A Novel Hybrid Conceptual MCDM Model to Assess and RankThe ‎Performance of Cold Storage Service Providers

  • Authors

    • Prof. Kavitha Reddy Gurrala Assistant Professor, Operations and Marketing, School of Business,‎ Woxsen University, Hyderabad, India
    • Dr. Saradhi Gonela Associate Professor, Marketing, School of Business,‎ Woxsen University, Hyderabad, Indi
    https://doi.org/10.14419/5brett70

    Received date: August 7, 2025

    Accepted date: August 18, 2025

    Published date: September 2, 2025

  • CCs; CSSPs; CCP; FANP; MAIRCA; MCDM
  • Abstract

    Cold Chains (CCs) furnish a regulated environment for the storage, transportation, and ‎distribution of temperature sensitive products. Cold Storage Service Providers (CSSPs) act as ‎intermediaries within the food processing value chain by preserving the quality of a wide ‎range of foods. Further, Cold Chain Performance (CCP) is crucial towards maintaining ‎quality, safety, and economic value of the foods. Consequently, several research studies ‎focused on formulating Multi-Criteria Decision-Making (MCDM) models to enhance CCP. ‎Nevertheless, the focus of such studies was on enhancing performance within specific ‎dimensions viz., sustainability, traceability, digitalization, or resilience etc. Accordingly, this ‎study aims at addressing the research gap, by formulating a novel hybrid conceptual MCDM ‎model integrating Fuzzy Analytical Network Process (FANP) and MultiAtributive Ideal-Real ‎Comparative Analysis (MAIRCA) to holistically assess and rank the performance of CSSPs ‎across multiple performance dimensions.

  • References

    1. Abaasa, P. (2023). Assessment of the cold chain capacity used in bulk handling of perishable agricultural produce in Uganda (Doctoral dissertation, Kyambogo University [unpublished work]).
    2. Abdulla, A., & Baryannis, G. (2024). A hybrid multi-criteria decision-making and machine learning approach for explainable supplier selec-tion. Supply Chain Analytics, 7, 100074. https://doi.org/10.1016/j.sca.2024.100074.
    3. Abu-Nahel, Z. O., Alagha, W. H., Al Shobaki, M. J., Abu-Naser, S. S., and El Talla, S. A. (2020). Flexibility of Information and Its Relationship to Improving the Quality of Service. International Journal of Engineering and Information Systems, 4(8), 214-234.
    4. Adler. S. R., Zinn. T. (2021). Vacuum Plumbing for Safe, Sustainable and Future-Ready Plumbing Design. ASPE Tech Symposium 2021.
    5. Agnihotri, R., Kalra, A., Agnihotri Chen, H., and Daugherty, P. J. (2022). Utilizing social media in a supply chain B2B setting: A knowledge per-spective. Journal of Business logistics, 43(2), 189-208. https://doi.org/10.1111/jbl.12289.
    6. Ahi, P., and Searcy, C. (2015). Assessing sustainability in the supply chain: A triple bottom line approach. Applied Mathematical Modelling. 39. https://doi.org/10.1016/j.apm.2014.10.055.
    7. Ahmad, S. A. H., Ab Rahman, M. N., & Muhamed, A. A. (2020, August). Optimal temperature in cold storage for perishable foods. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management (pp. 3449-3456). Southfield, MI, USA: IEOM Society International.
    8. Alastal, H., Sharaf, A., Mahmoud, S., Alsaidi, O., & Bahroun, Z. (2025). Integrating Multiple Criteria Decision-Making Techniques in Sustainable Supplier Selection: A Comprehensive Review. Decision Making: Applications in Management and Engineering, 380-400.
    9. Ali, S. I., Lalji, S. M., Hashmi, S., Awan, Z., Iqbal, A., and Al-Ammar, E. A. (2024). Risk quantification and ranking of oil fields and wells facing asphaltene deposition problem using fuzzy TOPSIS coupled with AHP. Ain Shams Engineering Journal, 15(1), 102289. https://doi.org/10.1016/j.asej.2023.102289.
