Information Noise in Marketing Analytics: Implications forFinancial Reporting and Economic Decision-Making

  • Authors

    • Olena Iashchenko Vice President of Glad Selena Corporation, Fort Lauderdale, FL, USA
    • Olena Chupryna Mariupol State University, Kyiv, Ukraine
    • Sergiy Maksymov Danube Institute of the National University «Odesa Maritime Academy»
    • Nataliia Zemlianska Kyiv Municipal Academy Of Circus And Performing Arts, Kyiv, Ukraine
    • Olga Afanasieva Odesa National Maritime University, Odesa, Ukraine
    • Yuliia Popova State University of Infrastructure and Technologies, Kyiv, Ukraine
    https://doi.org/10.14419/qk1f2333

    Received date: August 6, 2025

    Accepted date: August 14, 2025

    Published date: September 17, 2025

  • Information Noise; Market Research; Marketing; Marketing Strategy; Information Flows; Data
  • Abstract

    This study explores the phenomenon of information noise as a critical impediment to the accuracy and reliability of marketing analytics and ‎economic decision-making in data-intensive environments. The research is economically oriented, addressing the adverse effects of informa-‎tional distortions on the quality of forecasts, strategic planning, and the financial efficiency of market-oriented enterprises. Information noise ‎is examined as a multidimensional construct that arises from data redundancy, irrelevance, ambiguity, contradictions, and temporal incon-‎sistencies. These distortions hinder the interpretability of marketing data, reduce the validity of econometric analysis, and contribute to ‎suboptimal business decisions. The paper develops a comprehensive methodological framework for identifying, measuring, and mitigating ‎information noise through the integration of statistical analysis, mathematical modeling, semantic diagnostics, and artificial intelligence tools. ‎A particular focus is placed on the economic consequences of noise, such as resource misallocation, increased forecasting error, and de-‎creased return on marketing investments. The empirical section presents a correlation-regression model based on data from a real enterprise, ‎which quantifies the impact of specific noise factors on sales forecast accuracy. The model reveals that trust in data sources, content redun-‎dancy, and channel fragmentation significantly affect the reliability of forecasts, highlighting the need for information quality control in fi-‎nancial planning. The findings emphasize the importance of structured data filtering, entropy-based anomaly detection, and adaptive noise ‎management strategies for improving economic performance in digital markets. The study contributes to the theoretical conceptualization of ‎information noise in marketing economics and offers practical recommendations for enhancing the quality of decision-making through intel-‎ligent data preprocessing. As a result, it provides a foundation for the development of more resilient and analytically sound business models ‎in the context of digital transformation and informational complexity‎.

