as the most resilient, with a high average Z-score of 10.76, driven by increased demand, government support, and investor confidence. Conversely, the telecommunications sector recorded the lowest score of 3.83, indicating moderate risk. The results highlight the uneven financial impact of the pandemic and emphasize the need for industry-specific financial strategies. The findings contribute to the existing literature on financial distress in emerging markets and provide practical insights for policymakers and business leaders to improve financial resilience in preparation for future crises.

  • References

    1. Altman, E. I., & Hotchkiss, E. (2006). Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Dis-tressed Debt (3rd ed.). John Wiley & Sons.
    2. Altman, E.I. (2002), Revisiting Credit Scoring Models in a Basel 2 Environment. Available from: https://finbox.com/OTCPK:TGLV.Y/ explor-er/altman_z_score
    3. Astuti, S. B., Damayanti, A., Chasbiandani, T., & Rizal, N. (2021). Pandemi Covid-19 dalam Penyajian Pelaporan Keuangan dan Keberlangsungan Usaha melalui Prediksi Kebangkrutan. AFRE (Accounting and Financial Review), 3(2), 165–171.
    4. Bank Negara Malaysia. (2022). Economic and monetary review 2022.
    5. Blessing, A., & Onoja, E.O., The role of financial statements on investment decision-making: A case of United Bank for Africa PLC, European Journal of Business, Economics and Accountancy, 3(2), 12-38
    6. Brigham, E.F. & Daves P.R. (2003), Intermediate Financial Management with Thomson One. United States of America: Cengage SouthWestern
    7. Bui, H., & Krajcsák, Z. (2024). The impacts of corporate governance on firms’ performance: From theories and approaches to empirical findings. Journal of Financial Regulation and Compliance, 32(1), 18–46.
    8. Chan, K.T., Yap., V.C. & Chai, S.N. (2011), Factors affecting financial distress: The case of Malaysian public listed firms, Corporate Ownership and Control, 8(4), 345-352
    9. Ding, S., Cui, T., Bellotti, A. G., Abedin, M. Z., & Lucey, B. (2023). The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China. International Review of Financial Analysis, 90, 102851.
    10. Donaldson, G. (1969). “Strategy for Financial Mobility. Boston”, Mass.: Harvard University Press
    11. Fadillah, M. R., & Susilowati, P. I. (2019). Faktor-faktor yang mempengaruhi financial distress pada Perusahaan manufaktur di Indonesia, 4(1), 191–192.
    12. Fauzia, I.Y. (2017), Mendeteksi Kebangkrutan Secara Dini Perspektif Ekonomi Islam. Jurnal Ekonomi Dan Keuangan, 19(1), 90.
    13. Ghani, E.K., Mohd Ali., M., Musa, M.N.R., & Omonov, A.A. (2022), The effect of perceived usefulness, reliability and COVID-19 pandemic on digital banking effectiveness: Analysis using technology acceptance model, Sustainability, 14(18), 1-16.
    14. Habib, A. M., & Kayani, U. N. (2022). Does the efficiency of working capital management affect a firm’s financial distress? Evidence from UAE. Corporate Governance: The International Journal of Business in Society, 22(4), 567–589.
    15. Halim, A., Shuhidan, S. M., & Sanusi, Z. M. (2022). Predicting financial distress using machine learning: Evidence from Malaysian firms. Asian Journal of Accounting and Governance, 13(1), 45–60.
    16. Halim, Z., Shuhidan, S.M., Sanusi, Z.M. (2021), Corporation financial distress prediction with deep learning: Analysis of public listed companies in Malaysia. Business Process Management Journal, 27(4), 1163-1178.
    17. Hamid, F., Akter, S., & Rab, N. (2016). Earnings management and financial performance: Evidence from Malaysia. Management & Accounting Review, 15(2), 1–18.
    18. Hamid, T., Akter, F., & Rab, N. B. (2016). Prediction of financial distress of non-bank financial institutions of Bangladesh using Altman’s Z score model. International Journal of Business and Management, 11(12), 261-272.