    10. AlMulhim, A. F. (2021). Smart supply chain and firm performance: the role of digital technologies. Business Process Management Journal, 27(5), 1353-1372. https://doi.org/10.1108/BPMJ-12-2020-0573.
    11. Alrae, R. (2024). Quality Tools, Technologies, and Techniques: Enhancing Product and Service Excellence. https://doi.org/10.5772/intechopen.113994
    12. Alrashoud, M., AlMeshary, M., and Abhari, A. (2015, April). Automatic validation for multi criteria decision making models in simulation envi-ronments. In Proceedings of the 18th Symposium on Communications and Networking (pp. 44-47b).
    13. Anttonen, H., Pekkarinen, A., and Niskanen, J. (2009). Safety at work in cold environments and prevention of cold stress. Industrial health, 47(3), 254-261. https://doi.org/10.2486/indhealth.47.254
    14. Ap Tech Group. (2025). Solid Chemistry Water Treatment. Ap Tech Solids. Available at: https://www.aptechgroup.com/wp-content/uploads/Cold-Storage-Solid-Chemistry.pdf (Accessed, Jan 20, 2025).
    15. Asady, B., & Zendehnam, A. (2007). Ranking fuzzy numbers by distance minimization. Applied Mathematical Modelling, 31(11), 2589-2598. https://doi.org/10.1016/j.apm.2006.10.018
    16. Atadoga, A., Osasona, F., Amoo, O. O., Farayola, O. A., Ayinla, B. S., and Abrahams, T. O. (2024). The role of IT in enhancing supply chain resil-ience: a global review. International Journal of Management and Entrepreneurship Research, 6(2), 336-351. https://doi.org/10.51594/ijmer.v6i2.774
    17. Atkins, R., Deranek, K., and Nonet, G. (2018). Supply chain food waste reduction and the triple bottom line. Social business, 8(2), 121-144. https://doi.org/10.1362/204440818X15208755029645
    18. Aung, M. M., and Chang, Y. S. (2014). Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40, 198-207. https://doi.org/10.1016/j.foodcont.2013.11.016
    19. Aung, M. M., and Chang, Y. S. (2022). Cold chain monitoring tools. In Cold Chain Management (pp. 77-91). Cham: Springer International Publish-ing. https://doi.org/10.1007/978-3-031-09567-2_5
    20. Aziz, M. A., Khan, M. I. H., Afroz, H. M., Hossain, M. M., Talukdar, S., and Masud, M. A. A. (2024). The development and performance evalua-tion of an alternative energy-based hybrid cold storage system. Journal of Cleaner Production, 434, 140394. https://doi.org/10.1016/j.jclepro.2023.140394
    21. Bearg, D. W. (2019). Indoor air quality and HVAC systems. Routledge. https://doi.org/10.1201/9780203751152
    22. Bhagawat, R., and Sharma, M.K. (2007). Performance measurement of supply chain management: A balanced scorecard approach. Computers and Industrial Engineering, 53(1), 43-62. https://doi.org/10.1016/j.cie.2007.04.001
    23. Bishnoi, R., and Aharwal, K. R. (2024). Experimental investigation of effect of ventilation strategies on the performance of cold storage. Heat Transfer, 53(2), 346-362. https://doi.org/10.1002/htj.22954
    24. Boonsupthip, W., Heldman, D. R., and Choachamnan, J. (2015). Quality monitoring and management during storage and distribution of frozen vegetables. Handbook of vegetable preservation and processing, 349-376.
    25. Brzozowska, A., Brzeszczak, A., Imiołczyk, J., and Szymczyk, K. (2016, June). Managing cold supply chain. In 5th IEEE International Conference on Advanced Logistics and Transport (ICALT 2016).
