Geopolitical Shocks and Commodity Market Dynamics
-
https://doi.org/10.14419/sj0tbc52
Received date: August 6, 2025
Accepted date: September 6, 2025
Published date: December 5, 2025
-
Geopolitical Risk Index (GPR); Commodity Markets; Oil Volatility; Agricultural Commodities; Safe-Haven Assets; Machine Learning; Supply Chain Disruption; Sanctions; Speculation -
Abstract
This research comprehensively examines the effects of geopolitical risk (GPR) on global commodity markets and consolidates evidence from 17 high-quality empirical studies published between 2010 and 2025. The SLR examines five thematic areas about geopolitical risk: (A) a measurement of geopolitical risk, (B) the sensitivity of oil and energy markets, (C) Instability in agricultural and metal commodities, (D) dynamics of safe-haven assets, and (E) the evolution of forecasting and modelling. The investigation critically examines how GPR disruptions affect commodity markets. The literature establishes that geopolitical circumstances potentiate market space, redirect investment flows, and create volatility in trade flows. The study recommends allowing for localised risk indices, integrated modelling architecture, and cross-commodity portfolio analysis.
-
References
- Abdullah, M., Tiwari, A. K., Hossain, M. R., & Abakah, E. J. A. (2024). Geopolitical risk and firm-level environmental, social, and governance (ESG) performance. Journal of Environmental Management, 363. https://doi.org/10.1016/j.jenvman.2024.121245.
- Adekoya, O. B., Badmus, J. O., & Al-Faryan, M. A. S. (2025). Geopolitical Risks and the Predictability of Green Investments: A GARCH-Based Mixed Data Sampling Approach. International Journal of Finance and Economics. https://doi.org/10.1002/ijfe.3124.
- Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128.
- Ahmadian-Yazdi, F., Sokhanvar, A., Roudari, S., & Tiwari, A. K. (2025). Dynamics of the relationship between stock markets and exchange rates during quantitative easing and tightening. Financial Innovation, 11. https://doi.org/10.1186/s40854-024-00694-4.
- Aizenman, J., Lindahl, R., Stenvall, D., & Uddin, G. S. (2024). Geopolitical shocks and commodity market dynamics: New evidence from the Rus-sia-Ukraine conflict. European Journal of Political Economy, 85, 102574. https://doi.org/10.1016/j.ejpoleco.2024.102574.
- Alghamdi, H., & Alqithami, S. (2025). A robust machine learning framework for stock market classification. Expert Systems with Applications, 294, 128573. https://doi.org/10.1016/j.eswa.2025.128573.
- Alhnaity, B., & Abbod, M. (2020). A new hybrid financial time series prediction model. Engineering Applications of Artificial Intelligence, 95. https://doi.org/10.1016/j.engappai.2020.103873.
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial Management, 13(4), 84. https://doi.org/10.3390/jrfm13040084.
- Arezki, R., & Liu, Y. (2020). On the (Changing) asymmetry of global spillovers: Emerging markets vs. advanced economies. Journal of International Money and Finance, 107, 102219. https://doi.org/10.1016/j.jimonfin.2020.102219.
- Asim, M., Khan, M. Y., & Shafi, K. (2024). Investigation of herding behaviour using machine learning models. Review of Behavioural Finance, 16(3). https://doi.org/10.1108/RBF-05-2023-0121.
- Axelson, U., & Makarov, I. (2023). Informational Black Holes in Financial Markets. Journal of Finance, 78(6), 3099–3140. https://doi.org/10.1111/jofi.13270.
- Balcilar, M., Bekiros, S., & Gupta, R. (2017). The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method. Empirical Economics, 53(3), 879–889. https://doi.org/10.1007/s00181-016-1150-0.
- Balcilar, M., Usman, O., & Agan, B. (2024). On the connectedness of commodity markets: A critical and selective survey of empirical studies and bib-liometric analysis. Journal of Economic Surveys, 38, 97–136. https://doi.org/10.1111/joes.12541.
- Bathla, G., Rani, R., & Aggarwal, H. (2023). Stocks of year 2020: prediction of high variations in stock prices using LSTM. Multimedia Tools and Applications, 82(7), 9727–9743. https://doi.org/10.1007/s11042-022-12390-5.