    19. Hashim, M., Muhammad, K., Ghani, E. K., & Azis, M. A. A. (2024). Financial distress analysis of top 100 Malaysian public listed companies dur-ing COVID-19 pandemic using Altman Z-score analysis. International Journal of Economics and Financial Issues, 14(4), 200–205.
    20. Healy, P. M., & Wahlen, J. M. (1999). A review of the earnings management literature and its implications for standard setting. Accounting Hori-zons, 13(4), 365–383.
    21. Hua, S.C., Hla, D.T., & Md Isa, A.H. (2016), Malaysia financial reporting practices and audit quality promote success: The case of Malaysian con-struction sector, UNIMAS Review of Accounting and Finance, 1(1), 36-51.
    22. Hussain, F., Ali, I., Ullah, S., Ali, M. (2014), Can Altman Z-score model predict business failures in Pakistan? Evidence from textile companies of Pakistan. Journal of Economics and Sustainable Development, 5(13), 110-115.
    23. Krejcie, R.V., Morgan, D.W. (1970), Determining sample size for study activities. Educational and Psychological Measurement, 30(2), 607-610
    24. Lord, J., Landry, A., Savage, G.T., Weech-Maldonado, R. (2020), Predicting nursing home financial distress using the Altman Z-Score. Inquiry: The Journal of Health Care Organization, Provision, and Financing, 57(1), 1-9.
    25. Muda, R., Hassan, S., Aziz, R.A., Bakar, N.A. (2017), Financial distress and economic cycle in a dual banking system: Evidence from Malaysia. ACRN Journal of Finance and Risk Perspectives, 6(3), 135-152
    26. Nanjundeswaraswamy, T. S., & Divakar, S. (2021). Determination of sample size and sampling methods in applied research. Proceedings on engi-neering sciences, 3(1), 25-32.
    27. Newton, G. W. (1975). Bankruptcy and insolvency accounting. New York: The Ronald Press
    28. Purbayati, R., & Afgani, K. F. (2020). Pemodelan Multiple Discriminant Analysis untuk Memprediksi Financial Distress Bank Umum Syariah di Indonesia. Ekspansi: Jurnal Ekonomi, Keuangan, Perbankan Dan Akuntansi, 12(1), 31–42
    29. Rahmah, I., Novianty, I. (2021), Comparative analysis of financial distress before and during the Covid-19 pandemic: Empirical evidence in Indo-nesia. International Journal of Business, Economics and Law, 24(5), 216-223
    30. Ratna, I., & Marwati, M. (2018). Analisis Faktor- Faktor Yang Mempengaruhi Kondisi Financial Distress Pada Perusahaan Yang Delisting Dari Ja-karta Islamic Index Tahun 2012-2016. Jurnal Tabarru’: Islamic Banking and Finance, 1(1), 51–62.
    31. Rim, E.K., Roy, A.B. (2014), Classifying manufacturing firms in Lebanon: An application of Altman’s model. Procedia-Social and Behavioral Sci-ences, 109, 11-18.
    32. Roslan, R., Muhammad, K., Ghani, E. K., & Omonov, A. A. (2023). The effect of financial assistance, accounts receivable management and uni-versity size on financial distress. Review of Economics and Finance, 21(10), 96–104.
    33. Septiani, T. A., Siswantini, T., & Murtatik, S. (2021). pengaruh likuiditas, leverage dan profitabilitas terhadap financial distress pada sektor industri barang konsumsi yang terdaftar di BEI. Jurnal Apresiasi Ekonomi, 9(1), 100-111.
    34. Swalih, M., Adarsh, K., & Sulphey, M. (2021). A study on the financial soundness of Indian automobile industries using Altman Z-Score. Ac-counting, 7(2), 295-298.
    35. Tan, W. Y., Ong, C. H., & Low, K. H. (2023). A trend analysis on digital transformation resilience capability: The Malaysian experience during COVID-19. International Journal of Management and Computer Science, 1(1), 25–38.
    36. Thai, S. B., Goh, H. H., HengTeh, B., Wong, J., & San Ong, T. (2014). A revisited of Altman z-score model for companies listed in Bursa Malaysia. International Journal of Business and Social Science, 5(12).
  • Downloads

  • How to Cite

    Muhammad , K. ., Ghani , E. K. ., Hashim, M. B., & Luthan , E. . (2025). Assessing The Impact of Covid-19 on Financial Distress: A Comparative Study Across Diverse Industries in Malaysia. International Journal of Accounting and Economics Studies, 12(6), 850-859. https://doi.org/10.14419/9gk2yd72