    26. Caro, M. P., Ali, M. S., Vecchio, M., and Giaffreda, R. (2018, May). Blockchain-based traceability in Agri-Food supply chain management: A prac-tical implementation. In 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany) (pp. 1-4). IEEE. https://doi.org/10.1109/IOT-TUSCANY.2018.8373021
    27. Cemberci, M., Cicek Vural, S., Celik, C., and Canbaz, E. (2024). The Role of Supply Chain Transparency in the Relation between Supply Chain Analytics Capabilities and Firm Performance. Operations and Supply Chain Management: An International Journal, 17(2), 253-263. https://doi.org/10.31387/oscm0570426
    28. Chaiyaphan, C., and Ransikarbum, K. (2020). Criteria analysis of food safety using the Analytic Hierarchy Process (AHP)-a case study of Thai-land’s fresh markets. In E3S Web of Conferences (Vol. 141, p. 02001). EDP Sciences. https://doi.org/10.1051/e3sconf/202014102001
    29. Charles, D. (2020). Cold storage work and cold protective gloves–a review.
    30. Chartsutthi, P., Ngoendee, T., Kham, N. K., Kamhangwong, D., Khuanmuang, S., and Yamsa-ard, S. (2024, December). What Drives Customer Satisfaction in Cold Chain Logistics? A Cross-Industry Analysis of Food and Pharmaceutical Sectors. In 2024 International Conference on Deci-sion Aid Sciences and Applications (DASA) (pp. 1-4). IEEE. https://doi.org/10.1109/DASA63652.2024.10836322
    31. Chihana, S., Phiri, J., and Kunda, D. (2018). An IoT based warehouse intrusion detection (E-Perimeter) and grain tracking model for food reserve agency. International Journal of Advanced Computer Science and Applications, 9(9). https://doi.org/10.14569/IJACSA.2018.090929
    32. de Sá Silva, A. C. R., Bimbato, A. M., Balestieri, J. A. P., and Vilanova, M. R. N. (2022). Exploring environmental, economic and social aspects of rainwater harvesting systems: A review. Sustainable Cities and Society, 76, 103475. https://doi.org/10.1016/j.scs.2021.103475
    33. Dzyvak, T. R., and Vovk, Y. Y. (2023). Modular systems of conveyors for transport and warehouse operations.
    34. Fauadi, M. H. F. M., Anuar, N. I., Kurniawati, D. A., Rosyidi, C. N., Abdullah, L., Damanhuri, A. A. M., & Tay, S. J. (2025). Recent advances in multi-criteria decision-making approaches for circular supply chains: A comprehensive review. Multidisciplinary Reviews, 9(2), 2026087.
    35. Fikiin, K., and Markov, D. (2014). Efficient loading and unloading of a food cold store. New Food Magazine, 6.
    36. Friedman-Heiman, A., and Miller, S. A. (2024). The impact of refrigeration on food losses and associated greenhouse gas emissions throughout the supply chain. Environmental Research Letters, 19(6), 064038. https://doi.org/10.1088/1748-9326/ad4c7b
    37. Füchtenhans, M., Grosse, E. H., and Glock, C. H. (2021). Smart lighting systems: state-of-the-art and potential applications in warehouse order picking. International Journal of Production Research, 59(12), 3817-3839. https://doi.org/10.1080/00207543.2021.1897177
    38. Garg, M., Sharma, S., Chopra, R., and Sadhu, S. D. (2021). Sanitation and Hygiene Process in Storage. In Packaging and Storage of Fruits and Vegetables (pp. 209-233). Apple Academic Press. https://doi.org/10.1201/9781003161165-10
    39. Guo, S. M., and Tsai, K. M. (2019). Cold chain operational standards and a certification case study in Taiwan. In Symposium on Logistics (Vol. 447).
    40. Gupta, H., Kumar, S., Kusi-Sarpong, S., Jabbour, C. J. C., and Agyemang, M. (2021). Enablers to supply chain performance on the basis of digiti-zation technologies. Industrial Management & Data Systems, 121(9), 1915-1938. https://doi.org/10.1108/IMDS-07-2020-0421
    41. Gurrala, K., and Gonela, S. (2025). A Systematic Literature Review of Muti-Criteria Decision-Making Applications within Food Supply Chains using the TCM-ADO Framework. International Journal of Mathematical, Engineering and Management Sciences, 10(6), XXX-XXX (In Print).