- Baur, D. G., & Lucey, B. M. (2010). Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review, 45(2). https://doi.org/10.1111/j.1540-6288.2010.00244.x.
- Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. Journal of Banking and Finance, 34(8). https://doi.org/10.1016/j.jbankfin.2009.12.008.
- Bekiros, S., Boubaker, S., Nguyen, D. K., & Uddin, G. S. (2017). Black swan events and safe havens: The role of gold in globally integrated emerg-ing markets. Journal of International Money and Finance, 73, 317–334. https://doi.org/10.1016/j.jimonfin.2017.02.010.
- Bhattacharjee, A., Gaur, D., & Gupta, K. (2024). Russia–Ukraine war and the impact on Indian economy. Journal of Economic Studies, 51(4), 841–858. https://doi.org/10.1108/JES-03-2023-0136.
- Boubaker, H., & Larbi, O. Ben. (2022). Dynamic dependence and hedging strategies in BRICS stock markets with oil during crises. Economic Anal-ysis and Policy, 76, 263–279. https://doi.org/10.1016/j.eap.2022.08.011.
- Bouri, E., & Alsagr, N. (2024). Hedging investment-grade and high-yield bonds with credit VIX. Economics Letters, 237. https://doi.org/10.1016/j.econlet.2024.111630.
- Caldara, D., & Iacoviello, M. (2022). Measuring Geopolitical Risk. American Economic Review, 112(4), 1194–1225. https://doi.org/10.1257/aer.20191823
- Calderón, C., & Liu, L. (2003). The direction of causality between financial development and economic growth. Journal of Development Economics, 72(1), 321–334. https://doi.org/10.1016/S0304-3878(03)00079-8.
- Cevik, E. I., Caliskan Terzioglu, H., Kilic, Y., Bugan, M. F., & Dibooglu, S. (2024). Interconnectedness and systemic risk: Evidence from global stock markets. Research in International Business and Finance, 69, 102282. https://doi.org/10.1016/j.ribaf.2024.102282.
- Chang, S. L., Chien, C. Y., Lee, H. C., & Lin, C. (2018). Historical high and stock index returns: Application of the regression kink model. Journal of International Financial Markets, Institutions and Money, 52, 48–63. https://doi.org/10.1016/j.intfin.2017.08.004.
- Chaudhari, K., & Thakkar, A. (2023). Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction. Expert Systems with Applications, 219. https://doi.org/10.1016/j.eswa.2023.119527.
- Chen, W., Liu, W., Zheng, J., & Zhang, X. (2025). Leveraging large language model as news sentiment predictor in stock markets: a knowledge-enhanced strategy. Discover Computing, 28(1), 74. https://doi.org/10.1007/s10791-025-09573-7.
- Chowdhury, E. K., & Khan, I. I. (2023). Reactions of Global Stock Markets to the Russia–Ukraine War: An Empirical Evidence. Asia-Pacific Finan-cial Markets. https://doi.org/10.1007/s10690-023-09429-4.
- Ciner, C., Gurdgiev, C., & Lucey, B. M. (2013). Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates. Internation-al Review of Financial Analysis, 29. https://doi.org/10.1016/j.irfa.2012.12.001.
- Das, N., Sadhukhan, B., Ghosh, R., & Chakrabarti, S. (2024). Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators. Computational Economics. https://doi.org/10.1007/s10614-024-10566-9.
- Dequiedt, V., Gomes, M., Pukthuanthong, K., & Williams-Rambaud, B. (2025). Commodity Dependence and Optimal Asset Allocation. Journal of Futures Markets. https://doi.org/10.1002/fut.22563
- Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. https://doi.org/10.1016/j.jeconom.2014.04.012.
- Diebold, F. X., & Yilmaz, K. (2015). Trans-Atlantic equity volatility connectedness: U.S. and European financial institutions, 2004-2014. Journal of Financial Econometrics, 14(1), 81–127. https://doi.org/10.1093/jjfinec/nbv021.
- Doojav, G. O., Purevdorj, M., & Batjargal, A. (2024). The macroeconomic effects of exchange rate movements in a commodity-exporting developing economy. International Economics, 177. https://doi.org/10.1016/j.inteco.2023.100475.