  • References

    1. Agres, O., Sodoma, R., Ilchyshyn, I., Kovalchuk, O., & Shmatkovska, T. (2025). Regional development project management: financial aspect. Technology audit and production reserves, 3(4 (83)), 87-92. https://doi.org/10.15587/2706-5448.2025.330027.
    2. Allil, K. (2024). Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success. Journal of Marketing Analytics, 12(2), 142-168. https://doi.org/10.1057/s41270-023-00281-z.
    3. Ateeq, A. (2024). Emerging economies and digital transformation: Opportunities and challenges. Business Sustainability with Artificial Intelligence (AI): Challenges and Opportunities, (1), 129-136. https://doi.org/10.1007/978-3-031-71526-6_12.
    4. Chaliuk, Y., Pohrishchuk, B., Kolomiiets, T., Yaremko, I., Hromadska, N. (2023). Modeling the application of anti-crisis management business in-troduction for the engineering sector of the economy. International Journal of Safety & Security Engineering, 13(2), 187-194 https://doi.org/10.18280/ijsse.130201.
    5. Chaliuk, Y., Rozskazov, A., Anishchenko, V., Smal, I. and Matviichuk, O. (2021). Implementing of the COM-B model in in-service training of civ-il servants as a prerequisite for effective public and governance. Academic Journal of Interdisciplinary Studies, 10(3), 224-235. DOI: https://doi.org/10.36941/ajis-2021-0080.
    6. Dziamulych, M., Shmatkovska, T., Krupka, M., Yastrubetska, L., Vyshyvana, B., Derevianko S. (2021). Introduction of NSFR Ratio in the Activi-ties of Commercial Banks in Ukraine. Universal Journal of Accounting and Finance, 9(6), 1544-1550. https://doi.org/10.13189/ujaf.2021.090631.
    7. Glazer, R. (1991). Marketing in an information-intensive environment: strategic implications of knowledge as an asset. Journal of marketing, 55(4), 1-19. https://doi.org/10.2307/1251953.
    8. Hamidizadeh, M., Naami, A., & Meshkani, A. (2024). The impact of environmental noise in social media marketing. Journal of Strategic Manage-ment Studies, 15(57), 157-179.
    9. Hardcastle, K., Edirisingha, P., & Cook, P. (2024). Identifying sources of noise within the networked interplay of marketing messages in social me-dia communication. International Journal of Internet Marketing and Advertising, 20(2), 164-187. https://doi.org/10.1504/IJIMA.2024.137920.
    10. Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how?. International Journal of Information Manage-ment, 77, 102783. https://doi.org/10.1016/j.ijinfomgt.2024.102783.
    11. Kumar, V. (2018). Transformative marketing: The next 20 years. Journal of marketing, 82(4), 1-12. https://doi.org/10.1509/jm.82.41.
    12. Leenders, M. A., & Voermans, C. A. (2007). Beating the odds in the innovation arena: The role of market and technology signals classification and noise. Industrial Marketing Management, 36(4), 420-429. https://doi.org/10.1016/j.indmarman.2005.10.004.
    13. Li, W., Li, T., Jiang, D., & Zhang, X. (2024). Bridging the information gap: How digitalization shapes stock price informativeness. Journal of Fi-nancial Stability, 71, 101217. https://doi.org/10.1016/j.jfs.2024.101217.
    14. Li, Y. (2024). How Has Digitalisation Impacted the Economies of African Countries?. Journal of Business and Management Studies, 6(4), 15. https://doi.org/10.1016/j.frl.2024.105588.
    15. Madanchian, M. (2024). The Role of Complex Systems in Predictive Analytics for E-Commerce Innovations in Business Management. Systems, 12(10). https://doi.org/10.3390/systems12100415.
    16. Mansour, A., Al-Ahmed, H., Deek, A., Alshaketheep, K., Al-Ma'aitah, M., Asfour, B., & Alshurideh, M. (2024). Developing Green Marketing Strategies: A Comprehensive Analysis of Consumer Behaviour and Business Practices. International Review of Management and Marketing, 14(6), 206-212. https://doi.org/10.32479/irmm.17345.
    17. Murray, K. B. (1991). A test of services marketing theory: consumer information acquisition activities. Journal of marketing, 55(1), 10-25. https://doi.org/10.2307/1252200.
    18. Novikova, O., Pankova, O., Chaliuk, Y. and Kasperovich, O. (2021). The potential of digitalisation and social dialogue in ensuring post-pandemic labour market sustainability: priorities for Ukraine. Studies of Transition States and Societies, 13(2), 70-85.
    19. Rachman, R., Hamid, M. A., Wijaya, B. K., Wibowo, S. E., & Intan, D. N. (2024). Brand storytelling in the digital age: challenges and opportuni-ties in online marketing. Jurnal Ekonomi, 13(01), 355-364. https://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/view/3748. https://doi.org/10.54209/ekonomi.v13i01.3838
    20. Ritter, T., & Pedersen, C. L. (2020). Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Industrial marketing management, 86, 180-190. https://doi.org/10.1016/j.indmarman.2019.11.019.
    21. Rudenko, M., Berezianko, T., Halytsia, I., Dziamulych, M., Kravchenko, O., & Krivorychko, V. (2023). International experience of capitalization of knowledge in terms of innovation economy. Financial and Credit Activity Problems of Theory and Practice, 4(51), 508–518. https://doi.org/10.55643/fcaptp.4.51.2023.4067.
    22. Sarder, A., & Mondal, R. K. (2024). Real-Life Applications of Noisy Big Data Elimination in the Social Media Context. Fusion of Minds, 15. https://surl.li/awzayc.
    23. Sharabati, A. A. A., Ali, A. A. A., Allahham, M. I., Hussein, A. A., Alheet, A. F., & Mohammad, A. S. (2024). The Impact of Digital Marketing on the Performance of SMEs: An Analytical Study in Light of Modern Digital Transformations. Sustainability, 16(19), 8667. https://doi.org/10.3390/su16198667.
    24. Shmatkovska, T., Muterko, H., Bilochenko A., Shulha, O., Kuznietsova, O., & Dziamulych, M. (2022). Management of Non-current Assets and Capital Investments in Enterprises of the Agro-industrial Sector: A Case Study of Ukraine. Universal Journal of Agricultural Research, 10(6), 639-650. https://doi.org/10.13189/ujar.2022.100605.
    25. Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124.
    26. Wilbur, K. C. (2015). Recent developments in mass media: Digitization and multitasking. Handbook of media economics, 1, 205-224. https://doi.org/10.1016/B978-0-444-62721-6.00005-6.
  • Downloads

  • How to Cite

    Iashchenko, O., Chupryna, O., Maksymov, S. ., Zemlianska, N. ., Afanasieva, O. ., & Popova, Y. . (2025). Information Noise in Marketing Analytics: Implications forFinancial Reporting and Economic Decision-Making. International Journal of Accounting and Economics Studies, 12(5), 702-709. https://doi.org/10.14419/qk1f2333