    42. Gwynne, R. (2014). Warehouse management: a complete guide to improving efficiency and minimizing costs in the modern warehouse. Kogan Page Limited.
    43. Haber, N., Fargnoli, M., Tronci, M., and Ababneh, A. (2018). Managing customer requirements for an effective service implementation in a Prod-uct-Service System (PSS). In Proceedings of the 2nd IEOM European Conference on Industrial Engineering and Operations Management, Paris, France (pp. 26-27).
    44. HALEEM, F., and SHAH, S. T. H. (2015). Worker, Work, and Work Dynamics: The Role of Multi-skilled, Proactive, and Customer-Focused Staff. Journal of Business and Tourism, 1(2), 79-88.
    45. Hertog, M. L., Uysal, I., McCarthy, U., Verlinden, B. M., and Nicolaï, B. M. (2014). Shelf-life modelling for first-expired-first-out warehouse management. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130306. https://doi.org/10.1098/rsta.2013.0306
    46. Hienen, L. R. C. (2024). Building an Effective Warehouse Dashboard: Improving Operational Insight Through KPIs (Bachelor's thesis, University of Twente).
    47. Hoang, D. K., and Carson, J. K. (2024). Air blast freezing in the food industry. In Low-Temperature Processing of Food Products (pp. 117-146). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818733-3.00004-7
    48. Hofstra, N., Petkova, B., Dullaert, W., Reniers, G., and De Leeuw, S. (2018). Assessing and facilitating warehouse safety. Safety Science, 105, 134-148. https://doi.org/10.1016/j.ssci.2018.02.010
    49. Huang, J.J. (2012). A mathematical programming model for the fuzzy analytic network process—applications of international investment. The Journal of the Operational Research Society, 63 (11), 1534-1544. https://doi.org/10.1057/jors.2011.164
    50. Ivanov, D., Dolgui, A., and Sokolov, B. (2022). Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”. Transportation Research Part E: Logistics and Transportation Review, 160, 102676. https://doi.org/10.1016/j.tre.2022.102676
    51. Jack, E. P., and Raturi, A. (2002). Sources of volume flexibility and their impact on performance. Journal of operations management, 20(5), 519-548. https://doi.org/10.1016/S0272-6963(01)00079-1
    52. Jansen, W. M. (2024). Assessing supply chain resilience capabilities among manufacturing firms: a closer look on supply chain flexibility (Master's thesis, University of Twente).
    53. Jermsittiparsert, K., Sutduean, J., and Sriyakul, T. (2019). Role of warehouse attributes in supply chain warehouse efficiency in Indone-sia. International journal of innovation, creativity and change, 5(2), 786-802.
    54. Joshi, M., Naaz, S., and Joshi, P. (2024). Food Safety and Security in India: Prospectous and Challenges.
    55. Kabir, M. A., Khan, S. A., Gunasekaran, A., & Mubarik, M. S. (2025). Multi-criteria decision making to explore the relationship between supply chain mapping and performance. Decision Analytics Journal, 100577. https://doi.org/10.1016/j.dajour.2025.100577
    56. Kafetzopoulos, D., Vouzas, F., and Skalkos, D. (2020). Developing and validating an innovation drivers' measurement instrument in the agri-food sector. British Food Journal, 122(4), 1199-1214. https://doi.org/10.1108/BFJ-09-2019-0721
    57. Kale, S. D., and Patil, S. C. (2021). Need for predictive data analytics in cold chain management. In Advances in VLSI and Embedded Systems: Se-lect Proceedings of AVES 2019 (pp. 115-129). Springer Singapore. https://doi.org/10.1007/978-981-15-6229-7_9
    58. Kaplan, R., and Norton, D. (1992) The Balanced Scorecard—Measures That Drive Performance. Harvard Business Review, 79.