- Evrim Mandacı, P., Cagli, E. Ç., & Taşkın, D. (2020). Dynamic connectedness and portfolio strategies: Energy and metal markets. Resources Policy, 68. https://doi.org/10.1016/j.resourpol.2020.101778.
- Ghaemi Asl, M., & Ben Jabeur, S. (2024). Could the Russia-Ukraine war stir up the persistent memory of interconnectivity among Islamic equity markets, energy commodities, and environmental factors? Research in International Business and Finance, 69. https://doi.org/10.1016/j.ribaf.2024.102260.
- Gülmez, B. (2023). Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Ap-plications, 227. https://doi.org/10.1016/j.eswa.2023.120346.
- Hamdi, B., Aloui, M., Alqahtani, F., & Tiwari, A. (2019). Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis. Energy Economics, 80, 536–552. https://doi.org/10.1016/j.eneco.2018.12.021.
- Hamdi, M., & Aloui, C. (2015). Forecasting crude oil price using artificial neural networks: A literature survey. Economics Bulletin, 35(2).
- Hamilton, J. D. (2016). Macroeconomic Regimes and Regime Shifts. In Handbook of Macroeconomics (1st ed., Vol. 2). Elsevier B.V. https://doi.org/10.1016/bs.hesmac.2016.03.004.
- Hanif, W., Hadhri, S., & El Khoury, R. (2024). Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil produc-ers and consumers. Journal of Commodity Markets, 34, 100404. https://doi.org/10.1016/j.jcomm.2024.100404.
- Hanif, W., Mensi, W., Gubareva, M., & Teplova, T. (2023). Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth met-als and renewable energy stock markets. Resources Policy, 80. https://doi.org/10.1016/j.resourpol.2022.103196.
- Hiruta, K., & Senoguchi, J. (2025). Wavelet-CNN for temporal data: Enhancing long-term stock price prediction via multi-resolution wavelet decom-position and CNN-based feature extraction. International Journal of Information Management Data Insights, 5(2), 100360. https://doi.org/10.1016/j.jjimei.2025.100360.
- Hudecová, K., & Rajčániová, M. (2023). The impact of geopolitical risk on agricultural commodity prices. Agricultural Economics (Zemědělská Ekonomika), 69(4), 129–139. https://doi.org/10.17221/374/2022-AGRICECON.
- Hussain, M., & Rehman, R. U. (2023). Volatility connectedness of GCC stock markets: how global oil price volatility drives volatility spillover in GCC stock markets? Environmental Science and Pollution Research, 30(6), 14212–14222. https://doi.org/10.1007/s11356-022-23114-5.
- Kang, W., & Ratti, R. A. (2013). Structural oil price shocks and policy uncertainty. Economic Modelling, 35, 314–319. https://doi.org/10.1016/j.econmod.2013.07.025.
- Kehinde, T. O., Chan, F. T. S., & Chung, S. H. (2023). Scientometric review and analysis of recent approaches to stock market forecasting: Two dec-ades survey. In Expert Systems with Applications (Vol. 213). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2022.119299.
- Kilic, M., & Wachter, J. A. (2018). Risk, Unemployment, and the Stock Market: A Rare-Event-Based Explanation of Labor Market Volatility. The Review of Financial Studies, 31(12), 4762–4814. https://doi.org/10.1093/rfs/hhy008.
- Laopodis, N. T. (2025). Do the Fama–French Factors Proxy Geopolitical Risks? Journal of Portfolio Management, 51, 131–157. https://doi.org/10.3905/jpm.2024.1.656.
- Lin, L., Jiang, Y., Xiao, H., & Zhou, Z. (2020). Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. Physica A: Statistical Mechanics and Its Applications, 543. https://doi.org/10.1016/j.physa.2019.123532.
- Liu, L., Ma, F., Zeng, Q., & Zhang, Y. (2020). Forecasting the aggregate stock market volatility in a data-rich world. Applied Economics, 52(32), 3448–3463. https://doi.org/10.1080/00036846.2020.1713291.
- Mensi, W., Maitra, D., Selmi, R., & Vo, X. V. (2023). Extreme dependencies and spillovers between gold and stock markets: evidence from MENA countries. Financial Innovation, 9(1). https://doi.org/10.1186/s40854-023-00451-z.
- Mensi, W., Shafiullah, M., Vo, X. V., & Kang, S. H. (2021). Volatility spillovers between strategic commodity futures and stock markets and portfolio implications: Evidence from developed and emerging economies. Resources Policy, 71. https://doi.org/10.1016/j.resourpol.2021.102002.
- Mezghani, T., & Abbes, M. B. (2023). Influence of oil price fluctuations on the network connectedness between oil, GCC Islamic and conventional financial markets. International Journal of Islamic and Middle Eastern Finance and Management. https://doi.org/10.1108/IMEFM-09-2021-0392.
- Migliorelli, M., & Marini, V. (2020). Sustainability-Related Risks, Risk Management Frameworks and Non-financial Disclosure. https://doi.org/10.1007/978-3-030-54530-7_4.
- Nguyen, D. K., Sermpinis, G., & Stasinakis, C. (2023). Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology. European Financial Management, 29(2), 517–548. https://doi.org/10.1111/eufm.12365.
- Nguyen, H. T., & Pham, H. V. D. (2014). Relationship between Stock Market Development and Economic Growth: Evidences from Canada and Australia. International Journal of Economics and Finance, 6(7). https://doi.org/10.5539/ijef.v6n7p1.
- Palomba, G., & Tedeschi, M. (2025). Geopolitical Risks’ Spillovers Across Countries and on Commodity Markets: A Dynamic Analysis. Energy RE-SEARCH LETTERS, 6(2). https://doi.org/10.46557/001c.121262.
- Paramati, S. R., Safiullah, M., & Soytas, U. (2025). Does geopolitical risk increase carbon emissions and public health risk? Energy Economics, 143. https://doi.org/10.1016/j.eneco.2025.108235.
- Pham, D. C., Do, T. N. A., Doan, T. N., Nguyen, T. X. H., & Pham, T. K. Y. (2021). The impact of sustainability practices on financial performance: empirical evidence from Sweden. Cogent Business and Management, 8(1). https://doi.org/10.1080/23311975.2021.1912526.
- Qiao, G., Cui, W., Zhou, Y., & Liang, C. (2024). Volatility of Volatility and VIX Forecasting: New Evidence Based on Jumps, the Short-Term and Long-Term Volatility. Journal of Futures Markets. https://doi.org/10.1002/fut.22553.
- Rajwani, S., Tiwari, A. K., Yadav, M. P., & Sharma, S. (2023). Dynamic Linkages of Energy Commodities with Bullion and Metal Market: Evidence of Portfolio Hedging. American Business Review, 26(1), 148–179. https://doi.org/10.37625/abr.26.1.148-179.
- Rani, M., & Singh, R. (2024). Role of Artificial Intelligence in Sustainable Finance (pp. 409–419). https://doi.org/10.1007/978-3-031-50300-9_22.
- Rao, A., Lucey, B., & Kumar, S. (2025). Temporal dynamics of geopolitical risk: An empirical study on energy commodity interest-adjusted spreads. Energy Economics, 141. https://doi.org/10.1016/j.eneco.2024.108066.
- Raza, N., Jawad Hussain Shahzad, S., Tiwari, A. K., & Shahbaz, M. (2016). Asymmetric impact of gold, oil prices and their volatilities on stock pric-es of emerging markets. Resources Policy, 49, 290–301. https://doi.org/10.1016/j.resourpol.2016.06.011.
- Reber, B. (2014). Estimating the risk–return profile of new venture investments using a risk-neutral framework and ‘thick’ models. The European Journal of Finance, 20(4), 341–360. https://doi.org/10.1080/1351847X.2012.708471.
- Rufaidah, F., Karyani, T., Wulandari, E., & Setiawan, I. (2023). A Review of the Implementation of Financial Technology (Fintech) in the Indonesian Agricultural Sector: Issues, Access, and Challenges. In International Journal of Financial Studies (Vol. 11, Issue 3). https://doi.org/10.3390/ijfs11030108.
- Sabkha, S., de Peretti, C., & Mallek, S. (2020). Forecasting sovereign CDS VOLATILITY: A comparison of univariate GARCH-class models. Vie & Sciences de l’entreprise, N° 209(1), 27–56. https://doi.org/10.3917/vse.209.0027.
- Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203–213. https://doi.org/10.1016/j.neucom.2018.09.082.