    59. Kazançoğlu, Yiğit and Sagnak, Muhittin and Mangla, Sachin and Sezer, Deniz and Özbiltekin, Melisa. (2021). A fuzzy based hybrid decision framework to circularity in dairy supply chains through big data solutions. Technological Forecasting and Social Change. 170. 120927.. https://doi.org/10.1016/j.techfore.2021.120927
    60. Khan, S. A. R., Yu, Z., Rehman Khan, S. A., and Yu, Z. (2019). Warehousing and Storage Equipment. Strategic Supply Chain Management, 81-107.
    61. Kitinoja, L. (2013). Use of cold chains for reducing food losses in developing countries. Population, 6(1.23), 5-60. https://doi.org/10.1007/978-3-030-15058-7_4
    62. Kumar, M., and Choubey, V. K. (2023). Sustainable performance assessment towards sustainable consumption and production: evidence from the Indian dairy industry. Sustainability, 15(15), 11555. https://doi.org/10.3390/su151511555
    63. Kumar, R., & Pamucar, D. (2025). A comprehensive and systematic review of multi-criteria decision-making (MCDM) methods to solve decision-making problems: two decades from 2004 to 2024. Spectrum of Decision Making and Applications, 2(1), 178-197. https://doi.org/10.31181/sdmap21202524
    64. Kumar, M., Sharma, M., Raut, R. D., Mangla, S. K., and Choubey, V. K. (2022). Performance assessment of circular driven sustainable agri-food supply chain towards achieving sustainable consumption and production. Journal of Cleaner Production, 372, 133698. https://doi.org/10.1016/j.jclepro.2022.133698
    65. Kumar, N., Tyagi, M., and Sachdeva, A. (2023). A sustainable framework development and assessment for enhancing the environmental perfor-mance of cold supply chain. Management of Environmental Quality: An International Journal, 34(4), 1077-1110. https://doi.org/10.1108/MEQ-03-2022-0046
    66. Kurien, G. P., and Qureshi, M. N. (2015). Analysis and measurement of supply chain flexibility. International Journal of Logistics Systems and Management, 21(1), 70-91. https://doi.org/10.1504/IJLSM.2015.069078
    67. Kurniawan, M. R., Hadiyanto, H., Zulkarnaen, J. D. P., and Harito, C. (2024). Use Case Diagram for Enhancing Warehouse Performance at PT. MDA Through the Implementation of 5S, Economic Order Quantity, Safety Stock, and Warehouse Management System. Engineering, MAthemat-ics and Computer Science Journal (EMACS), 6(1), 69-78. https://doi.org/10.21512/emacsjournal.v6i1.11204
    68. Lai, J. H., Hou, H., Edwards, D. J., and Yuen, P. L. (2022). An analytic network process model for hospital facilities management performance evaluation. Facilities, 40(5/6), 333-352. https://doi.org/10.1108/F-09-2021-0082
    69. Leończuk, D. (2021). Factors affecting the level of supply chain performance and its dimensions in the context of supply chain adaptabil-ity. LogForum, 17(2). https://doi.org/10.17270/J.LOG.2021.584
    70. Liao, J. (2023). SUSTAINABLE FRESH FOOD COLD SUPPLY CHAIN (CSC).
    71. Liao, J., Tang, J., Vinelli, A., and Xie, R. (2023). A hybrid sustainability performance measurement approach for fresh food cold supply chains. Journal of Cleaner Production, 398, 136466. https://doi.org/10.1016/j.jclepro.2023.136466
    72. Liu, Y., Eckert, C., Yannou-Le Bris, G., and Petit, G. (2019). A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agri-food value chain. Computers and Industrial Engineering, 127, 196-212. https://doi.org/10.1016/j.cie.2018.12.022
    73. Lusiantoro, L., Yates, N., Mena, C., and Varga, L. (2018). A refined framework of information sharing in perishable product supply chains. International Journal of Physical Distribution and Logistics Management, 48(3), 254-283. https://doi.org/10.1108/IJPDLM-08-2017-0250
    74. Masudin, I., Ramadhani, A., Restuputri, D. P., and Amallynda, I. (2021). The effect of traceability system and managerial initiative on Indonesian food cold chain performance: A Covid-19 pandemic perspective. Global Journal of Flexible Systems Management, 22(4), 331-356. https://doi.org/10.1007/s40171-021-00281-x
    75. Matthews, A. (2021, November). Contingency plan for ensuring food supply and food security. In Workshop Report-JRC Conference, Luxemburgo.
    76. Mecalux. (2025). Cold Storage Warehousing. Mecalux. Available at: https://www.mecalux.com/blog/cold-storage-warehousing (Accessed, Jan 20, 2025).
    77. Mohammed, M., Riad, K., and Alqahtani, N. (2022). Design of a smart IoT-based control system for remotely managing cold storage facili-ties. Sensors, 22(13), 4680. https://doi.org/10.3390/s22134680
    78. Mor, R.S., Bhardwaj, A. and Singh, S. (2018), "Benchmarking the interactions among performance indicators in dairy supply chain: An ISM ap-proach", Benchmarking: An International Journal, 25 (9), pp. 3858-3881. https://doi.org/10.1108/BIJ-09-2017-0254
    79. Mourral, E., and Lesaffre, C. (2020). Benefits and Challenges of an Automated Storage and Retrieval System: A theoretical study on Food and Pharmaceutical automated storage and retrieval process.
    80. Muravev, D., Hu, H., Zhou, H., and Pamucar, D. (2020). Location optimization of CR express international logistics centers. Symmetry, 12(1), 143. https://doi.org/10.3390/sym12010143
    81. Muthu. S., Jaiswal. A.K. (2013). AVP–RandD, N. T. D. Refrigerant types, issues, trends and future options.
    82. OBERTI, C., and Nannarone, A. (2022). Traceability, transparency, visibility and sustainability in food industry: the role of technology.
    83. Obioma, O. (2016). Servqual Model as Performance Evaluation Instrument for Small and Medium Sized Enterprises (SME): Evidence from Cus-tomers in Nigeria. European Scientific Journal, 12 (28). https://doi.org/10.19044/esj.2016.v12n28p520
    84. Odun-Ayo, I., Ajayi, O., Akanle, B., and Ahuja, R. (2017, December). An overview of data storage in cloud computing. In 2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS) (pp. 29-34). IEEE. https://doi.org/10.1109/ICNGCIS.2017.9
    85. Oró, E., Miró, L., Farid, M. M., Martin, V., and Cabeza, L. F. (2014). Energy management and CO2 mitigation using phase change materials (PCM) for thermal energy storage (TES) in cold storage and transport. International journal of refrigeration, 42, 26-35. https://doi.org/10.1016/j.ijrefrig.2014.03.002
    86. Pamučar, D., Vasin, L., and Lukovac, L. (2014). Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MAIRCA model. In: Proc. of the XVI International Scientific-Expert Conference on Railways, Serbia, 89–92.
    87. Pandey, M., Khare, N., and Shrivastava, S. C. (2012). New Aggregation Operator for Triangular Fuzzy Numbers based on the Geometric Means of the Slopes of the L-and R-Membership Functions. International Journal of Computers and Technology, 2(2), 74-76. https://doi.org/10.24297/ijct.v2i2b.2634
    88. Parasuraman, A. P., Zeithaml, V., and Berry, L. (1988). SERVQUAL A Multiple-item Scale for Measuring Consumer Perceptions of Service Quali-ty. Journal of Retailing, 64, 12-40.
    89. Patel, B. S., and Sambasivan, M. (2022). A systematic review of the literature on supply chain agility. Management Research Review, 45(2), 236-260. https://doi.org/10.1108/MRR-09-2020-0574
    90. Pedro, A. L., Rodolfo, R. V., Arturo, M. H. P., Nazmín, T. G. D., and Antonio, S. J. L. (2023). Cold chain relevance in the food safety of perisha-ble products. Foods and Raw materials, 11(1), 116-128. https://doi.org/10.21603/2308-4057-2023-1-559