- Saravanan, N., Olivares-Aguila, J., & Vital-Soto, A. (2022). Bibliometric and Text Analytics Approaches to Review COVID-19 Impacts on Supply Chains. In Sustainability (Switzerland) (Vol. 14, Issue 23). https://doi.org/10.3390/su142315943.
- Sharma, A., & Goel, U. (2022). Stock Market Forecasting Using Machine Learning. Global Sci-Tech, 14(1). https://doi.org/10.5958/2455-7110.2022.00003.9
- SHEFRIN, H., & STATMAN, M. (1985). The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence. The Journal of Finance, 40(3), 777–790. https://doi.org/10.1111/j.1540-6261.1985.tb05002.x.
- Singhal, S., & Ghosh, S. (2016). Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models. Resources Policy, 50, 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001.
- Soni, R. K., Nandan, T., & Chatnani, N. N. (2023). Dynamic association of economic policy uncertainty with oil, stock and gold: a wavelet-based approach. Journal of Economic Studies, 50(7), 1501–1525. https://doi.org/10.1108/JES-05-2022-0267.
- Sun, C., Peng, Y., & Zhan, Y. (2023). How does China’s crude oil futures affect the crude oil prices at home and abroad? Evidence from the cross-market exchange rate spillovers. International Review of Economics and Finance, 88, 204–222. https://doi.org/10.1016/j.iref.2023.06.013.
- TETLOCK, P. C. (2007). Giving Content to Investor Sentiment: The Role of Media in the Stock Market. The Journal of Finance, 62(3), 1139–1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x.
- Trabelsi, N., Gozgor, G., Tiwari, A. K., & Hammoudeh, S. (2021). Effects of Price of Gold on Bombay Stock Exchange Sectoral Indices: New Evi-dence for Portfolio Risk Management. Research in International Business and Finance, 55. https://doi.org/10.1016/j.ribaf.2020.101316
- Wang, M., & Su, Y. (2023). How Russian-Ukrainian geopolitical risks affect Chinese commodity and financial markets? Finance Research Letters, 56. https://doi.org/10.1016/j.frl.2023.104179.
- Woode, J. K., Idun, A. A. A., & Kawor, S. (2024). Comovement between agricultural commodities and stock returns of commodity-dependant sub-saharan Africa countries amidst the COVID-19 pandemic. Scientific African, 23. https://doi.org/10.1016/j.sciaf.2023.e01972.
- Wu, Y., & Zhang, C. (2022). Hard to arbitrage, hard for analysts to forecast. North American Journal of Economics and Finance, 62. https://doi.org/10.1016/j.najef.2022.101792.
- Yang, F., Chen, J., & Liu, Y. (2023). Improved and optimized recurrent neural network based on PSO and its application in stock price prediction. Soft Computing, 27(6), 3461–3476. https://doi.org/10.1007/s00500-021-06113-5.
- Yang, J., Zhang, W., Zhang, X., Zhou, J., & Zhang, P. (2023). Enhancing stock movement prediction with market index and curriculum learning. Ex-pert Systems with Applications, 213. https://doi.org/10.1016/j.eswa.2022.118800.
- Yun, K. K., Yoon, S. W., & Won, D. (2023). Interpretable stock price forecasting model using genetic algorithm-machine learning regressions and best feature subset selection. Expert Systems with Applications, 213. https://doi.org/10.1016/j.eswa.2022.118803.
- Yuni, D. N., Enwo-Irem, I. N., & Urom, C. (2024). Dynamic effects of geopolitical risks and infectious diseases on real estate markets. International Journal of Housing Markets and Analysis, 17, 170–191. https://doi.org/10.1108/IJHMA-09-2022-0130.
- Zhang, X., & Zhang, W. (2023). Information asymmetry, sentiment interactions, and asset price. North American Journal of Economics and Finance, 67. https://doi.org/10.1016/j.najef.2023.101920.
- Zhu, Z., Sun, L., Tu, J., & Ji, Q. (2022). Oil price shocks and stock market anomalies. Financial Management, 51(2). https://doi.org/10.1111/fima.12377.
-
Downloads
-
How to Cite
V, V. B., P S, R., & M, S. (2025). Geopolitical Shocks and Commodity Market Dynamics. International Journal of Accounting and Economics Studies, 12(8), 129-140. https://doi.org/10.14419/sj0tbc52