    91. Peter, T. (2007). Decontamination of cold storage facilities. Packers Newsl.. 89. 5-7.
    92. Qrunfleh, S., and Tarafdar, M. (2014). Supply chain information systems strategy: Impacts on supply chain performance and firm perfor-mance. International journal of production economics, 147, 340-350. https://doi.org/10.1016/j.ijpe.2012.09.018
    93. Rabbi, M. F., Hasan, M., and Kovács, S. (2021). Food security and transition towards sustainability. Sustainability, 13(22), 12433. https://doi.org/10.3390/su132212433
    94. Raja Suganya, P. V., Devi, T., and Joshita, V. (2024, March). Next-Gen Cold Storage Surveillance Platform. In Analytics Global Conference (pp. 3-18). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75157-8_1
    95. Rajagopal, A. (2010). IMPACT OF QUALITY PROGRAMS ON SUPPLY CHAIN PERFORMANCE. Global Management Review, 4(3).
    96. Ramos, E., Coles, P. S., Chavez, M., and Hazen, B. (2022). Measuring agri-food supply chain performance: insights from the Peruvian kiwicha in-dustry. Benchmarking: An International Journal, 29(5), 1484-1512. https://doi.org/10.1108/BIJ-10-2020-0544
    97. Rasool, F., Greco, M., and Grimaldi, M. (2022). Digital supply chain performance metrics: a literature review. Measuring Business Excellence, 26(1), 23-38. https://doi.org/10.1108/MBE-11-2020-0147
    98. Razak, G. M., Hendry, L. C., and Stevenson, M. (2023). Supply chain traceability: A review of the benefits and its relationship with supply chain resilience. Production Planning and Control, 34(11), 1114-1134. https://doi.org/10.1080/09537287.2021.1983661
    99. Richards, G. (2017). Warehouse management: a complete guide to improving efficiency and minimizing costs in the modern warehouse. Kogan Page Publishers.
    100. Rodríguez-Escudero, A. I., Camarero-Izquierdo, C., and Redondo-Carretero, M. (2023). Towards profitable customized solutions in small firms: a matter of relationships, modularity and expertise. Journal of Business and Industrial Marketing, 38(1), 137-154. https://doi.org/10.1108/JBIM-03-2021-0147
    101. Rogerson, M., and Parry, G. C. (2020). Blockchain: case studies in food supply chain visibility. Supply Chain Management: An International Jour-nal, 25(5), 601-614. https://doi.org/10.1108/SCM-08-2019-0300
    102. Saaty,T.L. (1999). Fundamental of the Analytical Network Process. University of Pittsburgh, Japan. https://doi.org/10.13033/isahp.y1999.038
    103. Sahoo, S. K., and Goswami, S. S. (2023). A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applica-tions, and future directions. Decision Making Advances, 1(1), 25-48. https://doi.org/10.31181/dma1120237
    104. Sangari, M. S., Razmi, J., and Zolfaghari, S. (2015). Developing a practical evaluation framework for identifying critical factors to achieve supply chain agility. Measurement, 62, 205-214. https://doi.org/10.1016/j.measurement.2014.11.002
    105. Shravanthi, A. R., and Mahendran, K. (2018). Relationship and information management activities of cold storage warehouses with its stakeholders: A study in Guntur district of Andhra Pradesh. Small, 24950(69.83), 10780.
    106. Siddh, M. M., Soni, G., Jain, R., and Sharma, M. K. (2018). Structural model of perishable food supply chain quality (PFSCQ) to improve sustain-able organizational performance. Benchmarking: An International Journal, 25(7), 2272-2317. https://doi.org/10.1108/BIJ-01-2017-0003
    107. Singh, R. K., Gunasekaran, A., and Kumar, P. (2018). Third party logistics (3PL) selection for cold chain management: a fuzzy AHP and fuzzy TOPSIS approach. Annals of Operations Research, 267, 531-553. https://doi.org/10.1007/s10479-017-2591-3
    108. Singh, R., Thakur, R. K., Kalal, N., Praveen, S., Husain, D., and Prakash, R. (2021). Energy Efficient Design of Cold Storage.
    109. Singh, S., and Rana, R. (2017). Study of consumer perception of digital payment mode. Journal of internet banking and commerce, 22(3), 1-14.
    110. Stergiou, F. (2018). Effective management and control of the cold chain by application of time temperature indicators (TTIs) in food packag-ing. Journal of Food and Clinical Nutrition, 1(1), 12-15.
    111. Sufiyan, M., Haleem, A., Khan, S., and Khan, M. I. (2019). Evaluating food supply chain performance using hybrid fuzzy MCDM tech-nique. Sustainable production and consumption, 20, 40-57. https://doi.org/10.1016/j.spc.2019.03.004
    112. Tsang, Y. P., Choy, K. L., Poon, T. C., Ho, G. T. S., Wu, C. H., Lam, H. Y., ... and Ho, H. Y. (2016, November). An IoT-based occupational safe-ty management system in cold storage facilities. In 6th International Workshop of Advanced Manufacturing and Automation (pp. 7-13). Atlantis Press. https://doi.org/10.2991/iwama-16.2016.2
    113. Ugonna, C. U., Jolaoso, M. A., and Onwualu, A. P. (2015). Tomato value chain in Nigeria: Issues, challenges and strategies. Journal of Scientific Research and Reports, 7(7), 501-515. https://doi.org/10.9734/JSRR/2015/16921
    114. UNEP and FAO. 2022. Sustainable Food Cold Chains: Opportunities, Challenges and the Way Forward. Nairobi, UNEP and Rome, FAO. https://doi.org/10.4060/cc0923en
    115. Uyen, V. T. N., Ersoy, N., Trung, D. D., & Giang, N. T. P. (2024). Applying MCDM to evaluate benchmark scores in the logistics sector for the period 2021–2023: Application to universities in Vietnam. Journal of Infrastructure, Policy and Development, 8(11), 8942. https://doi.org/10.24294/jipd.v8i11.8942.
    116. WEL Companies. (n.d.). How to optimize space in a cold storage warehouse. Retrieved January 19, 2025, from https://www.welcompanies.com/blog/how-to-optimize-space-in-a-cold-storage-warehouse/
    117. Yadav, S., Garg, D., and Luthra, S. (2021). Development of IoT based data-driven agriculture supply chain performance measurement frame-work. Journal of Enterprise Information Management, 34(1), 292-327. https://doi.org/10.1108/JEIM-11-2019-0369
    118. Ye, F., and Wang, Z. (2013). Effects of information technology alignment and information sharing on supply chain operational perfor-mance. Computers and Industrial Engineering, 65(3), 370-377. https://doi.org/10.1016/j.cie.2013.03.012
    119. Yousefi, H., Su, H. M., Imani, S. M., Alkhaldi, K., M. Filipe, C. D., and Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS sensors, 4(4), 808-821. https://doi.org/10.1021/acssensors.9b00440
    120. Yu, Z., Jung, D., Park, S., Hu, Y., Huang, K., Rasco, B. A., ... and Chen, J. (2022). Smart traceability for food safety. Critical Reviews in Food Sci-ence and Nutrition, 62(4), 905-916. https://doi.org/10.1080/10408398.2020.1830262
    121. Yurtseven, C., Ekren, B. Y., and Toy, A. O. (2022). An Overview of Warehouse Operations for Cold Chain. In Industrial Engineering in the Inter-net-of-Things World: Selected Papers from the Virtual Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2020, August 14–15, 2020 (pp. 161-175). Springer International Publishing. https://doi.org/10.1007/978-3-030-76724-2_13
    122. Zak, A. (2015). Triple bottom line concept in theory and practice. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu. https://doi.org/10.15611/pn.2015.387.21
    123. Zeggio, F. (2020). Environmentally friendly technologies for energy systems in the cold chain for food (Master's thesis, Universitat Politècnica de Catalunya).
  • Downloads

  • How to Cite

    Gurrala , P. K. R. ., & Gonela , D. S. . (2025). A Novel Hybrid Conceptual MCDM Model to Assess and RankThe ‎Performance of Cold Storage Service Providers. International Journal of Accounting and Economics Studies, 12(5), 104-124. https://doi.org/10.14419/5brett70